e

A Pattern Language for
Reverse Engineering

Serge Demeyer(*), Stéphane Ducasse(™), Oscar Nierstrasz(*)
) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/
) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

Abstract. Since object-oriented programming is usually associated with iterative develop-
ment, reverse engineering must be considered an essential facet of the object-oriented paradigm.
The reverse engineering pattern language presented here summarises the reverse engineering ex-
perience gathered as part of the FAMOOS project, aproject with the explicit goal of investigating
reverse and reengineering techniques in an object-oriented context. Due to limitations on Euro-
PL OP submissions, only part of thefull pattern languageis presented, namely the patterns describ-
ing how to gain an initial understanding of a software system.

Thiswork has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and

BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Copyright© 2000 by Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Chapter 1

Reverse Engineering Patterns

1. Introduction

This pattern language describes how to reverse engineer an object-oriented software system.
Reverse engineering might seem abit strangein the context of object-oriented development, as
this term is usually associated with "legacy" systems written in languages like COBOL and
Fortran. Yet, reverseengineeringisvery relevant in the context of object-oriented devel opment
aswell, because the only way to achieve agood object-oriented design isrecognized to beiter-
ative development (see [Booc944a], [Gold95a], [Jaco97a], [Reen96a]). Iterative development
involvesrefactoring existing designs and consequently, reverse engineering isan essential fac-
et of any object-oriented devel opment process.

The patterns have been developed and applied during the FAMOOS project (http://
www.iam.unibe.ch/~famoos/); a project with had the explicit goal to produce a set of re-engi-
neering technigues and tool sto support the devel opment of object-oriented frameworks. Many
if not al of the patterns have been applied on software systems provided by the industrial part-
nersintheproject (i.e., Nokiaand Daimler-Chrysler). These systemsranged from 50.000 lines
of C++ up until 2,5 million lines of Ada. Where appropriate, we refer to other known useswe
were aware of whilewriting.

Acknowledgments. We would like to thank our EuroPL oP shepherds Mary Lynn Manns

(2000), KyleBrown (1999), Kent Beck and CharlesWeir (1998) and all participantsof thewrit-
ersworkshopswhere partsof thislanguage hasbeen discussed. Of coursethereisalso Tim Cox,

our contact person with the publisher: thanks for your patience —we hope we will not disap-
point you. Next, we thank all participants of ##MOOS project for providing such a fruitful
working context. And finally, we thank our colleagues in Berne, both in and outside the FA-
MOOS team: by workshopping earlier versions of this pattern language you have greatly im-
proved this manuscript.

2. Clusters of Patterns

The pattern language has been dividedshisterswhere each cluster groups a number of pat-
terns addressing a similar reverse engineering situation. The clusters correspond roughly to the
different phases one encounters when reverse engineering a large software system. Below is a
short description for each of the clusters, while figure 1 provides a road map.

» First Contact. This cluster groups patterns telling you what to do when you have your
very first contact with a software system.

* Initial Understanding. Here, the patternstell you how to obtain aninitial understanding
of a software system, mainly documented in the form of class diagrams.

» Detailed Model Capture.The patternsin this cluster describe how to get a detailed un-
derstanding of a particular component in your software system.

http:/www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/

Prepare Reengineering
A e Write the Tests

* Refactor to Understand

¢ Build a Prototype

Detailed Model Capture
e Derive the “true” .Public Interface
e Step Throughthe Execution
¢ Reconstruct the Iterations

Initial Understanding
e Speculate about Domain Objects
* Analyze the Persistent Data
* Inspect the Largest Entities

System Understanding

First Contact
* Read all the Code’in One Hour
¢ Skim. thesDocumentation
* #Interview During Demo
« Confer with Colleagues

Resources spent
Figure 1: Overview of the four clusters in the pattern language.
lllustrating how understanding gradually increases with the amount of resources you spend

» Prepare ReengineeringSince reverse engineering often goestogether with reengineer-
ing, this cluster includes some patterns that help you prepare subsequent reengineering

steps.

Chapter 2
Initial Understanding

The patternsin First Contact should have helped you getting some first ideas about the soft-
waresystem. Now istheright timeto refinethoseideasinto aninitial understanding and to doc-
ument that understanding in order to support further reverse engineering activities. The main
priority in this stage of reverse engineering isto get an accurate understanding without spend-
ing too much time on the hairy details.

