
Lookup

Michael Kircher & Prashant Jain

{Michael.Kircher,Prashant.Jain}@mchp.siemens.de

Siemens AG, Corporate Technology

Munich, Germany

Copyright © 2000 by Prashant Jain and Michael Kircher

The lookup pattern describes how to find and retrieve initial references to
distributed objects and services.

Example Consider a system consisting of several distributed objects implemented
using CORBA. To access one of the distributed objects, a client typically
needs to obtain a reference to the object. An object reference identifies the
distributed object that will receive the request. Object references can be
passed around in the system as parameters to operations as well as results
of requests. A client can therefore obtain a reference to a distributed object
in the system from another distributed object. However, how can a client get
an initial reference to an object assuming that it is the first distributed object
the client wants to access?

For example, in a system providing distributed transaction service, a client
may want to obtain a reference to the Transaction Manager to be able to
participate in distributed transactions. How can a server make the
Transaction Manager object reference that it created widely available? And
how can a client obtain the Transaction Manager object reference without
having a reference to any other object?

Client
Transaction

Managernetwork

publish
object 
reference

get
object
reference



Context Distributed systems where clients need to retrieve initial references to
distributed objects or services.

Problem In a distributed system, a server may offer one or more services to clients.
Over a period of time, additional services may get added or existing services
may get removed. One way the server can publish the availability of
existing services to interested clients is by periodically sending a broadcast
message. The messages need to be sent on a periodic basis to ensure that
new clients that join the system become aware of available services.
Conversely, a client could send a broadcast message requesting all available
services to respond. Once the client receives replies from all available
services, it can then choose the service(s) it needs. However, both these
approaches can be quite costly and inefficient since they proliferate the
network with lots of messages. To address this problem of allowing servers
to publish services and for clients to find these services in an efficient and
inexpensive manner requires the resolution of the following forces:

• Availability: a client should be able to find out on demand what
distributed objects or services are available in its environment.

• Independence: a client should be able to obtain initial references of one
or more distributed objects or services without relying on other unknown
distributed objects or services. 

• Location Transparency: a client should be able to obtain initial
references of one or more distributed objects or services without caring
about the location of the distributed objects or services. Similarly, a
server should be able to provide references of distributed objects and
services to clients without knowledge of the location of the clients.

• Simplicity: the solution should not burden a client obtaining the initial
references of distributed objects and services nor a server providing the
references.

Solution Provide a Lookup service which allows services to register their references
and clients to retrieve these references. The Lookup service serves as a
central point of communication between clients and servers allowing clients
to access references of services from the servers. The clients need not know
about the location of the servers or the services they offer. Similarly, the
servers need not know the location of the clients that want to access the
references of the services. 

The reference of a service can be associated with properties that describe the
service. The lookup service keeps a list of the registered references and their
associated properties. These properties can be used by the Lookup service
to select one or more services based on queries sent by the client.

To communicate with the Lookup service, the clients and servers need an
access point. If the access point is not known, clients and servers use a
bootstrapping protocol to find it. Typically a broadcast message is sent. The



listening Lookup service responds with a message containing information
about its access point.

Structure The following participants form the structure of the Lookup pattern:

A service provides some type of functionality.

A client uses a service.

A lookup service provides the capability for services to register themselves
and for clients to find these services.

The following CRC cards describe the responsibilities and collaborations of
the participants.

Dynamics There are two sets of interactions in the Lookup pattern. The first set
comprises of registering a service with the Lookup service and includes the
following interactions: 

• The server creates a new instance of a service.

• It then searches for a Lookup service via a bootstrapping protocol, e.g., a
broadcast protocol.

• The Lookup service responds announcing its access point.

• The server registers the object reference of the service using properties
with the Lookup service.

Class
Lookup Service

Responsibility
• Allows services to be 

registered
• Allows client to find 

registered services
• Associate properties 

with services

Collaborator

Class
Client

Responsibility
• Uses a service

Collaborator
• Service
• Lookup Service

Class
Service

Responsibility
• Provides application 

functionality

Collaborator
• Lookup Service



The second set comprises of a client finding a service using a Lookup
service and includes the following interactions:

• The client searches for a Lookup service via a bootstrapping protocol,
e.g., a broadcast protocol.

• The Lookup service responds announcing its access point.

