
Generic Programming Redesign of Patterns

Thierry Géraud and Alexandre Duret-Lutz

Thierry.Geraud@lrde.epita.fr
Alexandre.Duret-Lutz@lrde.epita.fr

EPITA Research and Development Laboratory
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France

Phone +33 1 53 14 59 47 – Fax +33 1 44 08 01 99
http://www.lrde.epita.fr

Problem

How to improve the performance of design patterns when they are involved in intensive
computing?

Context

Implementation of algorithms that have to be both efficient and reusable with a language that
features genericity, i.e., parameterization. We give here C++ snippets but this pattern also ap-
plies with other languages such as Ada or Eiffel.

Example

Let us consider a very simple algorithm: the addition of a constant to each element of an ag-
gregate. We aim at having a single implementation of the algorithm, which means that this
procedure should accept various aggregate types and data types (the types of the aggregate
elements). A general implementation is possible thanks to the ITERATOR pattern [6], parame-
terized by the data type:

template< typename T >
void add(Aggregate<T>& input, T value)
{

Iterator<T>& iter = input.CreateIterator();
for (iter.First(); ! iter.IsDone(); iter.Next())

iter.CurrentElem() += value;
}

In this algorithm, there are only abstract classes (Aggregate<T> andIterator<T>) and each
iteration involves polymorphic calls, thus, dynamic bindings. The ITERATORpattern results in a
run-time overhead: the algorithm is about twice as slow as a code dedicated to a given aggregate
type (a list for instance) as noticed in [7].

Forces

Abstraction. There should be one procedure for each algorithm. Because algorithms should
work for different types, procedures must feature a certain degree of abstraction: they
must accept input of various types. Most of the algorithmic entities have to be represented
in an abstract way.

Efficiency. However, abstraction should not lead to a computational burden, since scientific
computing requires efficient implementations. These abstract implementations should be
about as fast as implementations dedicated to a particular data type.

Design. Still, object-oriented modeling of abstraction typically relies on operation polymor-
phism, which imposes an efficiency penalty due to the huge number of dynamic bindings
that usually occur in scientific computing. In particular, design patterns widely use oper-
ation polymorphism.

Design quality. Yet, the core ideas captured in many design patterns are design structures
that have often proved useful in scientific computing. Sacrificing design patterns simply
because there might be efficiency problems is not justified.

Solution

A solution for avoiding operation polymorphism, which is a sort of “run-time genericity”, is
to heavily rely on parametric polymorphism, i.e. (compile-time) genericity. In particular, ab-
stractions are handled by parameters and/or deduced from parameters. In order to transform the
structure of a usual design pattern into its generic version, we rely on several rules.

General rules:

• Inclusion polymorphism is forbidden. In other words, the type of a variable (static type
known at compile-time) is exactly that of the instance it holds (dynamic type known at
run-time). The main assumption of generic programming is that the concrete type of
every object is known at compile-time.

• Operation polymorphism (keywordvirtual in C++) is excluded because dynamic bind-
ing is too expensive. In other words, abstract methods are forbidden. To replace operation
polymorphism, we can resort to:

– parametric classes through theCuriously Recurring Templateidiom, later described
in this paper ;

– parametric methods, which leads to a form ofad-hocpolymorphism (overloading).

• Inheritance is only used to factor methods and to declare attributes that can be shared by
several subclasses.

Rules for procedures which use generic patterns:

• A procedure should be parameterized by the types of the procedure input, even if the input
itself is parameterized.

• The types of the algorithmic tools used in a procedure should be given as a parameter-type
of deduced from a parameter-type.

Example Resolved

Since the type of the procedure argumentinput is abstract in the classic object-oriented ver-
sion of the example (given in the “problem” section), this type is now a procedure parameter,
sayA. The only algorithmic tool is an iterator and its type can be deduced fromA thanks to the
alias iterator type . The type of the procedure argumentvalue , which is the type of the
aggregate elements, can be deduced fromA thanks to the aliasdata type . The resulting code
of the generic procedure is very close to the previous version1 :

template< typename A >
void add(const A& input, typename A::data_type value)
{

typename A::iterator_type iter = input.CreateIterator();
for (iter.First(); ! iter.IsDone(); iter.Next())

iter.CurrentElem() += value;
}

When the procedureadd is instantiated at compile-time for a given type, no class within the
procedure is abstract. For instance, in the code below, the procedureadd is instantiated withA
set tobuffer<int> :

int main()
{

buffer<int> buf;
//...
add(buf, 7);

}

and the type aliases defined in the classbuffer :

template< typename T >
class buffer
{

public:
typedef T data_type;
typedef buffer_iterator<T> iterator_type;
//...