The patternsin this cluster tell you:

* How to extract a domain model from source cofgetulate about Domain Ob-
jects), with one variant concerning pattern extractigpelculate about Patterns) and
another concerning process architecture extrac8pedulate about the Architec-
ture).

» How to extract a class model from a database(yze the Persistent Data).

* How to identify important chunks of functionalityh§pect the Largest Entities).

With this information you will probably want to proceed witatailed Model Capture.

Speculate about Domain Objects

AKA: Map business objects onto classes

Intent: Progressively refinea domain model against source code, by defining hypotheses about
which objects should be represented in the system and checking these hypotheses against the
source code.

Problem

You do not know how concepts from the problem domain are mapped onto classes in the
source-code.

Thisproblem isdifficult because:

» There are many problem domain concepts and there is a countless number of ways to
represent them in the programming language used.

 Lots of source-code won’t have anything to do with representing the problem domain but
rather with implementing solution domain issues (user-interface, database, ...).

Yet, solving this problem is feasible because:

» You have aough understanding of the system’s functionality (for example obtained via
Skim the Documentation andinterview During Demo), thus an initial idea of what
aspects of the problem domain should represented.

* You havedevelopment expertise, so you can imagine how you would model the problem
domain yourself.

* You aresomewhat familiar with the main structure of the source code (for example ob-
tained byRead all the Code in One Hour) and you have the necessary tools to browse
it, so that you can find your way around.

Solution

Use your development expertise to conceive a hypothetical class model representing the prob-
lem domain. Refine that model by inspecting whether the names in the class model occur in the
source code and by adapting the model accordingly. Repeat the process until you'’re class model
stabilizes.

Steps

1. With your understanding of the requirements and usage scenarios, develop a class
model that serves as your initial hypothesis of what to expect in the source code. For
the names of the classes, operations and attributes make a guess based on your expe-
rience and potential naming conventions @ the Documentation).

2. Enumerate the names in the class model (that is, names of classes, attributes and op-
erations) and try to find them in the source code, using whatever tools you have avail-
able. Take care as names inside the source-code do not always match with the concepts

they represent.! To counter this effect, you may rank the names according to the like-
lihood that they appear in the source code.

3. Keep track of the names which appear in source code (confirm your hypotheses) and
the names which do not match with identifiersin the source code (contradict your hy-
pothesis). Note that mismatches are positive, as these will trigger the learning process
that you must go through when understanding the system.

4. Adapt the class model based on the mismatches. Such adaptation may involve
(a) renaming, when you discover that the names chosen in the source code do not
match with your hypothesis;
(b) remodelling (refactoring), when you find out that the source-code representation
of the problem domain concept does not correspond with what you have in your mod-
el. For instance, you may transform an operation into a class, or an attribute into an
operation.
(c) extending, when you detect important elements in the source-code that do not ap-
pear in your class diagram;
(d) seeking alternatives, when you do not find the problem domain concept in the
source-code. This may entail trying synonyms when there are few mismatches but
may also entail defining acompletely different classmodel when therearealot of mis-
matches.

5. Repeat from step 2 until you obtain a class model that is satisfactory.

Hints

The most difficult step while applying this pattern is the development of aninitial hypotheses.
Below are some hintsthat may help you to come up with afirst class model.

* The usage scenarios that you get ounhtfrview During Demo may serve to define
some use cases that in turn help to find out which objects fulfil which roles. (See
[Jaco92a] for use cases and [Reen96a] for role modeling.)

» Use the noun phrases in the requirements as the initial class names and the verb phrases
as the initial method names, as suggested in responsibility-driven design (See [Wirfo0b]
for an in depth treatment.)

Tradeoffs

Pros

» Scale. Speculating about what you'll find in the source code is a technique that scales up
well. This is especially important because for large object-oriented programs (over a 100
classes) it quickly becomes impractical to apply the inverse process, which is building a
complete class model from source code and afterwards condensing it by removing the
noise. Besides being impractical, the latter approach does not bring a lot of understand-
ing, because you are forced to focus on the irrelevant noise instead of the important con-
cepts.

1. In one particular reverse engineering experience, we were facing source code that was a mixture of En-
glish and German. As you may expect, this complicates matters alot.

» Applicability. The pattern is applicable in all situations where you have the source code
available.

* Return on Investment. The technique is quite cheap in terms of resources and tools,
definitely when considering the amount of understanding one obtains.

