
nd ex-
Transform Condit ionals to
Polymorphism

Stéphane Ducasse(+), Oscar Nierstrasz(+), Serge Demeyer(*)

(+) University of Berne - SCG - http://www.iam.unibe.ch/~scg/
(*) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/

Abstract. Conditionals —i.e., switch statements, nested ifs— that are used to simulate poly-
morphism hamper evolution and flexibility of applications. The reengineering patterns presented
in this paper show you how to transform conditionals in object-oriented code to improve the flex-
ibility of application.

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Copyright© 2000 by Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Introduction

Legacy systems are not limited to the procedural paradigm and languages like Cobol. Even if
object-oriented paradigm promised the building of more flexible systems and the ease in their
evolution, nowadays object-oriented legacy systems exist in C++, Smalltalk or Java. These leg-
acy systems need to be reengineered to meet new requirements. The goal of the FAMOOS Es-
prit project was to support the evolution of such a object-oriented legacy systems towards
frameworks.

In this context, we used patterns as a way to record reengineering expertise. We wrote reverse
engineering patterns that record how to extract information of the legacy systems from the
code, the organization or the people [Deme99n] and reengineering patterns that present how
code can be transformed to support new requirements, to be more flexible or to simply follow
object-oriented design [Duca99c].

Transform Conditionals to Polymorphism is a pattern language describing how conditionals
—i.e nested tests, switch statements— are transformed into code that is more flexible a
hibits less coupling between classes. This pattern language consists of five patterns,Transform
Conditionals on Self, Transform Conditionals on Client, Apply State, Apply Null Object
and Transform Conditionals into Registration. For Apply State and Apply Null Object our

-
 single

 a
from

gated

 call.
value.

efore

l-
ration
ction
ic be-

n Pat-
intention is not to copy two established design patterns : State and NullObject but rather to
provide a more specific reading with a focus on reengineering. We invite the reader to read
[Gamm95a], [Alpe98a], [Dyso98a] and [Wool98a] for the original descriptions.

Figure 1 summarizes the relations and the differences between the patterns.

• Transform Conditionals on Self eliminates conditionals over type information by intro
ducing subclasses for each type case, and by replacing the conditional code with a
polymorphic method call to an instance of one of the new subclasses.

• Transform Conditionals on Client transforms conditionals over type information in
client class by introducing polymorphic methods in the provider and calling them
the client class.

• Apply State is a special case of Transform Conditionals on Self in the sense they both
transform a conditional within the class itself to a polymorphic call. In Apply State the
conditional over the state is transformed into methods associated with different dele
classes representing the different states.

• Apply Null Object is a special case of Transform Conditionals on Client in the sense
they both transform a conditional expression over the provider into a polymorphic
Here the type of the provider is reduced to the most simple expression: the null
The condition that checks for a null value is transformed by creating a NullObject class
that performs the default behavior, liberating the client from having to type check b
performing an operation.

• Transform Conditionals into Registration eliminates conditionals over an external va
ue in users of certain tools. The solution is based on the introduction of a regist
mechanism where each tool must register itself and the definition of a clear intera
protocol between the registrees and their users. The solution is then fully dynam
cause new tools can be added or removed without any changes in the tool users.

Cost, Clarity and Maintainability
Transform Conditionals on Self and Transform Conditionals on Client transform condition-
als based on explicit type checks into polymorphic calls. Contrary to most of the Desig
terns [Gamm95a] that introduce an extra indirection, Transform Conditionals on Self and

Figure 1 Relationships between the patterns constituing Transform Conditionals to Polymorphism.

Transform Conditionals to Polymorphism

over object state

Apply State Pattern

over a self type

Transform Conditionals

over a provider type

Transform Conditionals

Apply Null Object

over null values

Transform Conditionals
into Registrationon Client on Self

over an external attribute

ifica-
hould
nted in

o satisfy
 have
ts at-

 to avoid
ss. It is

y con-
n, but

lymor-
 (e.g.,
gram-
Transform Conditionals on Client only use the semantic support, i.e., dynamic dispatch and
late binding, offered by the language instead of simulating them in ad-hoc ways. However, we
may legitimately ask if using conditionals instead of polymorphic calls does not come at a cost.

The general answer is that if you must pay attention not to use polymorphic calls you may do
not gain the full power of object-orientation and a good use of a procedural language like C
might suit you better. In such a case, you will have to live with code that might be more difficult
to understand and maintain.

The detailed answer depends on the language. In Smalltalk and Java, all methods are late
bound or polymorphic (except private methods in Java that are statically bound), so using poly-
morphic calls may be even faster than using conditionals because the virtual machine does the
receiver type check and the method lookup. For these languages, the difference in speed can
strongly depend on the VM and the optimization technology used, e.g., just-in-time compiler,
native code generation. In C++, the fact that you can have virtual or statically bound methods
may be crucial for you.

Some people may argue that certain compilers like SmallEiffel convert polymorphic calls
into conditionals and that conditionals are faster and better than polymorphic calls. From a
technical side it should be noticed that with polymorphic methods, the number of classes will
not impact the performance whereas with nested conditionals the more classes that have to be
type-checked, the more penalty you get. Then, although it is really justified for compilers to
transform the code into faster forms — this is mainly why they exist, still this is not a just
tion to code like a compiler. The code we write is intended for developers, that’s why it s
be readable, support abstraction and be more maintainable. The patterns prese
Transform Conditionals to Polymorphism improve such properties.

Why the legacy solution may have been applied?

Using conditionals instead of polymorphic calls may arise for various reasons:

• The class may have been repeatedly extended with code to handle special cases t
the needs of many different clients. Whereas the original design of the class may
been simple, it now contains several methods with complex conditional logic over i
tributes.

• Programmers may have decided not to define subclasses to handle special cases
cluttering the name space, or to keep changes and extensions local to a single cla
rarely obvious when varying behavior is better implemented by subclassing than b
ditional code. (In Smalltalk, for example, True and False are subclasses of Boolea
this is not the case in most other object-oriented languages.)

• In languages without polymorphism, case statements may be used to simulate po
phic dispatch. Even if a later version of the language does support polymorphism
C++ vs. C, or Ada 95 vs. Ada 83), coding conventions in place may encourage pro
mers to continue to apply the outdated idiom.

s.

havior.

 class

 with

w con-

itional
 to the
he code
Transform Conditionals on Self

Intent: Make a class more extensible by transforming complex conditional code that tests im-
mutable state into a single polymorphic call to a hook method on the same class. The hook
method will be implemented by a different subclass for each case of the conditional.