• The client queries the Lookup service for the object reference of the
desired service using its properties.

• The Lookup service responds with the object reference of the desired
service.

• The client uses the object reference to access the service.

Implementation There are four steps involved in implementing the Lookup pattern.

1 Determine functionality of a Lookup service. A lookup service should
facilitate registration and lookup of services. It should provide an API that
allows services to register and unregister themselves. Each registered
service may provide meta information about itself that can be used by the
lookup service to fetch the appropriate service upon client request. In the
simplest case, the meta information may just contain the name of the
service. Different policies can be defined for the Lookup service. For

: Server

<<broadcast>>

register(properties)

: Lookup Service

<<singlecast>>

object reference

object reference

: Service

<<create>>

: Client : Service

<<broadcast>>

find(properties)

: Lookup Service

<<singlecast>>

object reference
operation ()

object reference



example, the Lookup service may support bindings with duplicate names or
properties.
The Lookup service should also provide an API that allows clients to
retrieve a list of all available services as well as retrieve a reference to a
particular service. The search criteria used by the clients can be a simple
query-by-name or a more complex query mechanism as described in step 4
of the implementation section.

2 Implement the Lookup service. Internally, the Lookup service can be
implemented in many different ways. For example, it may keep the
registered services and their meta information in some kind of a tree data
structure or a hashmap. The information itself may be transient or can be
made persistent with an appropriate backend persistency mechanism.

For example, Orbix 2000 [IONA] which is a CORBA 2.3 implementation uses
the COS Persistent State Service to persist the name bindings in its Name
Service. Other CORBA implementations such as TAO [TAO] persist the
bindings using memory-mapped files.

3 Provide the Lookup service access point. The lookup service may provide
a well-defined and well-known access point which can be published to the
clients. The access point will typically include information such as the
hostname and the port number where the Lookup service is running. This
information can be published to the clients by several means such as writing
it to a file that can be accessed by the client, or through well-defined
environment variables.

For example, a lot of CORBA implementations publish the access point of the
Name Service using property or configuration files which can be accessed by
clients.

If an access point is not provided by the Lookup service, it will be necessary
to design a bootstrapping protocol which can allow clients to obtain the
access point. Such a bootstrapping protocol is typically designed using a
broadcast or a multicast protocol. The client sends an initial request for a
reference to a lookup service using the bootstrapping protocol. The request
contains information describing the type of request as well as the type of
service, in this case lookup, that the client is interested in. On receiving the
client’s request, typically one or more lookup services send a reply back to
the client passing along their access points. The client can then contact the
lookup services directly to obtain references to other services.

In CORBA, a client can get the access point of a Name Service using the
resolve_initial_references() call on the ORB. Internally, the
ORB uses a broadcast protocol to get the access point, an object reference, of
the Name Service. 

4 Determine a query language. The lookup service may optionally support a
query language that allows clients to search for services using complex
queries. For example, a query language could be based on using a property
sheet that describes the type of service a client is interested in. The
properties pertaining to a particular service may be stored with the service



itself or it may be stored externally, for example using a Property Service.
The client when using the Lookup service to query a service may submit a
list of properties that should be satisfied by the requested service. The
Lookup service can then compare the list of properties submitted by the
client against the properties of the available services. If a match is found,
the reference to the service is returned to the client. 

The CORBA Trading Service allows properties to be specified corresponding
to a service that is registered with it. A client can build an arbitrarily complex
query using a criteria that is matched against the properties of the registered
services.

Example
Resolved

Consider the example where a client wants to obtain an initial reference to
a transaction manager in a distributed CORBA environment. Using the
Lookup pattern, a Lookup service should be implemented. Most CORBA
implementations provide such a Lookup service either in the form of a
Name Service or a Trading Service, or both. These services are accessible
via IIOP and provide well-defined CORBA interfaces.

In our example, the server which created a transaction manager should first
obtain a reference to the Name Service and then use it to register the
reference of the created transaction manager. The C++ code below shows
how a server can obtain the reference to the Name Service and then register
the transaction manager with it.