Cons

» Requires Implementation Expertise A large repertoire of knowledge about idioms,
patterns, algorithms, techniques is necessary to recognize what you see in the source
code. Assuch, the pattern should preferably be applied by expertsin the implementation
language.

Difficulties

» Consistency.Y ou should plan to keep the class model up to date while your reverse en-
gineering project progresses and your understanding of the software system grows. Oth-
erwise your efforts will be wasted. If your team makes use of a version control system,
make sure that the class model is controlled by that system too.

Rationale

If you Speculate about Domain Objects, you go through alearning process which gainsa
true understanding. In that sense, the contradictions of your hypotheses are asimportant asthe
confirmations, because mismatches force you to consider alternative solutions and assess the
pros and consof these.

Known Uses

In[Murp97a], thereisareport of an experiment where asoftware engineer at Microsoft applied
this pattern (it is called 'the Reflection Model’ in the paper) to reverse engineer the C-code of
Microsoft Excel. Oneof the nicesidesof thestory isthat the software engineer wasanewcomer
to that part of the system and that his colleagues could not spend too much timeto explain him
about it. Yet, after abrief discussion then newcomer could come up with an initial hypothesis
and then use the source code to gradually refine his understanding. Note that the paper also in-
cludes a description of alightweight tool to help specifying the model, the mapping from the
model to the source code and the checking of the code against the model.

The article [Bigg94a] reports several successful uses of this pattern (it is called the ‘concept as-
signment problem’ in the paper). The authors describe a special tool DESIRE, which includes
advanced browsing facilities, program slicing, Prolog-based query language,

Related Patterns

All the patterns in theirst Contact cluster are meant to help you in building the initial hypoth-
esis now to be refined vipeculate about Domain Objects. Afterwards, some of the pat-
terns inDetailed Model Capture (in particularStep Through the Execution) may help you

to improve this hypothesis.

What Next

After thispattern, you will have aclassmodel representing the problem domain concepts. Oth-
er patternswill help you deriving other views on the system, for instance Analyze the Persist-
ent Data when you want to learn about the valuable data inside a system, or Inspect the
Largest Entities when you want to identify the important functionality.

Consider to Confer with Colleagues after you did Speculate about Domain Obijects, in
order to confirm you results with other findings.

Speculate about Patterns

Intent: LikeSpeculate about Domain Objects, except that you build and refinea hypothesis
about occurrences of architectural, analysisor design patterns.

Description

While having Read all the Code in One Hour, you might have noticed some symptoms of
patterns. Knowing which patterns have been applied in the system design may help alot in un-
derstanding it: for instance a Singleton pattern may point to important system-wide services.
You can useavariant of Speculate about Domain Objects to refinethisknowledge. Seethe
better known pattern catal ogues [Gamm95a], [Fowl97b] for patternsto watch out for. See al'so
[Brow96c] for adiscussion on tool support for detecting patterns.

Example

You arefacing a500 K lines C++ program, implementing a software system to display multi-
mediainformationinreal time. Your boss asksyou to look at how much of the source code can
beresurrected for another project. After having Read all the Code in One Hour, you noticed
an interesting piece of code concerning thereading of the signalson the external video channel.
You suspect that the original software designers have applied some form of observer pattern,
and you want to learn more about the way the observer isnotified of events. You will read the
source code and trace interesting paths, thisway gradually refining your assumption that the
class"vi deoChannel " isthe subject being observed.

Speculate about the Architecture

Intent: LikeSpeculate about Domain Objects, except that you build and refinea hypothesis
about the architecture of a system. Especially useful in a distributed setting, where you build a
hypothesisfor theinteracting processesin a distributed system.

Description

“A software architecture is a description of the subsystem and components of a software system
and the relationships between them” [Busc96a] (a.k.a. Components and Connectors

[Shaw96a]). The software architectureistypically associated with the coarse level design of a
system and as suchit iscrucial in understanding the overall structure.

Moreover, the object-oriented paradigm is often applied in the context of distributed systems
with multiple cooperating processes. To understand the inner workings of such a system, you
must know about its architecture as thiswill help you mapping parts of the code to the corre-
sponding process.