Problem

A class is hard to modify or subclass because it implements multiple behaviors depending on
the value of some immutable attribute.

Improving the design of such a class is difficult because:

On the one hand, this is handy to have a global view of all the possible behaviors of the
class without having to deal with multiple abstractions. All the logic is grouped in a sin-
gle location. Conditional statements have the value that they provide a locality of refer-
ence for the human programmer to understand the conditional behavior flow.

On the other hand, all the behaviors are mixed together leading to a more complex sys-
tem to understand and modify.

Symptoms

• The class you want to modify has long methods with complex conditional branche

• Instances of the class seem to represent multiple data types each with different be

• The expression being tested in the conditional represents type information over the
containing the expression itself.

• The behavior of a class depends on the value of some immutable attribute.

• Conceptually simple extensions require many changes to the conditional code.

• Subclassing is next to impossible without duplicating and adapting the methods
conditional code.

• Adding a new behavior requires to modify the same set of methods and to add a ne
dition test into them.

Solution

Identify the methods with complex conditional branches. In each case, replace the cond
code with a call to a new hook method. Identify or introduce subclasses corresponding
cases of the conditional. In each of these subclasses, implement the hook method with t
corresponding to that case in the original case statement.

te of
in the

his is

ol that
ir size.

state-

 class
tional
Structure/Participants

Detection

Most of the time, the type discrimination will jump in our face while you are working on the
code, so this means that you will not really need to detect where the checks are made. However,
it can be interesting to have simple techniques to quickly assess if unknown parts of a system
suffer from similar practices. This can be a valuable source of information to evaluate the state
of a system.

• Look for long methods with complex decision structures on some immutable attribu
the object that models type information. In particular look for attributes that are set
constructor and never changed.

• Especially look for classes where multiple methods switch on the same attribute. T
often a sign that the attribute is being used to simulate a type.

• As methods containing switch statements tend to be long, it may help to use a to
sorts methods by lines of code or visualizes classes and methods according to the
Alternatively, search for classes or methods with a large number of conditional
ments.

• For languages like C++ or Java where it is common to store the implementation of a
in a separate file, it is straightforward to search for and count the incidence of condi
keywords (if, else, case, etc.). On a UNIX system, for example,

grep 'switch' ‘find . -name "*.cxx" -print‘

enumerates all the files in a directory tree with extension .cxx that contain a switch .
Other text processing tools like agrep offer possibilities to pose finer granularity queries.
Text processing languages like Perl may be better suited for evaluating some kinds of
queries, especially those that span multiple lines.

C/C++: Legacy C code may simulate classes by means of union types. Typically the
union type will have one data member that encodes the actual type. Look for conditional

Figure 2 Transformation of explicit type check into self polymorphic method calls.

A

m()

...
case B: ...
case C: ...
case D: ...
...

A

m()
hook()

B

hook()

...
hook()
...

C

hook()

D

hook()

Client

Client

statements that switch on such data members to decide which type to cast a union to and
which behavior to employ.

In C++ it is fairly common to find classes with data members that are declared as void
pointers. Look for conditional statements that cast such pointers to a given type based on
the value of some other data member. The type information may be encoded as an enum
or (more commonly) as a constant integer value.

Instead of defining subclasses of the class containing the conditional statement, consider
also whether the types to which the void pointer is cast can be integrated into a single
hierarchy.

Ada: Because Ada83 did not support polymorphism (or subprogram access types), dis-
criminated record types are often used to simulate polymorphism. Typically an enumer-
ation type provides the set of variants and the conversion to polymorphism is straightfor-
ward in Ada95.

Smalltalk: Smalltalk provides only a few ways to manipulate types. Look for applica-
tions of the methods isMemberOf: and isKindOf:, which signal explicit type-checking.
Type checks might also be made with tests like self class = anotherClass, or with
property tests throughout the hierarchy using methods like isSymbol, isString, isSe-
quenceable, isInteger.

Steps

1. Identify the class to transform and the different conceptual classes that it implements.
An enumeration type or set of constants will probably document this well.

2. Introduce a new subclass for each behavior that is implemented. Modify clients to in-
stantiate the new subclasses rather than the original class. Run the tests.

3. Identify all methods of the original class that implement varying behavior by means
of conditional statements. If the conditionals are surrounded by other statements,
move them to separate, protected hook methods. When each conditional occupies a
method of its own, run the tests.

4. Iteratively move the cases of the conditionals down to the corresponding subclasses,
periodically running the tests.

5. The methods that contain conditional code should now all be empty. Replace these by
abstract methods and run the tests.

6. Alternatively, if there are suitable default behaviors, implement these at the root of the
new hierarchy.

7. If the logic required to decide which subclass to instantiate is non-trivial, consider en-
capsulating this logic as a factory method of the new hierarchy root. Update clients to
use the new factory method and run the tests.

nge a
n now

izing
aviors.

ing an
d and

rder to
while

icular

, and

ces of
t code
ay be

pos-
struc-
rough

t a more
 the

or-
l class
Tradeoffs

Pros

• New behaviors can now be added in a incremental manner, without having to cha
set of methods of a single class containing all the behavior. A specific behavior ca
be understood independently from the other variations.

• A new behavior represents its data independently from the other ones thus minim
the possible interference and increasing the understandability of the separated beh

• All behaviors now shares a common interface so helping in their understanding.

Cons

• All the behaviors are now dispersed into multiple but related abstractions, so gett
overview of the behavior may be more difficult. However, the concepts are relate
share the interface represented by the abstract class reducing then the problem.

• The larger number of classes makes the design more complex, and potentially ha
understand. If the original conditional statements are simple, it may not be worth
to perform this transformation.

• Explicit type checks are not always a problem and we can tolerate them. In part
they may be an alternative to the creation of new classes when:

Þ the set over which the method selection is fixed and will not evolve in the future

Þ the typecheck is only made in one place.

Difficulties

• Wherever instances of the transformed class were originally created, now instan
different subclasses must be created. If the instantiation occurred in client code, tha
must now be adapted to instantiate the right class. Factory objects or methods m
needed to hide this complexity from clients.