};

allows the compiler to know that the type of the argumentvalue is int and to define the
iteratoriter with the proper type.

Since all the types used in the procedure are known at compile-time, any method call does not
require dynamic binding. Moreover, each call can be inlined by the compiler. The resulting
executable has about the same performance as dedicated code.

Finally, the procedure remains an “abstract-like” representation of the algorithm (but without
abstract classes) and the ITERATOR pattern has been transformed to become efficient.

1The keywordtypename before type deductions is required by the languageC++ to fix ambiguities.

Resulting Context

Building classes and procedures with an intensive use of both genericity and type deduction is a
quite recent paradigm called “generic programming” [10]. This paradigm addresses two issues:

• having a single abstract procedure per algorithm,

• and having efficient numerical procedures.

As a consequence, for several years, generic programming has been adopted by the object-
oriented numerical computing community to build libraries of scientific components. Some of
these “generic libraries” are available on the Internet [12] and address various domains (graphs,
linear algebra, computational geometry, etc.). Some generic programming idioms have already
been discovered and many are listed in [14].

The resulting context is then the implementation of algorithms for scientific object-oriented
numerical computingwithin the generic programming paradigm2. So, usual design patterns
should have a different structure than their known one, and a lot of design patterns from Gamma
et al. [6] can be translated into this paradigm.

Known Uses

Several generic versions of usual design patterns already appear in generic libraries.

• Most generic libraries use the GENERIC ITERATOR pattern that we have previously de-
scribed in this paper. Let us mention theC++ Standard Template Library[13], STL for
short. In fact, the generic programming paradigm became popular with the adoption of
STLby theC++ standardization committee and was made possible with the addition to
this language of new generic capabilities [11].

• In POOMA [8], a scientific framework for multi-dimensional arrays, fields, particles, and
transforms, the GENERIC ENVELOPE-LETTER pattern appears. A parametric array type
is defined with a parameter-type, called an engine type, to specify the manner of indexing
and the types of the indices. An array object, the envelope, defers data lookup to the
engine object, being the letter.

• In the REQUESTEDINTERFACEpattern [9], a GENERIC BRIDGE is introduced to handle
efficiently an adaptation layer which mediates between the offered interfaces of the servers
and the requested interfaces of the clients. To this end, a generic bridge class is parame-
terized by a server class, implements the requested interface and delegates the requests to
a server object.

2 Please note thatgeneric programmingshould not be confused with the notion ofgenericity: generic programming is
an intensive use of genericity for software architecture purposes, whereas the common use of genericity in oriented-object
programming is dedicated for utility tools (procedures that behave like macros and container classes).

Related Patterns

As we are presenting a pattern of design re-engineering from the “classical” object-oriented
paradigm towards the generic programming paradigm (put differently, a pattern of design pat-
tern transformation), this kind of pattern is related to refactoring patterns [5].

In another sense, related patterns are the initial and resulting patterns themselves.

Examples

We now give the description of three generic versions of design patterns, originally from Gamma
et al. [6]: the GENERIC ITERATOR, the GENERIC TEMPLATE METHOD and the GENERIC

DECORATOR. The last two patterns are, as far as we know, original.

The implementations of the designs given in this paper and of some other GOF patterns, trans-
lated into the generic programming paradigm, are available at:
http://www.lrde.epita.fr/download/ .

Name

GENERIC ITERATOR

Intent

Provide anefficientway to access the elements of an aggregate without exposing its underlying
representation.

Motivation

In scientific computing, data are often aggregates and algorithms usually accept various ag-
gregate types as input and browse the aggregate elements; the notion of iterator is thus a very
common tool. A major requirement is that iterations are expected to be efficient (this is an extra
requirement compared to the original pattern).