Therefore, a variant of Speculate about Domain Objects may be applied to infer which
componentsand connectorsexist, or inthe context of adistributed system, which processes ex-
ist, how they are launched, how they get terminated and how they interact. (See [Busc96a] for
acatalogueof architectural patternsand [Shaw96a] for alist of well-knownarchitectural styles.
See[Lea%6a] for sometypical patternsand idiomsthat may be applied in concurrent program-
ming and [Schm0O0a] for architectural patternsin distributed systems.)

Analyze the Persistent Data

Intent: Learn about objectsthat are so valuablethat they are stored in a database system.

Problem

You do not know which objects are valuable for the functioning of the system.
Thisproblemisdifficult because:
» “Valuable” is a subjective property, depending on which functionality is considered im-

portant for your reverse engineering project.

» Objects are run-time entities while most system descriptions are static. Run-time traces
quickly generate huge amounts of data.

Yet, solving this problem is feasible because:

» The software system employs some form déi@abase to make its data persistent. Thus
there exists some form of database schema providing a static description of the data in-
side the database.

* The database comes with theeessary tools to inspect the actual objects inside the da-
tabase, so you can exploit the presence of legacy data to fine-tune your findings.

* You have somexpertise with mapping data-structures from your implementation lan-
guage onto a database schema, enough to reconstruct a class model from the database
schema.

* You have aough understanding of the system’s functionality (for example obtained via
First Contact), so you can put additional information in context.

Solution

Check the entities that are stored in the database, as these most likely represent valuable ob-
jects. Derive a class model representing those entities to document that knowledge for the rest
of the team.

Steps

The steps below assume you start withlational database, which is quite a typical situation
with object-oriented systems. If you have another kind of database system, some of these steps
may still be applicable.

Note that steps 1-3 are quite mechanical and can be automated quite easily.
1. Collect all table names and build a class model, where each table name corresponds to

a class name.

2. For each table, collect all column names and add these as attributes to the correspond-
ing class.

3. Collect all foreign keys relationships between tables and draw an association between
the corresponding classes. (If the foreign key relationships are not maintained explic-

Tables with foreign key relationships Inheritance Hierarchy

Person (a)> Person
™ id: ObjectID < id: ObjectlD
: Stri name: String
e ress: S address: Strin
address: String : g

ﬁ&

Student Teacher | |

id: ObjectID id: ObjectID Student Teacher
studentNr: Integer salary: Real studentNr: Integer salary: Real
class: String class: String \

N ©

(b) A

Tables with common column definitions Large table with many optional columns
Student Teacher Person
id: ObjectID id: ObjectID id: ObjectID
name: String name: String name: String
address: String address: String address: String
studentNr: Integer salary: Real studentNr: Integer<<optional>>
class: String class: String<<optional>>
address: String<<optional>>

salary: Real<<optional>>
address: String<<optional>>
salary: Real<<optional>>

Figure 2: Mapping a series of relational tables onto an inheritance hierarchy.
(a) one to one; (b) rolled down; (c) rolled up

itly in the database schema, then you may infer these from column types and naming
conventions.)

After theabove steps, you will haveaclassmodel that representsthe entitiesbeing stored inthe
relational database. However, because relational databases cannot represent inheritance rela-
tionships, thereis still some cleaning up to do. (The terminology for the three representations
of inheritancerelationsin steps 4-6 stemsfrom [Fros94a).)

4. Check tables where the primary key also serves as a foreign key to another table, as

this may be a “one to one” representation of an inheritance relationship inside a rela-
tional database. Examine the SELECT statements that are executed against these ta-
bles to see whether they usually involve a join over this foreign key. If this is the case,
transform the association that corresponds with the foreign key into an inheritance re-
lationship. (see figure 2 (a)).

. Check tables with common sets of column definitions, as these probably indicate a sit-
uation where the class hierarchy is “rolled down” into several tables, each table repre-
senting one concrete class. Define a common superclass for each cluster of duplicated
column definitions and move the corresponding attributes inside the new class. To
name the newly created classes, you can use your imagination, or better, check the
source code for an applicable name. (see figure 2 (b))

6. Check tables with many columns and lots of optional attributes as these may indicate
a situation where a complete class hierarchy is “rolled up” in a single table. If you have
found such a table, examine all the SELECT statements that are executed against this
table. If these SELECT statements explicitly request for subsets of the columns, then
you may break this one class into several classes depending on the subsets requested
(see figure 2 (c))

When you have incorporated the inheritance relationships, consider to improve the class model
exploiting the presence of the legacy system as a source of information. In particular you should
inspect data samples to check for missing constraints and you should check at which queries are
executed against the database engine to infer missing foreign keys.