• If you do not have access to the source code of the clients, it may be difficult or im
sible to apply this pattern since you will not be able to change the calls to the con
tors. Evaluate carefully whether it is possible to present the transformed design th
the old interface or if Double Dispatch can be applied.

• If the case statements test more than one attribute, it may be necessary to suppor
complex hierarchy, possibly requiring multiple inheritance. Considering splitting
class into parts, each with its own hierarchy.

• When the class containing the original conditionals cannot be subclassed, Transform
Conditionals on Self can be composed with delegation. The idea to use the polym
phism on another hierarchy, by moving part of the state and behavior of the origina
into a separate class to which the method will delegate as shown in Figure 3.

e type
en the
es or
a text
sary to
 then be

l mess-
s

 would
-

When the legacy solution is the solution
• Explicit type checks cannot always be avoided. One of the few good reasons to us

check instead of polymorphism is when polymorphism cannot be used! Indeed wh
code is dealing with the limits of the paradigm like using non object-oriented librari
when streaming in objects from files. For example when streaming objects in from
file representation, the objects do not yet exist, so an explicit type check is neces
recreate the objects. In this case, once the instances are created, methods can
called to fill the object instance variable values.

Example
The example comes from one of the application we analyzed. In this application, severa
sages can be sent to a complex system. These messages are represented by the clasMessage

and can be of different types.

Before

A message class wraps two different kinds of messages (TEXT and ACTION) that must be se-
rialized to be sent across a network connection as shown in the code and the figure. We
like to be able to send a new kind of message (say VOICE), but this will require changes to sev

Figure 3 Combining simple delegation and Transform Conditionals on Self when the class cannot
be subclassed.

A

m()

...
Case B: ...
Case C: ...
Case D: ...
...

AA

m()
hook()

B

hook()

...
hook()
...

C

hook()

D

hook()

A

m()

delegate m ()
...

delegate

eral methods of Message as shown in Figure 4.

After

Since Message conceptually implements two different classes, Text_Message and
Action_Message, we introduce these as subclasses of Message, as shown by Figure 5. We in-
troduce constructors for the new classes, we modify the clients to construct instances of
Text_Message and Action_Message rather than Message, and we remove the set_value()
methods. Our regression tests should run at this point.

Now we find methods that switch on the type_ variable. In each case, we move the entire
switch statement to a separate, protected hook method, unless the switch already occupies the
entire method. In the case of send(), this is already the case, so we do not have to introduce a
hook method. Again, all our tests should still run.

Now we iteratively move cases of the switch statements from Message to its subclasses. The
TEXT case of Message::send() moves to Text_Message::send() and the ACTION case
moves to Action_Message::send(). Every time we move such a case, our tests should still
run.

Finally, the original send() method is now empty, so it can be redeclared to be abstract (i.e.,
virtual void send(Channel) = 0). Again, our tests should run.

Figure 4 Initial design and source code.

Message

set_value(action Integer)
send(channel Channel)
set_value(text String)
receive(channel Channel)

Client1 Client2

class Message {
public:

Message();
set_value(char* text);
set_value(int action);
void send(Channel c);
void receive(Channel c);
...

private:
void* data_;
int type_;
static const int TEXT = 1;
static const int ACTION = 2;
...

}

Message::send(Channel c) {
switch (type_) {
case TEXT:

...
case ACTION:

...
}

}
void Client1::doit() { ...

Message * myMessage =
new Message();

myMessage->set_Value("...");
...

}

Rationale

Classes that masquerade as multiple data types make a design harder to understand and extend.
The use of explicit type checks leads to long methods that mix several different behaviors. In-
troducing new behavior then requires changes to be made to all such methods instead of simply
specifying one new class representing the new behavior.

By transforming such classes to hierarchies that explicitly represent the multiple data types,
you make your design more transparent, and consequently easier to maintain.

Related Patterns

In Transform Conditionals on Self the condition tests type information of the class that con-
tains it. A similar situation is addressed in Apply State where the conditional tests over state.

Figure 5 Resulting hierarchy and source code.

Message

send(channel Channel)
receive(channel Channel)

Client1 Client2

Text_Message

Text_Message(String)
send(channel Channel)
receive(channel Channel)

Action_Message

Action_Message(int)
send(channel Channel)
receive(channel Channel)

class Message {
public:

virtual void
send(Channel c) = 0;

virtual void
receive(Channel c) = 0;

...
};

class Text_Message: public Message
{
public:

Text_Message(char* text);
void send(Channel c);
void receive(Channel c);

private:
char* text;

...
};

class Action_Message: public
Message {
public:

Action_Message(int action);
void send(Channel c);
void receive(Channel c);

private:
int action;

...
};

void Client1::doit() { ...
Message * myMessage = new

Text_Message("...");
...

}

ked,

ng
From this point of view, Apply State is a specialization of Transform Conditionals on Self
even if the solution proposed by the State pattern introduces state classes that are not subclass-
es of the original class.

On the other hand, inTransform Conditionals on Client or Transform Conditionals into
Registration the conditional expressions are used to invoke methods not of the class itself but
of provider classes.

• If the conditional code tests external value identifying the client methods to be invo
consider applying Transform Conditionals into Registration.

• If the conditional code tests mutable state of the object, consider instead applyi
Transform Conditionals on Client.

ts, es-

ata of
rivate

y. Im-
 condi-

tor. In
ce that
Transform Conditionals on Client
Intent: Transform conditional code that tests the type of a provider object into a polymorphic
call to a new method, thereby reducing client/provider coupling.

Problem
It is hard to extend a provider hierarchy because many of its clients perform type checks on its
instances to decide what actions to perform.

Symptoms
• Clients have long conditional methods that test the type of provider instances.
• Adding a new subclass to the provider hierarchy requires making changes to clien

pecially where there tests occur.
• The fact that the Law of Demeter is violated, e.g. that the clients access private d

the provider can be a symptom especially when combined with the fact that these p
data are used to select the provider method to be invoked.

Solution
Replace the client’s conditional code by a call to a new method of the provider hierarch
plement the new method in each provider class by the appropriate case of the original
tional code as shown in Figure 6.

Note that the different providers do have to necessary inherit from a common ances
such a case the solution is to ensure that all the providers implement a common interfa
any client can use.

Structure/Participants

Detection

Apply essentially the same techniques described in Transform Conditionals on Self to detect
case statements, but look for conditions that test the type of a separate service provider which
already implements a hierarchy. You should also look for case statements occurring in different
clients of the same provider hierarchy.