Structure

<<type>>
Aggregate

typedef iterator_type

CreateIterator() : iterator_type

typedef value_type

T

typedef iterator_type : ConcreteIterator<T>

<<implementation class>>
ConcreteAggregate

CreateIterator() : ConcreteIterator<T>

typedef value_type : T

First()

IsDone() : bool

Next()

<<type>>
Iterator

Iterator(Aggregate&)

CurrentItem() : Aggregate::value_type&

T

ConcreteIterator(ConcreteAggregate&)

First()

IsDone() : bool

CurrentItem() : T&

Next()

<<implementation class>>
ConcreteIterator

{ Aggregate::iterator_type = Iterator }

In this diagram, we use a non-standard extension ofUML to represent type aliases in classes.

Participants

In generic libraries, aconcept[1] is the description of a set of requirements on a type that
parameterizes an algorithm implementation (the notion of concept replaces the classical object-
oriented notion of abstract class); a type which satisfies these requirements is amodelof this
concept. For this pattern, two concepts are defined:aggregateand iterator, and two concrete
classes, models of these concepts.

Consequences

This design is efficient and allows to implement in an abstract way algorithms which iterate
over the elements of an aggregate.

Implementation

An implementation is given in the “example resolved” section.

Known Uses

Most generic libraries use the GENERIC ITERATOR pattern (they can be found on the Internet
from the page [12]). Aggregates are, for instance, graphs with various topologies, or matrices
with various sparse and dense formats.

Name

GENERIC TEMPLATE METHOD

Intent

Define the canvas of anefficientalgorithm in a superior class, deferring some steps to subclasses.

Motivation

We have said that inheritance is used in generic programming to factor methods. Here, we want
a superior class to define an operation some parts of which (primitive operations) are defined
only in inferior classes; in addition, we want method calls to be solved at compile-time. It
concerns calls of the primitive operations as well as calls of the template method itself.

Structure

PrimitiveOperation1_impl()

AbstractClass<ConcreteClass>

ConcreteClass

PrimitiveOperation2_impl()

I

Self() : I&

SuperiorOf

return static_cast<I&>(*this);

I

TemplateMethod()

PrimitiveOperation2()

AbstractClass

PrimitiveOperation1()

// ...

// ...

// ...
PrimitiveOperation1();

PrimitiveOperation2();
Self().PrimitiveOperation2_impl();

Self().PrimitiveOperation1_impl();

Participants

In the object-oriented paradigm, the resolution of a polymorphic operation call on a target object
consists in finding a method that implements the operation, while searching bottom-up in the
class hierarchy from the object dynamic type. In generic programming, let us consider a leaf
class; if its superior classes are parameterized by the type of this class, they always know the
dynamic type of the object.

The parametric classAbstractClass defines two operations:PrimitiveOperation1()

andPrimitiveOperation2() . Calling one of these operations leads to transtyping the target
object to its dynamic type, thanks to the methodSelf() , inherited from the parametric class
SuperiorOf . The methods that are executed are the implementations of these operations,
respectivelyPrimitiveOperation1 impl() andPrimitiveOperation2 impl() . These
implementations are searched for starting from the dynamic object type.

When the programmer later defines the classConcreteClass with the primitive operation
implementations, the methodTemplateMethod() is inherited and a call of this method leads
to the execution of the proper implementations.

Consequences

In generic programming, operation polymorphism can be simulated by “parametric polymor-
phism through inheritance” and then be solved statically. The cost of dynamic binding is
avoided. Moreover, the compiler is able to inline all the pieces of code, including the tem-
plate method itself. Hence, this design does not penalize efficiency; a template method can be
called within an algorithm implementation body.

Implementation

SuperiorOf andAbstractClass can behave like abstract classes; to this end, their construc-
tors are protected. The methodsPrimitiveOperation1() andPrimitiveOperation2()

do not contain an operation implementation but a call of an implementation; they can be consid-
ered as abstract methods. Please note that they can also be individually called by the client (the
fact that these methods are polymorphic-like is hidden because the callSelf is encapsulated).

Known Uses

This pattern relies on an idiom (theCuriously Recurring Template) given in [4] and based
on [2]. In this idiom, an binary operator, for instance+, is defined in a superior class from the
corresponding unary operator, here+=, defined in an inferior class.

Name

GENERIC DECORATOR

Intent

Efficientlydefine additional responsibilities to an object or replace functionalities of an object,
by the means of subclassing.