Tradeoffs

Pros

» Team communication. By capturing the database schema you will improve the commu-
nication within the reverse engineering team and with other developers associated with
the project (in particular the maintenance team). Moreover, many if not all of the people
associated with the project will be reassured by the fact that the data schema is present,
because lots of development methodologies stress the importance of the data.

» Modsd of critical information. The database usually contains the critical data, hence the
need to model it because whatever future steps you take you should guarantee that this
critical data is maintained.

Cons

» Limited Scope.Although the database is crucial in many of today’s software systems, it
involves but a fraction of the complete system. As such, you cannot rely on this pattern
alone to gain a complete view of the system.

* Requires Database ExpertiseThe pattern requires agood deal of knowledge about he
underlying database plus structures to map the database schemainto the implementation
language. As such, the pattern should preferably be applied by people having expertise
in mappings from the chosen database to the implementation language.

Difficulties

» Polluted Database Schemal he database schemaitself isnot always the best source of
information to reconstruct a classmodel for the valuabl e objects. Many projects must op-
timize database access and as such often sacrifice a clean database schema. Also, the da-
tabase schemaitself evolves over time, and as such will slowly deteriorate. Therefore, its
is quite important to refine the class model using data sampling and run-time inspection.

Rationale

Having a well-defined central database schema is a common practice in larger software
projectsthat deal with persistent data. Not only doesit specify common rules on how to access
certain datastructures, itisalso agreat aid in dividing the work between team members. There-

fore, itisagood ideato extract an accurate datamodel before proceeding with other reverseen-
gineering activities.

Known Uses

The reverse engineering and reengineering of database systemsis awell-explored area of re-
search (seeamong others[Hain96a], [Prem94a], [Jahn97b]). Notetherecurring remark that the
database schemaaloneistoo weak abasis and that data sampling and run-time inspection must
beincluded for successful reconstruction of the datamodel.

» Data sampling.Database schemas only specify the constraints allowed by the underly-
ing database system and model. However, the problem domain may involve other con-
straints not expressed in the schema. By inspecting samples of the actual data stored in
the database you can infer other constraints.

* Run-time inspection.Tables in a relational database schema are linked via foreign
keys. However, it is sometimes the case that some tables are aways accessed together,
even if thereis no explicit foreign key. Therefore, it isagood ideato check at run-time
which queries are executed against the database engine.

Related Patterns

Analyze the Persistent Data requiresaninitial understanding of the system functionality, as
obtained by applying patternsin the cluster First Contact.

There are some idioms, patterns and pattern languages that describe various ways to map ob-
ject-oriented data structures on relational database counterparts. See among others [Kell98d],
[Cold99q]

What Next

Analyze the Persistent Data resultsin a class model for the persistent datain your software
system. Such a data model is quite rough, but it may serve asanideal initial hypothesesto be
further refined by applying Speculate about Domain Objects. The datamodel should also
be used as a collective knowledge that comesin handy when doing further reverse engineering
efforts, for instancelikein the clusters Detailed Model Capture and Prepare Reengineer-
ing. Consequently, consider to Confer with Colleagues after Analyze the Persistent Data.

Inspect the Largest Entities

Intent: Identify important code by using a metricstool and inspecting the largest entities.

Problem

You do not know where the important functionality is implemented in the million lines of
source code you arefacing.

Thisproblemisdifficult because:

» There is no easy way to discern important from less important code.

* The system is large, so there is too much data to inspect for an accurate assessment.
Yet, solving this problem is feasible because:

* You have ametricstool at your disposal, so you can quantify the size of entities in the
source-code.

» You have aough understanding of the system’s functionality (for example obtained via
First Contact), so you can put additional information in context.

* You have the necessatgols to browse the source-code, so you can verify manually
whether certain entities are indeed important.

Solution

Use the metrics tool to collect a limited set of measurements concerning the entities inside the
software system (i.e., the inheritance hierarchy, the packages, the classes and the methods).
Display the results in such a way that you can easily assess different measurements for the same
entity. Browse the source code for the large or exceptional entities to determine whether the en-
tity represents important functionality.

Steps
The following steps provide some heuristics to identify important functionality using metrics.