C++: Legacy C++ code is not likely to make use of run-time type information (RTTI).
Instead, type information will likely be encoded in a data member that takes its value
from some enumerated type representing the current class. Look for client code switch-
ing on such data members.

Ada: Detecting type tests falls into two cases. If the hierarchy is implemented as a single
discriminated record then you will find case statements over the discriminant. If the hi-
erarchy is implemented with tagged types then you cannot write a case statement over
the types (they are not discrete); instead an if-then-else structure will be used.

Smalltalk: As in Transform Conditionals on Self, look for applications of isMember-
Of: and isKindOf:, and tests like self class = anotherClass.

Java: Look for applications of the operator instanceof, which tests membership of an
object in a specific, known class. Although classes in Java are not objects as in Smalltalk,
each class that is loaded into the virtual machine is represented by a single instance of

Figure 6 Transformation of explicit type check used to determine which methods of a client should
be invoked into polymorphic method calls.

Client

m()

...
switch (a.class)
case B: ...
case C: ...
case D: ...
...

A

B C D

A

doit()

B

doit()

C

doit()

D

doit()

Client

m()

...
a.doit()
...

ent

rchy:

d func-

ou to

g the
od call
sts or
l.
rchy, a

ncerned
terna-
herit-
ty de-
riate

re with
java.lang.Class. It is therefore possible to determine if two objects, x and y belong to the
same class by performing the test:

x.getClass() == y.getClass()

Alternatively, class membership may be tested by comparing class names:
x.getClass().getName().equals(y.getClass().getName())

(Recall that == compares object references, whereas equals() compares object values.)

Steps
1. Identify the clients performing explicit type checks.
2. Add a new, empty method to the root of the provider hierarchy representing the action

performed in the conditional code.
3. Iteratively move a case of the conditional to some provider class, replacing it with a

call to that method. After each move, the regression tests should run.
4. When all methods have been moved, each case of the conditional consists of a call to

the new method, so replace the entire conditional by a single call to the new method.
5. Consider making the method abstract in the provider’s root. Alternatively implem

suitable default behavior here.

Other Steps to Consider.

• If the provider is only one single class, you must transform it first into a class hiera
Þ identify different subclasses in the class,
Þ split the class into different subclasses by moving down attributes and associate

tionality.
The way the clients use different interface parts of the original class may help y
identify subclasses.

• It may well be that multiple clients are performing exactly the same test and takin
same actions. In this case, the duplicated code can be replaced by a single meth
after one of the clients has been transformed. If clients are performing different te
taking different actions, then the pattern must be applied once for each conditiona

• If the case statement does not cover all the concrete classes of the provider hiera
new abstract class may need to be introduced as a common superclass of the co
classes. The new method will then be introduced only for the relevant subtree. Al
tively, if it is not possible to introduce such an abstract class given the existing in
ance hierarchy, consider implementing the method at the root with either an emp
fault implementation, or one that raises an exception if it is called for an inapprop
class.

• If the conditionals are nested, the pattern may need to be applied recursively.

Tradeoffs

Pros
• The code of the clients is now better organized and does not have to deal anymo

some of concerns that are now under the responsibility of the provider.

f the

rder to
while

icular

.

ot have
ct all
e full

he
 of the

icitly
di-
• The fact that the provider offers a polymorphic interface allows the modification o
provider without impacting or with limited impact on the client providers.

Cons

The cons of applying this pattern are the same as the ones of Transform Conditionals on Self.

• The larger number of classes makes the design more complex, and potentially ha
understand. If the original conditional statements are simple, it may not be worth
to perform this transformation.

• Explicit type checks are not always a problem and we can tolerated them. In part
they may be an alternative to the creation of new classes when:
Þ the set over which the method selection is fixed and will not evolve in the future
Þ the typecheck is only made in one place.

Difficulties
• Normally the instances of the correct classes should be already created so we do n

to look for the creation of the instances, however refactoring the interface will affe
clients of the provider classes and must not be undertaken without examining th
consequences of such an action. In case of multiple clients, Double Dispatch can be an
aid for the migration.

When the legacy solution is the solution

Contrary to Transform Conditionals on Self where type checks are sometimes justified, t
only time where type checks over provider type information is needed is when the code
provider is frozen and may not be extended.

Example

Before

The following code illustrates misplaced responsibilities since the client must expl
typecheck instances of Telephone to determine what action to perform. The bold code in
cates problems of the solution.

class Telephone {
public:
 enum PhoneType { POTSPHONE, ISDNPHONE, OPERATORPHONE };
 Telephone() {}
 PhoneType phoneType() { return myType; }

private:
 PhoneType myType;
protected:
 void setPhoneType(PhoneType newType) { myType = newType; }
};

class POTSPhone : public Telephone {

public:
POTSPhone() { setPhoneType(POTSPHONE); }

 void tourneManivelle();
 void call();
};
...

class ISDNPhone: public Telephone {
public:
 ISDNPhone() { setPhoneType(ISDNPHONE);}
 void initializeLine();
 void connect();
};
...

class OperatorPhone: public Telephone {
public:
 OperatorPhone() { setPhoneType(OPERATORPHONE); }
 void operatorMode(bool onOffToggle);
 void call();
};

void initiateCalls(Telephone ** phoneArray, int numOfCalls) {
for(int i = 0; i<numOfCalls ;i++) {

 Telephone * p = phoneArray[i];

 switch(p->phoneType()) {
 case Telephone::POTSPHONE: {
 POTSPhone *potsp = (POTSPhone *) p;
 potsp->tourneManivelle();
 potsp->call();
 break;
 }
 case Telephone::ISDNPHONE: {
 ISDNPhone *isdnp = (ISDNPhone *) p;
 isdnp->initializeLine();
 isdnp->connect();
 break;
 }
 case Telephone::OPERATORPHONE: {
 OperatorPhone *opp = (OperatorPhone *) p;
 opp->operatorMode(true);
 opp->call();
 break;
 }
 default: cerr << "Unrecognized Phonetype" << endl;
 };
 }
}

After

After applying the pattern the client code will look like the following. In bold we highlight
the changes:

class Telephone {
public:
 Telephone() {}
 virtual void makeCall() = 0;
};

Class POTSPhone : public Telephone {
 void tourneManivelle();
 void call();
public:
 POTSPhone() {}
 void makeCall();
};
void POTSPhone::makeCall() {
 this->tourneManivelle();
 this->call();
}

class ISDNPhone: public Telephone {
void initializeLine();

Figure 7 Transforming Telephone, its subclasses and its clients so that polymorphic methods are
invoked instead of explicit type check use.