// First initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Create a Transaction Manager
TransactionMgr_Impl *transactionMgrServant =

new TransactionMgr_Impl;

// Get the CORBA object reference of it.
TransactionMgr_var transactionMgr =

transactionMgrServant->_this();

// Get reference to the initial naming context
CORBA::Object_var obj = orb-> 

resolve_initial_references(“NameService”);

// Narrow the reference
CosNaming::NamingContext_var ns =

CosNaming::NamingContext::narrow(obj);

// Create the name with which the transaction
// manager will be bound
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup(“Transactions”);

// Register transactionMgr object reference in the
// NS at the root context
ns->bind(name, transactionMgr);

Once the transaction manager has been registered with the Name Service, a
client can obtain its object reference from the Name Service. The C++ code
below shows how a client can obtain the reference of the transaction
manager from the Name Service.



// First initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get reference to the initial naming context
CORBA::Object_var obj = orb-> 

resolve_initial_references(“NameService”);

// Narrow the reference
CosNaming::NamingContext_var ns =

CosNaming::NamingContext::narrow(obj);

// Create the name with which the transactionMgr 
// is bound in the NS
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup(“Transactions”);

// Resolve transactionMgr from the NS
CORBA::Object_var obj = ns->resolve(name);

// Narrow the object reference
TransactionMgr_var transactionMgr =

TransactionMgr::_narrow(obj);

Once the initial reference to the transaction manager has been obtained by
the client, it can then use it to invoke operations as well as to obtain
references to other CORBA objects and services.

Variants Several instances of Lookup service can be used together to build a
federation of Lookup services. The instances of Lookup services in a
federation co-operate to provide clients with a wider spectrum of object
references and services. A federated Lookup service can be configured to
forward requests to other Lookup services when it can not fulfill the
requests itself. This widens the scope of queries and allows a client to gain
access to additional objects it was not able to reach before. The Lookup
services in a federation can be in the same or different location domains. 

Lookup service can be used to build fault-tolerant systems. Replication is a
well-known concept in providing fault-tolerance and can be applied at two
levels using Lookup service. First, the Lookup service itself can be
replicated. Multiple instances of a Lookup service can serve to provide both
load balancing as well as fault tolerance. The Proxy pattern [GHJV] can be
used to hide the selection of a Lookup service from the client. For example,
several ORB implementations provide smart proxies [OMG] on the client
side which can be used to hide the selection of a particular Lookup service
from among the replicated instances of all the Lookup Services.

Second, the services and objects that are registered with a Lookup service
can also be replicated. A Lookup service can be extended to support
multiple registrations of objects for the same list of properties, e.g. the same
name, in the case of the CORBA Name Service. The Lookup service can be
configured with various strategies [GHJV] to allow dispatch of the
appropriate object upon request from a client. For example, a Lookup
service could use a round-robin strategy to alternate between multiple
instances of a transaction manager that are registered with it using the same



list of properties. This type of replication is used by Inprise [INPRISE] to
extend the scalability of their CORBA implementation called Visibroker.

Known Uses CORBA—The Common Object Services Interoperable Naming Service
and Trading Service implement lookup services. Whereas the query
language of the Name Service is quite simple, using just names, the query
language of the Trading Service is powerful and can suit complex queries
for components.

Java—The Java Naming and Directory Interface (JNDI) implements a
Lookup service by providing directory and naming functionality to Java
applications. Using JNDI, Java applications can store and retrieve named
Java objects of any type. In addition, JNDI provides querying functionality
by allowing clients to lookup Java objects using their attributes.

Jini—Jini supports ad-hoc networking by allowing a device offering
services to join a network without requiring any pre-planning, installation,
or human intervention and by allowing users to discover devices on the
network. Jini services are registered with Jini’s lookup service while these
services are accessed by users using Jini’s discovery protocol. 

COM—The Windows Registry can be seen as some kind of lookup service.
Clients know either the ProgId, the name and the version in some cases, or
the GUID (Global Unique IDentifier) of the component. The registry allows
then to retrieve the associated components.

DNS—The Domain Name Service is responsible for the coordination and
mapping of domain names to and from IP numbers.

Telephone Directory Service—The Lookup pattern has a real world
known use case in the form of telephone directory service. A person X may
want to obtain the phone number of person Y. Assuming person Y has
registered his/her phone number with a lookup service, in this case a
telephone directory service, person X can then call this directory service and
obtain the phone number of person Y. The telephone directory service will
have a well-known phone number, for example 411, thus allowing person
X to contact it.