1. Identify large inheritance hierarchies.

As inheritance is the most commonly used modeling concept in object-oriented sys-
tems it is a good idea to identify the largest subtree in the inheritance hierarchy as po-
tential candidates for providing important functionality. To do this, compile a list of
classes with the metrics "Number of Descendant Classes" and "Hierarchy Nesting
Level" as the main indicators, and "Number of Methods for Class" plus "Number of
Attributes for Class" as secondary indicators. Sort the list according the main indica-

tors to identify those classes at the root or at the bottom of the large inheritance hier-

archies (see Table 1).
Number of Hierarchy Nesting |Number of Methods &
Descendant Classes Level Attributes for Class
(&) root of large large small (~=0) Large valuesindicate a
inheritance hierarchy lot of impact on the
subclasses.
(b) leaves of large smal (~=0) large Small valuesindicate a

inheritance hierarchy

lot of impact from the
parent classes.

2. Classes.

Table 1: Identify large inheritance hierarchies.

Classes represent the unit of encapsulation in an object-oriented system, hence it is
worthwhile to identify the most important ones. To do this, compile a list of classes
with the metric "Lines of Code for Class' asmain indicator and "Number of Methods
for Class" plus "Number of Attributes for Class" as secondary indicator. Sort the list
according to each of the criteria and inspect to top ten of each of them. Also, ook for
classes where the measurements do not correlate like the other classes in the system,
they represent classes with exceptionally high or low values and are probably worth-
while to investigate further (see Table 2).

Lines of Code for

Number of Methods

Number of Attributes

Class for Class for Class
(a) large code size large Uncorrelated
(b) many methods Uncorrelated large Uncorrelated
(¢) many attributes Uncorrelated Uncorrelated large

Hints

Table 2: Identify large classes.

| dentifying important pieces of functionality in a software system viameasurementsis adeli-
cate activity which requires expertise in both data collection and interpretation. Below are
some hints you might consider to get the best out of your data.

* Which metrics to collect?In general, it is better to stick to the ssmple metrics, as the
more complex ones involve more computation, yet will not perform better for the iden-
tification of large entities.
For instance, to identify large methods it is sufficient to count the lines by counting all
carriage returns or new-lines. Most other method size metrics require some form of pars-
ing and this effort is usually not worth the gain.

* Which metric variants to use?Usually, it does not make alot of difference which met-
ric variant is chosen, aslong asthe choiceisclearly stated and applied consistently. Here
aswell, it ispreferable to choose the most smple variant, unless you have a good reason

to do otherwise.

For instance, while counting the lines of code, you should decide whether to include or

exclude comment lines, or whether you count the lines after the source code has been
normalized via pretty printing. However, when looking for the largest structures it usu-
ally does not pay off to do the extra effort of excluding comment lines or normalizing the
source code.

» What about coupling metrics?Part of what makes a piece of code important is how it
is used by other parts of the system. Such external usage may be revealed by applying
coupling metrics. However, coupling metrics are usually quite complicated, thus go
against our principle of choosing simple metrics. Moreover, thereis no consensusin the
literature on what constitute “good” coupling metrics. Therefore, we suggest not to rely
on coupling metrics. If your metrics tool does not include any coupling metrics you can
safely ignore them. Otherwise it is better to calculate them after you have identified some
large entities.

» Which thresholds to apply?Due to the need for reliability, it is better not to apply
thresholds.® First of all, because selecting threshold values must be done based on the
coding standards applied in the devel opment team and these you do not necessarily have
access to. Second, because “large” is a relative notion and thresholds will distort your
perspective of what constitutes “large” within the system as you will not know how many
“small” entities there are.

Note that many metric tools include some visualization features to help you scan large
volumes of measurements and this is usually a better way to quickly focus on important
entities.

* How to interpret the results?Large is not necessarily the same as important, so care
must be taken when interpreting the measurement data. To assess whether an entity is
indeed important, it isagood ideato simultaneoudy inspect different measurements for
the same entity. For instance, combine the size of the class with the number of subclass-
es, because large classes that appear high in a class hierarchy are usually important.

However, formulas that combine different measurements in a single number should be
avoided as you loose the sense for the constituting elements. Therefore it is better to
present the results in a table, where the first column shows the name of the entity, and
the remaining columns show the different measurement data. Sorting these tables ac-
cording to the different measurement columns will help you to identify extreme values.