Client

m()

...
switch (a.class)
case TELEPHONE::POTS: ...
case TELEPHONE::ISDN: ...
case TELEPHONE::OTHERS: ...
...

Telephone

makeCall()

POTSPhone

makeCall()

ISDNPhone

makeCall()

Operator
Phone

makeCall()

Client

m()

...
a.makeCall()
...

Telephone

POTSPhone ISDNPhone
Operator
Phone

eed
ub-

lient

lients

ill be
 void connect();

public:

ISDNPhone() { }

void makeCall();

};

void ISDNPhone::makeCall() {

 this->initializeLine();

 this->connect();

}

class OperatorPhone: public Telephone {

void operatorMode(bool onOffToggle);

 void call();

public:

OperatorPhone() { }

void makeCall();

};

void OperatorPhone::makeCall() {

 this->operatorMode(true);

 this->call();

}

void initiateCalls(Telephone ** phoneArray, int numOfCalls) {

 for(int i = 0; i<numOfCalls ;i++) {

 phoneArray[i]->makeCall();

 }

}

Rationale

Riel states, "Explicit case analysis on the type of an object is usually an error. The designer
should use polymorphism in most of these cases" [Riel96a]. Indeed, explicit type checks in cli-
ents are a sign of misplaced responsibilities since they increase coupling between clients and
providers. Shifting these responsibilities to the provider will have the following consequences:

• The client and the provider will be more weakly coupled since the client will only n
to explicitly know the root of the provider hierarchy instead of all of its concrete s
classes.

• The provider hierarchy may evolve more gracefully, with less chance of breaking c
code.

• The size and complexity of client code is reduced. The collaborations between c
and providers become more abstract.

• Abstractions implicit in the old design (i.e., the actions of the conditional cases) w
made explicit as methods, and will be available to other clients.

• Code duplication may be reduced (if the same conditionals occur multiply).

Related Patterns
InTransform Conditionals on Client the conditional is made on the type information of a pro-
vider class. The same situation occurs in Apply Null Object where the conditional tests over
null value before invoking the methods. From this point of view, Apply Null Object is a spe-
cialization of Transform Conditionals on Client.

Transform Conditionals into Registration is also based on use of conditionals to determine
which methods should be called on which class. However, the conditional expression does not
have to discriminate over a type but an expression like suffix files identifying the class. The so-
lution is to let every provider register to a registration mechanism and make the client uses this
registration mechanism to access registered tools using a established protocol.

Replace Conditional with Polymorphism is the core refactoring of this reengineering pat-
tern, so the reader may refer to the steps described in [Fowl99a].

Known Uses
This pattern has been applied in one of the Famoos case studies written in Ada. This consider-
ably decreased the size of the application and improved the flexibility of the software. In one of
the Famoos C++ case studies, explicit type checks were also implemented statically by means
of preprocessor commands (# ifdefs).

s of the

e ob-

ts, del-
he right
Apply State
Intent: Like Transform Conditionals on Self, transform complex conditional code that tests
over quantified states into delegated calls to state classes. So we apply the State pattern, dele-
gating each conditional case to a separate State object.

We invite the reader to read the State and State Patterns for a deep description of the problem
and discussion [Gamm95a], [Alpe98a], [Dyso98a]. Here we only focus on the reengineering
aspects of the pattern.

Problem

It is hard to extend a class because you have to modify all its methods that perform conditional
checks on its states to decide what actions to perform.

Symptoms
• Duplication of the same tests based on object state description in several method

object.

• New states cannot be added without having to modify all the methods containing th
ject state tests.

Solution

Apply the State pattern, i.e. encapsulate the state dependent behavior into separate objec
egate calls to these objects and keep the state of the object consistent by referring to t
instance of these state objects (see Figure 8).

Structure/Participants

Steps
1. Identify the interface of a state and the number of states.

2. Create a new abstract class, State, representing the interface of the state.

3. Create a new class subclass of State for each state.

Figure 8 Transformation to go from a state pattern simulated using explicit state conditional to a sit-
uation where the state pattern has been applied.

A

request()

...
case stateA: ...
case stateB: ...
case stateC: ...
...

AState

handleRequest()

StateA

handleRequest()

AContext

request()

state.handleRequest ()
...

state

StateB

handleRequest()

StateA

handleRequest()

Since
 are un-

pact

losion.

d, the
vior by

y steps
4. Define methods of the interface identified in Step 1 in each of the state classes by
copying the leaf of the test in the method. Pay attention to change the state of the in-
stance variable in the Context to refer to the right instance of State class.

5. Add a new instance variable in the Context class.

6. You may have to have a reference from the State to the Context class to invoke the
state transitions from the State classes.

7. Initialize the newly created instance to refer to a default state class instance.

8. Change the methods of the Context class containing the tests to delegate the call to the
instance variable.

The step 4 can be done using the Extract Method of the Refactoring Browser. Note that the order
of the steps are different from the ones of [Alpe98a] because we choose to apply the transfor-
mation in a way that let the system always runnable and testable using unit tests.

Tradeoffs

Pros

• Limited Impact.The public interface of the original class does not have to change.
the state instances are accessed by delegation from the original object, the clients
affected. In the straightforward case the application of this pattern has a limited im
on the clients.

Cons

• Class explosion. The systematic application of this pattern may lead to a class exp

• This pattern should not be applied when:

Þ the number of states are not fixed or too long, or

Þ the transitions between states are not clear.

When the legacy solution is the solution.

• When the states are clearly identified and it is known that they will not be change
legacy solution is a solution that has the advantage of grouping all the state beha
functionality instead of spreading it over different subclasses.

Example

The Design Patterns Smalltalk Companion presents a code transformation steps b
[Alpe98a].

nvok-

oking

ass so
Apply Null Object
Intent: Transform conditional code that tests over null values into a polymorphic call to method
of a NullObject. Shift the responsibility for deciding what to do to the provider hierarchy by in-
troducing a special Null object. [Wool98a]

We invite the reader to read the NullObject pattern for a deep description of the problem and
discussion [Wool98a]. Here we only focus on the reengineering aspects of the pattern.