Structure

C
ConcreteDecoratorA

Operation()

addedState

C
ConcreteDecoratorB

Operation()

AddedBehaviour()

C::Operation();

AddedBehaviour();

ConcreteDecoratorB< ConcreteComponent > dc;

dc.Operation();

ConcreteComponent

Operation()

Participants

A classConcreteComponent which can be decorated, offers an operationOperation() .
Two parametric decorators,ConcreteDecoratorA andConcreteDecoratorB , whose pa-
rameter is the decorated type, override this operation. It is a substitution since the decorators
are inheriting from their parameter.

Consequences

This pattern has two advantages over Gamma’s one. First, any method that is not modified by
the decorator is automatically inherited. Not only does this free the decorator from having to
define these operations, but in addition, any specific method of a decorated object is in its dec-
orator. Second, decoration can be applied to a set of classes that are not related via inheritance.
Therefore, a decorator becomes truly generic and efficient.

Conversely, in the generic version, we lose the capability of dynamically adding a decoration to
an object.

Known Uses

This pattern uses a special idiom known asmixin (or wrapper). Having a parametric class that
derives from one of its parameters is a way to simulate multiple inheritance [3].

Implementation

Decorating an iterator ofSTLis truly useful when a container holds structured data, and when
one wants to perform operations only on a single field of these data. In order to access this field,
the decorator redefines the data access operatoroperator*() of the iterator.

typedef std::list< RGB<int> > A;
A input;
// ...
FieldAccess< A::iterator, Get_red > i;
for (i = input.begin(); i != input.end(); ++i)
{

*i = 0;
}

The example given above uses a decoratorFieldAccess . Its parameters correspond to the type
of the decorated iterator, and to a function object [1] which specifies the field to be accessed.
A loop sets to0 the red field of a list of red-green-blue colors. Without decoration, the iterator
would have set all the colors to{0,0,0} .

Acknowledgments.The authors would like to thank Andreas Rüping and Philippe Laroque for their
fruitful suggestions on this pattern.

References

[1] Matthew H. Austern.Generic programming and the STL – Using and extending the C++ Stan-
dard Template Library. Professional Computing Series. Addison-Wesley, 1999.

[2] John Barton and Lee Nackman.Scientific and Engineering C++. Addison-Wesley, 1994.

[3] Gilad Bracha and William Cook. Mixin-based inheritance. InProceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), volume 25:10
of SIGPLAN Notices, pages 303–311, 1990.

[4] James Coplien. Curiously recurring template pattern. In Stanly B. Lippman, editor,C++ Gems.
Cambridge University Press & Sigs Books, 1996.

[5] Brian Foote and William F. Opdyke. Lifecycle and refactoring patterns that support evolution
and reuse. In James O. Coplien and Douglas C. Schmidt, editors,Pattern Languages of Program
Design, volume 1 ofSoftware Patterns Series, chapter 14. Addison-Wesley, 1995.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design patterns – Elements
of reusable object-oriented software. Professional Computing Series. Addison Wesley, 1994.

[7] Thierry Géraud, Yoann Fabre, Alexandre Duret-Lutz, Dimitri Papadopoulos-Orfanos, and Jean-
François Mangin. Obtaining genericity for image processing and pattern recognition algorithms.
In Proceedings of the 15th International Conference on Pattern Recognition (ICPR), volume 4,
pages 816–819, Barcelona, Spain, September 2000. IEEE Computer Society.

[8] Scott Haney and James Crotinger. How templates enable high-performance scientific computing
in C++. IEEE Computing in Science and Engineering, 1(4), 1999.

[9] Ullrich Köthe. Requested interface. InProceedings of the 2nd European Conference on Pattern
Languages of Programming (EuroPLoP), Munich, Germany, 1997.

[10] David R. Musser, editor.Dagstuhl seminar on Generic Programming, SchloßDagstuhl, Wadern,
Germany, April-May 1998.
http://www.cs.rpi.edu/˜musser/gp/dagstuhl/

[11] Nathan C. Myers. Gnarly new C++ language features, 1997.
http://www.cantrip.org/gnarly.html

[12] The object-oriented numerics page.
http://oonumerics.org/oon

[13] Alex Stepanov and Meng Lee.The Standard Template Library. Hewlett Packard Laboratories,
1501 Page Mill Road, Palo Alto, CA 94304, February 1995.

[14] Todd L. Veldhuizen. Techniques for scientific C++, August 1999.
http://extreme.indiana.edu/˜tveldhui/papers/techniques/