» Should | browse the code afterwards™ easurements alone cannot determine whether
aentity istruly important: some human assessment is always necessary. However, met-
ricsareagreat aid in quickly identifying entities that are potentially important and code
browsing is necessary for the actual evaluation. Note that large entities are usually quite
complicated, thus understanding the corresponding source code may prove to be diffi-
cult.

» What about small entities?Small entities may be far more important than the large
ones, because good designers tend to distribute important functionality over anumber of
highly reusable and thus smaller components. Conversely, large entities are quite often
irrelevant as truly important code would have been refactored into smaller pieces. Still,

1. Most metric tools allow you to focus on special entities by specifying some threshold interval and then
only displaying those entities where the measurements fall into that interval.

different larger entities will share the important smaller entities, thus viathe larger enti-
ties you are likely to identify some important smaller entities too. Anyway, you should
be aware that you are only applying a heuristic: there will be important pieces of code
that you will not identify viathis pattern.

Tradeoffs

Pros

» Scale. The technique is readily applicable to large scale systems, mainly because the
metrics tool typically returns 20% of the entities for further investigation. When different
metrics are combined properly (preferably using some form of visualization) one can de-
duce quite rapidly which parts of the system represent important chunks of functionality.

Cons

 Inaccurate. Quite a lot of the entities will turn out not to be important and this you will
only know after you analyzed the source code. Moreover, there is a good chance that you
will miss important functionality.

Difficulties

 Interpretation of data. To really assess the importance of a code entity, you must collect
several measurements about it. Interpreting and comparing such multi-valued tuples is
quite difficult and requires quite a lot of experience.

Rationale

The main reason why size metrics are often applied during reverse engineering is because they
provide a good focus (between 10 to 20/% of the software entities) for a relatively low invest-
ment. The results are somewhat unreliable, but this can easily be compensated via code brows-

ing.

Known Uses

In several places in the literature it is mentioned that looking for large object entities helps in
program understanding (see among others, [Mayr96a], [Kont97a], [Fior98a], [Fior98b],
[Mari98a], [Lewe98a], [Nesi98a]). Unfortunately, none of these incorporated an experiment to
count how much important functionality remains undiscovered. As such it is impossible to as-
sess the reliability of size metrics for reverse engineering.

Note that some metric tools visualize information via typical algorithms for statistical data,
such as histograms and Kiviat diagrams. Visualization may help to analyze the collected data.
Datrix [Mayr96a], TAC++ [Fior98a], [Fior98b], and Crocodile [Lewe98a] are tools that exhib-

it such visualization features.

Related Patterns

What Next

By applying this pattern, you will have identified some entities representing important func-
tionality. Someother patternsmay help youto further analyzetheseentities. For instance, if you
Step Through the Execution you will get abetter perception of therun-timebehavior. Finaly,
in the case of a object-oriented code, you can Derive the “true” Public Interface to find out
how aclassisrelated to other classes.

Even if the results have to be analyzed with care, some of the larger entities can be candidates
for further reengineering: large methods may be split into smaller ones (see [Fowl99a)]), just
like big classes may be cases of aGod Class.

Chapter 3

References

[Bigg94a] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster, "Program Understanding
and the Concept Assignment Problem”, Communications of the ACM, Vol. 37(5), May 1994.

[Booc94a] Grady Booch, Object Oriented Analysis and Design with Applications (2nd edition), The
Benjamin Cummings Publishing Co. Inc., 1994.

[Brow96c] Kyle Brown, “Design Reverse-Engineering and Automated Design Pattern Detection in
Smalltalk,” Ph.D. thesis, North Carolina State University, 1996.

[Brow98a] William J. Brown, Raphael C. Malveau, Hays W. McCormick, Ill and Thomas J. Mow-
bray, “AntiPatterns,” 1998.

[Busc96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stad,
Pattern-Oriented Software Architecture — A System of Patterns, John Wiley, 1996.

[Cold99a] Jens Coldewey, Wolfgang Keller and Klaus Renzel, Architectural Patterns for Business In-
formation Systems, Publisher Unknown, 1999, To Appear.

[Deme00a] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Finding Refactorings via
Change Metrics,” OOPSLA’2000 Proceedings, ACM Press, 2000.

[Fior98a] F. Fioravanti, P. Nesi, and S. Perli, "Assessment of System Evolution through Characteriza-
tion," ICSE'1998 Proceedings, IEEE Press, 1998.