Problem
You are repeatedly checking for null values before sending message.

Symptoms
• Client methods are always testing that certain values are not null before actually i

ing their methods.
• Adding a new subclass to the client hierarchy requires testing null values before inv

some of the provider methods.

Solution
Apply the NullObject pattern, i.e. encapsulate the null behavior as a separate provider cl
that the client class does not have to perform a null test.

Structure/Participants

Detection

Look for idiomatic null tests.

Figure 9 Transformation from a situation based on explicit test of null value to a situation where a
NullObject is introduced.

Client

m()

...
if(a=Null)
{}...
...

RealObject

C

AbstractObject

doit()

Real Object

doit()

NullObject

doit()

Client

m()

...
a.doit()
...

vider,
lying

face to

ject
wever,
object
t. Read

terface
t may

notion
r but
which

able is

ne:
Steps
1. Identify the interface required for the null behavior.
2. Create a new abstract superclass as a superclass of the RealObject class.
3. Create a new subclass of the abstract superclass with a name starting with No or Null.
4. Define default methods into the Null Object class.
5. Initialize the instance variable or structure that was checked to now hold at least an

instance of the Null Object class.
6. Remove the conditional tests form the client.

If you want to be able to still be able to make some conditional over null values in a clean way,
you may introduce in RealObject and Null Object classes a query method isNull as described
in Introduce Null Object [Fowl99a].

Tradeoffs

Pros
• As the client normally just checks whether it can invoke some methods of the pro

the interface of the provider class does not have to be modified when app
NullObject. Contrary to other patterns like Transform Conditionals on Client where
the interface of the provider may change considerably to propose a coherent inter
the clients, the application of the NullObject pattern has a limited impact.

Cons
• The application of NullObject can lead to a class explosion, indeed for every realOb

class, three classes are created, RealObject, NullObject and AbstractObject. Ho
several techniques exist to circumvent this problem, such as implementing the null
as a special instance of RealObject rather than as a subclass of AbstractObjec
NullObject for deeper explanations.

Difficulties: Multiple Clients
• If several clients have the same notion of default behavior and share the same in

they can be treated independently of each other. However, one of the difficulties tha
arise when applying this pattern is the fact that several clients may have a different
of default behavior. If the different clients do not agree on the common behavio
agree on a common interface, one possibility is to have a palatable Null Object in
each client may specify its desired default behavior.

When the legacy solution is the solution
• If clients do not agree on the same interface.
• When very little code uses the variable directly or when the code that use the vari

well-encapsulated in a single place.

Example
The following example code is taken from [Wool98a]. The original code is the following o

VisualPart>>objectWantedControl
...
^ctrl isNil

ifFalse:
[ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]]

It is then transformed into :

VisualPart>>objectWantedControl
...
^ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]

Controller>>isControlWanted
^self viewHasCursor

NoController>>isControlWanted
^false

ats
could
Transform Conditionals into Registration
Intent: Intent: Increase flexibility between classes providing services and classes using them by
transforming conditionals into a registration mechanism.

Problem
How can you reduce the coupling between tools providing services and tool users so that the

addition or removal of tools does not lead to change the code of the tool users?

Symptoms
• Everytimes you remove certain functionalities from your system or a tool, you have to

remove one case in some conditional statements, else certain parts (tool users) would still
reflect the presence of the removed tools leading to fragile systems.

• Everytimes you add new functionality (i.e. for example importing different file form
like Flash, HTML, gif, JPEG), you have to add a new case in all the tool users that
use this new functionality.

Figure 10 Tool Users use conditionals to determine which Tool should be invoked.

FileList

read

...
case ’xml’:

XMLReader openFile: selectedFile
case ’doc’:

WordReader new withFile: selectedFile
case D: ...

XMLReader

openFile: file

WordReader

withFile: file
...

open

Tool User

Tools

ol(s)

ary
ends
ary in-
d tool

ue-
ingle-

ew in-
Solution

Replace conditional statements linking a set of classes providing services , (the tools), and the
classes that used them , (the tools users), by making the tools register themselves to a registry
mechanism and the tool users invoking the tool via the registry mechanism. (see Figure 11).

Detection
• Look for conditionals that dispatch on different values. The value identifies the to

that have to be used.

Steps
1. Define a class representing registree objects, i.e. an object representing the necess

information for registering a tool. Although, the internal structure of this class dep
on the purpose of the registration, a registree object should provide the necess
formation so the tool manager can identify it, create instance of the represente
and invoke methods.

2. Define a class (a tool manager) that manages the registree objects and that will be q
ried by the tool user to check the presence of the tools. This class is certainly a s
ton as the registrees representing the tools available should not be lost if a n
stance of the registree manager is created.

Figure 11 Transforming conditionals in tool users by introducing a registration mechanism and de-
fining a clear protocol for communication between the tools and the tool users and for tool registration.

Tool
User

read

...
case ’xml’:

XMLReader openFile: selectedFile
case ’doc’:

WordReader new withFile: selectedFile
case D: ...

XMLReader

openFile: file

WordReader

withFile: file
...

open

Tool
User

read
ToolManager uniqueInstance

 findToolFor: selectedFile suffix

ToolManager

add: (Tool)
remove: (Tool)
findToolFor: (File)

XMLReader

open: toolUser
loaded
unloaded

WordReader

open: toolUser
unloading
loaded

...

open: toolUser
unloading
loaded

RegistreeObject

ToolManager uniqueInstance
 add: (RegistreeObject

for: XMLReader
with: ’xml’)

XMLReader openFile:
toolUser

ToolManager uniqueInstance
 remove: ’xml’

3. For each case of the conditional, define a registree object associated with a given tool.
The creation of this object and its registration into the tool manager must be made au-
tomatically when the tool it refers to is loaded. In a similar manner the registree object
should be unregistrered as soon as its associated tool is not available anymore.

4. Define a method or a similar mechanism that is invoked by the tool user when it needs
to invoke the tool. To support the following step, a common protocol should be de-
fined to which each registree objects (or tool should conform to depending on the
mechanism used) to invoke a given tool.To pass information from the tool user to the
tool, the current tool user can be passed as argument when the tool is invoked.

5. Transform the complete conditional expression into a query to the tool manager ob-
ject. This query should return a tool associated to the query and invoke it to access the
wished functionality.