Receptionist—Imagine someone is looking for another person, but just
knows the house where that person is living. However, the other person
does not live alone in that house. Now, if someone wants to talk to that
person, he/she will ring the door bell. People in the house hearing the door
bell ringing would know that somebody is at the door wanting to talk to
them. However, it may not be clear to whom the person wants to talk to. So
one of them, for example a receptionist, will answer the person ringing at
the door. The receptionist forms an access point for the person. This allows
him/her to ask for the person he/she is looking for and get a ’reference’ to
that person.



Consequences There are several benefits of using the Lookup pattern:

Availability: Using the Lookup pattern, a client can find out on demand
what distributed objects or services are available in its environment.

Independence: The Lookup pattern allows a client to be able to obtain initial
references of one or more distributed objects or services without relying on
other unknown distributed objects or services. The well-known
bootstrapping protocol allows the client to find the Lookup service and then
use it to find other distributed objects and services.

Location Transparency: The Lookup pattern provides location
transparency by shielding from the clients the location of the registered
objects and services. Similarly, the pattern shields the location of the clients
from the servers.

Configuration simplicity: Distributed systems based on a Lookup service
need little or no manual configuration, no files need to get shared or
transferred in order to distribute references to distributed objects. The usage
of a bootstrapping protocol is a key feature for ad hoc networking scenarios,
where the environment changes regularly and cannot be predetermined.

Property-based selection: References to distributed objects can be chosen
based on properties. This allows more fine-grained selection of services
including better matches between the client needs and the service offers.

There are some liabilities of using the Lookup pattern:

Single point of failure: One consequence of the Lookup pattern is the danger
of constituting a single point of failure. If an instance of a Lookup service
crashes, the distributed system can lose the registered references along with
the associated properties. Once the Lookup service is restarted, the
distributed objects would need to re-register with it unless the Lookup
service has persistent state. This can be both tedious and error prone since
it requires registered distributed objects to detect the Lookup service
crashing and then restarting. In addition, a Lookup service can also act as a
bottleneck and affect system performance. A better solution, therefore, is to
introduce replication of the Lookup service, as discussed in the variants
section.

Dangling references: Another consequence of the Lookup pattern is the
danger of having dangling references. The registered references in the
Lookup service can become outdated as a result of their corresponding
objects being terminated or being moved. In this case the Leasing pattern
[LEASING], as applied in [JINI] can help by forcing the objects to prolong
their ’lease’ regularly if they do not want their entry removed automatically.

Unwanted replication: Problems can occur when similar objects with the
same properties are registered but replication is not wanted. Depending
upon the implementation of the Lookup service, multiple instances of the
same object may get erroneously registered or one object may overwrite the



registration of a previous object. Enforcing at least one of the properties be
a unique identifier can avoid this problem.

See Also The Activator design pattern [ACTIVATOR] registers activated
components with a lookup service in order to provide clients references to
them. In many cases the references retrieved from a lookup service are
actually references to factories, implementing the Factory design pattern
[GHJV]. This decouples the location of components from their activation.
The Lightweight Directory Access Protocol (LDAP) is a protocol for
accessing Lookup services. It runs directly over TCP, and can be used to
access a stand-alone LDAP directory service or to access a directory service
that is back-ended by X.500.

Acknowledgements

We would like to thank our EuroPLoP 2000 shepherd, Bob Hanmer, for his
feedback and valuable comments. We would also like to thank everyone at
the writer’s workshop at St. Martin, Austria during our Siemens retreat as
well as the people of the writer’s workshop at EuroPLoP 2000 for their
comments and suggestions.

References

[ACTIVATOR] M. Stal, Activator Pattern, http://www.stal.de/articles.html, 2001

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling Language User
Guide, Addison-Wesley, 1998

[GHJV] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995

[INPRISE] http://www.inprise.com, 2001

[IONA] http://www.iona.com, 2001

[JINI] http://www.sun.com/jini, 2001

[LEASING] P. Jain and M. Kircher, Leasing Pattern, Pattern Language of Programs
conference, August 13-16, 2000, Allerton Park, Illinois, USA

[OMG] Object Management Group, http://www.omg.org, 2001

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented
Software Architecture—Patterns for Concurrent and Distributed Objects,
John Wiley and Sons, 2000

[TAO] The ACE ORB, http://www.cs.wustl.edu/~schmidt/TAO.html, 2001