[Fior98b] F. Fioravanti, P. Nesi, and S. Perli, "A Tool for Process and Product Assessment of C++
Applications," CSMR’1998 Proceedings, IEEE Press, 1998.

[Fowl97b] Martin Fowler, Analysis Patterns: Reusable Objects Models, Addison-Wesley, 1997.

[Fowl99a] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

[Fros94a] Stuart Frost, "Modeling for the RDBMS legacy", Object Magazine, September 1994, pp.43-
51.

[Gamm95a] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Add-
ison Wesley, Reading, MA, 1995.

[Gold95a] Adele Goldberg and Kenneth S. Rubin, Succeeding With Objects: Decision Frameworks
for Project Management, Addison-Wesley, Reading, Mass., 1995.

[Hain96a] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick and D. Roland, “Database reverse En-
gineering: From requirements to CARE Tools,” Automated Software Engineering, vol. 3, no.
1-2, June 1996.

[Jaco92a] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard, Object-Oriented
Software Engineering — A Use Case Driven Approach, Addison-Wesley/ACM Press, Read-
ing, Mass., 1992.

[Jaco97a] Ivar Jacobson, Martin Griss and Patrik Jonsson, Software Reuse, Addison-Wesley/ACM
Press, 1997.

[Jahn97b] Jens. H. Jahnke, Wilhelm. Schafer and Albert. Zindorf, “Generic Fuzzy Reasoning Nets as
a Basis ofr Reverse Engineering Relational Database Applications,” Proceedings of ESEC/
FSE'97, LNCS, no. 1301, 1997, pp. 193-210.

[Kell98a] Wolfgang Keller and Jens Coldewey, “Accessing Relational Databases: A Pattern Lan-
guage,” Pattern Languages of Program Design 3, Robert Martin, Dirk Riehle and Frank Bush-
mann (Eds.), pp. 313-343, Addison-Wesley, 1998.

[Kont97a] K. Konogiannis, "Evaluation Experiments on the Detection of Programming Patterns Using
Software MEtrics," In WCRE'1997 Proceedings, IEEE Press, 1997.

[Lea96a] Doug Lea, Concurrent Programming in Java, Design Principles and Patterns, Addison-Wes-
ley, The Java Series, 1996.

[Lewe98a] C. Lewerentz and F. Simon, "A Product Metrics Tool Integrated into a Software Develop-
ment Environment," ECOOP’98 Workshop Reader, Lecture Notes in Computer Science
1543, Springer-Verlag 1998.

[Mari98a] Radu Marinescu, “Using Object-Oriented Metrics for Automatic Design Flaws in Large
Scale Systems,” Object-Oriented Technology (ECOOP'98 Workshop Reader), Serge Demey-
er and Jan Bosch (Eds.), LNCS 1543, Springer-Verlag, 1998, pp. 252-253.

[Mayr96a] J. Mayrand, C. Leblanc and E. Merlo, "Experiment on the Automatic Detection of Function
Clones in a Software System Using Metrics", ICSM 1996 Proceedings, IEEE Press 1996.

[Murp97a] Gail Murphy and David Notkin, “Reengineering with Reflexion Models: A Case Study,”
IEEE Computer, vol. 8, 1997, pp. 29-36.

[Nesi98a] P. Nesi, "Managing OO Projects Better", IEEE Software, July/August, pp.50-60, 1998.

[Prem94a] William J. Premerlani and Michael R. Blaha, “An Approach for Reverse Engineering of
Relational Databases,” Communications of the ACM, vol. 37, no. 5, May 1994, pp. 42-49.

[Reen96a] Trygve Reenskaug, Working with Objects: The OOram Software Engineering Method,
Manning Publications, 1996.

[Schm00a]Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, Wiley & Sons 2000.

[Shaw96a]Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Disci-
pline, Prentice-Hall, 1996.

[Wirfo0b] Rebecca Wirfs-Brock, Brian Wilkerson and Lauren Wiener, Designing Object-Oriented
Software, Prentice Hall, 1990.

	A Pattern Language for Reverse Engineering
	Reverse Engineering Patterns
	1. Introduction
	2. Clusters of Patterns

	Initial Understanding
	Speculate about Domain Objects
	Analyze the Persistent Data
	Inspect the Largest Entities

	References