6. If the tool user class defined methods for the activation of the tools, such methods are
now been moved into the tool. These methods should be removed from the tool user
class.

Example

The following example is extracted from Squeak. We slightly modified the original code to im-
prove the example readibility. In Squeak, the FileList is a tool that allows one to load different
kinds of files in the system like Smalltalk code, JPEG images, MIDI files, HTML.... Depending
on the suffix of the selected file, the FileList proposes different actions to the user. We show in
the example the loading of the different file depending on their format.

Before

The FileList implementation creates different menus items representing the different possibil-
ities depending on the suffix of the files. The dynamic part of the menu is defined in the method
menusForFileEnding: that requires a suffix as argument and returns a menu item containing
the label of the menu item and the name of the corresponding method that should be invoked on
the FileList object.

FileList>>menusForFileEnding: suffix

(suffix = ’jpg’) ifTrue:
[^MenuItem label:’open image in a window’.

 selector: #openImageInWindow].
(suffix = ’morph’) ifTrue:

[^MenuItem label: ’load as morph’.
selector: #openMorphFromFile].

(suffix = ’mid’) ifTrue:
[^MenuItem label: ’play midi file’.

selector: #playMidiFile].
(suffix = ’st’) ifTrue:

[^MenuItem label: ’fileIn’.
selector: #fileInSelection].

(suffix = ’swf’) ifTrue:
[^MenuItem label: ’open as Flash’.

selector: #openAsFlash].
(suffix = ’3ds’) ifTrue:

[^MenuItem label: ’Open 3DS file’.
selector: #open3DSFile].

(suffix = ’wrl’) ifTrue:
[^MenuItem label: ’open in Wonderland’.

selector: #openVRMLFile].
(suffix = ’html’) ifTrue:

[^MenuItem label: ’open in html browser’.
selector: #openInBrowser].

(suffix = ’*’) ifTrue:
[^MenuItem label: ’generate HTML’.

selector:#renderFile].

The methods whose selectors are associated in the menu are implemented in the FileList
class.We give two examples here. First the method checks if the tool it needs is available, if not
it produces a beep, else the corresponding tool is created then used to treat the selected file.

FileList>>openInBrowser
Smalltalk at: #Scamper ifAbsent: [^ self beep].
Scamper openOnUrl: (directory url , fileName encodeForHTTP)

FileList>>openVRMLFile
| scene |
Smalltalk at: #Wonderland ifAbsent: [^ self beep].
scene := Wonderland new.
scene makeActorFromVRML: self fullName.

After
The solution is then to let every tool the responsibility to register themselves and let the FileList
query the repository of available tools to find which tool can be invoked.

Step1

The solution is to first create the class ToolRegistree representing the registration of a given
tool. Here we store the suffix files, the menu label and the action to be performed when the tools
will be invoked.

Object subclass: #ToolRegistree
instanceVariableNames: ’fileSuffix menuLabelName blockToOpen ’

Step 2

Then the class ToolsManager is defined. It defines a structure to hold the registered tools and
defines behavior to add, remove and find registered tool.

Object subclass: #ToolsManager
instanceVariableNames: ’registrees ’

ToolsManager>>initialize
registree := OrderedCollection new.

ToolsManager>>addRegistree: aRegistree
registrees add: aRegistree

ToolsManager>>removeRegistree: aBlock

(registrees select: aBlock)
do: [:each| registrees remove: each]

ToolsManager>>findToolFor: aSuffix
"return a registree of a tool being able to treat file of format
 aSuffix"

^ registrees
detect: [:each| each suffix = aSuffix]
ifNone: [nil]

Note that the findToolFor: method could take a block to select which of the registree objects
satisfying it and that it could return a list of registree representing all the tools currently able to
treat a given file format.

Step 3

Then the tools should register themselves when they are loaded in memory. Here we present
two registrations, showing that a registree object is created for each tool.As the tools need some
information from the FileList object like the filename or the directory, the action that has to
be performed take as parameter the instance of the FileList object that invokes it ([:fileL-
ist | in the code below).

In Squeak, when a class specifies a class (static) initialize method, this method is invoked
once the class is loaded in memory. We then specialize the class methods initialize on the
class Scamper and Wonderland to invoke the class methods toolRegistration define below:

Scamper class>>toolRegistration

ToolsManager uniqueInstance
addRegistree:
(ToolsRegistry

forFileSuffix: ’html’
openingBlock:

[:fileList |
self openOnUrl:

(fileList directory url ,
fileList fileName encodeForHTTP)]

menuLabelName: ’open in html browser’)

Wonderland class>>toolRegistration

ToolsManager uniqueInstance

ed so-
addRegistree:
(ToolsRegistry

forFileSuffix: ’wrl’
openingBlock:

[:fileList |
| scene |
scene := self new.
scene makeActorFromVRML: fileList fullName]

menuLabelName: ’open in Wonderland’)

In Squeak, when a class is removed from the system, it receives the message removeFromSys-
tem. Here we then specialize this method on every tool so that they unregister themselves.

Scamper class>>removeFromSystem

super removeFromSystem.
ToolsManager uniqueInstance

removeRegistree: [:registree| registree forFileSuffix = ’html’]

Wonderland class>>removeFromSystem

super removeFromSystem.
ToolsManager uniqueInstance

removeRegistree: [:registree| registree forFileSuffix = ’wrl’]

Step 4

The FileList object now has to use the ToolsManager to identify the right registree object de-
pending on the suffix of the selected file. Then if a tool is available for the suffix, it creates a
menu item specifying that the FileList has to be passed as argument of the action block associ-
ated with the tool. In the case where there is no tool a special menu is created whose action is to
do nothing.

FileList>>itemsForFileEnding: suffix

registree := ToolManager uniqueInstance
findToolFor: suffix ifAbsent: [nil].

^ registree isNil
ifFalse: [Menu label: (registree menuLabelName)

actionBlock: (registree openingBlock)
withParameter: self]

ifTrue: [ErrorMenu new
label: ’no tool available for the suffix ’, suffix]

Tradeoffs

Pros
• By applying Transform Conditionals into Registration you obtain a system which is

dynamic, letting the responsibility to each tool to declare its presence. The propos

 much
e reg-

n and

e tool
ereas
xam-
 both

ut in
ssibil-

l have
 clear

nd not
e tool
voked.

ion on
plies

o allow

istree
 have
e ex-
e ob-
the lev-

tool, a

 meth-
lution allow the transparent addition of new tools without implying any modification
from the tool users.

• The actions that you moved from the tool user class to the associated tool may be
simpler because you do not have to test anymore that the right tool is available. Th
istration mechanism ensures you that the action can be performed.

• The interaction protocol between every tool and the tool user is now normalized.

Cons
• You have to define two new classes, one for the object representing tool registratio

the object managing the registered tools.

• You may be forced to define a method in the tool for the action been invoked by th
user. This way you are linking the tool with the tool user class in the tool class wh
the legay solution was linking them in the tool user. In Smalltalk, as shown by the e
ple such a method can replaced by the definition of a block limiting the link between
classes. In Java, an inner class can be used instead of defining a new method.

• If not already existing new protocols for loading and removing tools have to be p
place and follow all the tools. For example, the tool programmer must have the po
ity to specify actions at load time and at unload time.

Difficulties
• While transforming one case of the case statement into a registree object, you wil

to define an action associated with the tools via the registree object. To ensure a
separation and full dynamic registration, this action should be defined on the tool a
anymore on the tool user. However, as the tool may need some information from th
user, the tool user should be passed to the tool as parameter whne the action is in
This changes the protocol between the tool and the tool user from a single invocat
the tool user to a method invocation to the tool with an extra parameter. This also im
that in some cases the tool user class have to define new public or friend methods t
the tools to access the tool user right information.

• If each single conditional branch is associated only with a single tool, only one reg
object is needed. However, if the same tool can be called in different ways we will
to create multiple registree objects. You need to identify the right criteria, usually th
pression used in the conditional give a good discrimator. Creating multiple registre
jects may lead to multiple registration aspects and registree classes depending on
el of felxibility of the implementation language.

When the legacy solution is the solution.

If all the tools are always available and you will never add or remove at run-time a new
conditional is perfect.

Related Patterns

Transform Conditionals into Registration is related to Transform Conditionals on Client by
the fact that they both eliminate conditional expressions that discriminate to select which

od should be invoked on which object. The main difference between these two patterns relies
in their use of the flexibility they provide. Indeed, both allow one to add new tools (service pro-
viders) without having to change clients. However, Transform Conditionals into Registration
provides an architecture that supports the dynamic use of the available service providers while
Transform Conditionals on Client only provide code flexibility without infrastructure sup-
port. In this sense, Transform Conditionals into Registration can be seen as a generalization
of Transform Conditionals on Client.

Script: Identifying simulated switches in C++

This perl script searches the methods in C++ files and lists the occurrences of statements used
to simulate switch statement with if then else i.e., matching the following expression: elseXif
where X can be replaced by {, //... or some white space including carriage return.

#!/opt/local/bin/perl

$/ = ’::’;

new record delim.,

$elseIfPattern = ’else[\s\n]*{?[\s\n]*if’;

$linecount = 1;

while (<>) {

 s/(⁄⁄.*)//g; # remove C++ style comments

 $lc = (split /\n/) - 1; # count lines

 if(/$elseIfPattern/) {

 # count # of lines until first

occurrence of "else if"

 $temp = join("",$‘,$&);

 $l = $linecount + split(/\n/,$temp) - 1;

 # count the occurrences of else-if pairs,

 # flag the positions for an eventual printout

 $swc = s/(else)([\s\n]*{?[\s\n]*if)

 /$1\n* HERE *$2/g;

 printf "\n%s: Statement with

 %2d else-if’s, first at: %d",

 $ARGV, $swc, $l;

 }

 $linecount += $lc;

 if(eof) {

 close ARGV;

 $linecount = 0;

 print "\n";

 }

}

ondi-

ce but
 to do
Replace Type Code with Subclasses
Intent: Provides a recipe for carrying out the refactorings required for Transform Condition-
als on Self [Fowl99a].

Replace Conditional with Polymorphism

Double Dispatch

Deprecation

Replace Type Code with State

Template Method
Intent: Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure. [Gamm95a]

Refactoring To Specialize
Intent: W. Opdyke [Opdy92b] proposed using class invariants as a criterion to simplify c
tionals.

NullObject
Intent: A Null Object provides a surrogate for another object that shares the same interfa
does nothing. Thus, the Null Object encapsulates the implementation decisions of how
nothing and hides those details from its collaborators [Wool98a].

Introduce Null Object
Intent: Provides a recipe for carrying out the refactorings required for Apply Null Object
[Fowl99a].

-

-

State
Intent: Allow an object to alter its behavior when its internal state changes. The object will ap-
pear to change its class [Gamm95a].

State Patterns
Intent: The State Patterns pattern language refines and clarifies the State Pattern [Dyso98a].

References
[Alpe98a]Sherman R. Alpert, Kyle Brown and Bobby Woolf, The Design Patterns Smalltalk Compan-

ion, Addison-Wesley, 1998.

[Gamm95a]Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,Design Patterns, Addi-
son Wesley, 1995.

[Deme99n]Serge Demeyer, Stéphane Ducasse and Sander Tichelaar, A Pattern Language for Reverse
Engineering, Proceedings of the 4th European Conference on Pattern Languages of Pro-
gramming and Computing, 1999, Paul Dyson (Ed.), UVK Universitätsverlag Konstanz Gm
bH, Konstanz, Germany, July 1999.

[Duca99c]Stéphane Ducasse, Tamar Richner and Robb Nebbe, Type-Check Elimination: Two Object-
Oriented Reengineering Patterns, WCRE’99 Proceedings (6th Working Conference on Re
verse Engineering), Francoise Balmas, Mike Blaha and Spencer Rugaber (Eds.), IEEE, Octo-
ber 1999.

[Dyso98a]

[Fowl99a]Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactoring: Im-
proving the Design of Existing Code, Addison-Wesley, 1999.

[Opdy92a]William F. Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. thesis, University of
Illinois, 1992.

[Riel96a]Arthur J. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.

[Wool98a]Bobby Woolf, Null Object, Pattern Languages of Program Design 3, Robert Martin, Dirk
Riehle and Frank Buschmann (Eds.), pp. 5-18, Addison-Wesley, 1998.

	Transform Conditionals to Polymorphism
	Transform Conditionals on Self
	Transform Conditionals on Client
	Apply State
	Apply Null Object
	Transform Conditionals into Registration
	References

