
© Copyright 2001-2006, Joseph Bergin Page 1

Coding at the Lowest Level
Coding Patterns for Java Beginners

Joseph Bergin
Pace University

jbergin@pace.edu
http://csis.pace.edu/~bergin

Introduction
Beginners who are learning programming make many mistakes. This is because they have little
experience and don't always get good guidance. If they look at a lot of programs we hope they will
emulate the style, but they don't always do this, and they don't always see programs that should be
emulated in any case. This is an attempt to provide advice to novices learning Java. Not everything
here is Java specific, however.

Some of the patterns have been written for this paper. Others have been collected from the literature.
The latter have been adapted to Java perhaps, but their originators are referenced.

Near the end we tell a story that can help you use these together.

Permission is granted to Hillside Europe e.V. to publish and distribute this paper as part of the
EuroPLoP conference proceedings.

The Principles
There are a number of reasons for the rules which follow. We will introduce some of them here.

The first is that our programs must be readable by people. Programs are not written just to
communicate with the machine. They are read by people far more often than they are by machines.
Real programs also tend to live for a long time and really valuable programs are read by many people
over a long period of time. The intent of the programs we write is not always obvious, so we need to
take care that we make it easy for an unfamiliar reader to learn what we intend in the program.

The second principle is that our programs must be maintainable. It must be easy to modify a program
to change what it does. This is because the problem for which the program was originally written will
evolve and change over time. This is most true for the most valuable programs, since these are used in
businesses whose needs evolve and change over time.

Additionally, programs must be reliable. We need to be able to trust them to do what is right and
helpful. We therefore need to use techniques that assure us that we don't introduce errors into the
programs we write.

There are other considerations such as overall performance of a system and the cost effectiveness of
our solutions. While performance is often over emphasized, nevertheless our programs must perform

© Copyright 2001-2006, Joseph Bergin Page 2

well enough to do the task they were designed for. Cost effectiveness implies that we don't waste
resources, including programmer time.

A Note on the Form
In this paper we use a form called modified Alexandrian form. Christopher Alexander is an architect
who was the inspiration for the idea of software patterns through his writings, especially A Pattern
Language (Oxford, 1977). The way we present material is a modification of his style. Each pattern
begins with a name. This is followed by a short description of the problem that the pattern addresses.
This discussion will include a number of "forces" that the users must consider to decide if the pattern is
appropriate in their current context.

The section beginning with a bold face Therefore... is the introduction to the solution. This is what you
need to do to apply the pattern correctly.

This may be followed by additional commentary giving additional information about the pattern and
how to use it. This will often include examples of the use of the pattern and what happens if you don't
use it. Occasionally examples also appear in the forces section to emphasize the need for the pattern.
We might also include references to related work and even contraindications to point to known
situations in which the pattern definitely does not apply.

Finally, the patterns are marked with 0-2 asterisks. These stars indicate our confidence that the pattern
is universal in some sense and whether or not it captures real truth. Two stars says that the author
thinks that something fundamental has been captured. Zero stars indicates a complete lack of such faith
and in fact an assurance that things could be done better.

The Patterns
There are several different kinds of patterns here. Planning patterns help us think about the
programming task as a whole. Stylistic patterns help your programs look nice and make them more
readable. Design and Structural ones tell how to structure your code to aid maintainability and safety.
Maintainability patterns help us write the code so it can be easily changed as the problem it solves
evolves. Safety patterns help us prevent errors. Implementation patterns help us implement other
patterns, such as the way in which Method Object helps us implement Composed Method. There are,
perhaps, other classifications that will be developed as this paper grows.

Here is an alphabetical list of the patterns.

• Assign Variables Once (Design)
 Immutable Objects

• Be Spacey Not Tabby (Maintenance)
• Brace All (Stylistic)
• Braces Line Up (Stylistic)
• Comment (Only) When Necessary (Maintenance)

 Don't Repeat Yourself
 Express Your Intent
 Javadoc Public Methods

• Complete Interface (Design)
 Let the Client Recover
 Separate Levels of Concern

• Composed Method (Implementation)
• Consistent Capitalization (Stylistic)
• Consistent Naming (Maintenance)
• Function For Complex Condition (Structure)

© Copyright 2001-2006, Joseph Bergin Page 3

• Indent for Structure (Stylistic)
• Initialize (Safety)
• Intention Revealing Name (Maintenance)
• Local Variables Reassigned Above Their Uses (Design)
• Locals (Only) When Needed (Design)

 Save Your Names
 Don't Recompute

• Logical Interface (Maintenance)
• Method Object (Implementation)
• Name Your Constants (Maintenance)
• One Service Per Class (Structure)
• One Statement Per Line (Stylistic)
• Optimize for Readability (Maintenance)
• Pair Programming (Maintenance)
• Piecemeal Growth (Planning)
• Polymorphism Before Selection (Structure)
• Private Fields (Safety)
• Public Features First (Stylistic)
• Rewrite (Planning)
• Say "this." (Maintenance)
• Say It Once (Structure)
• Short Lines (Maintenance)
• Short Method (Structure)
• Spell It Out (Maintenance)
• Strong Encapsulation (Safety)
• Test Everything Now (Safety)
• Time on Task (Planning)

Other Java Idioms (http://c2.com/cgi/wiki?JavaIdioms). Some of the idioms here repeat or
reinforce what we say here. Others go beyond it.

Starting
(1) Pair Programming (Maintainability)**
Programming is hard. It is easy to make mistakes and to overlook details. You want your programs to
be of very high quality. Two minds are better than one. Teamwork is highly valued in the workplace,
and it needs to be practiced.

Therefore, work in pairs using the following technique. Two programmers sit at the same
screen/keyboard. One has control of the keyboard at any given time, but this control shifts back and
forth. The one with the keyboard is typing in changes/updates to the existing code. The other is
watching and thinking about whether it works, what tests you would need to execute to verify that it
works, looking for small and large errors, and suggesting alternatives. If you think you have a better
way to do something suggest it or ask for the keyboard to enter it yourself. Both members of a pair
need to be totally engaged in the task and in each others thought processes.

The above focus on the actual programming part. You can also work in pairs to break a large project
down into small parts. The parts should be small enough that each can be done by the pair at the
keyboard in an hour or less. This includes time to test what you have done as well as write it. The parts
can be written down on 3 by 5 cards and you can work from these at the screen. You can make notes
on these about difficulties you encounter. You can also use these to record time estimates and time
actuals. (See Time on Task).

© Copyright 2001-2006, Joseph Bergin Page 4

There is evidence that two programmers working together get more quality work done in a given time
period than two programmers working alone and then integrating their work. The important word here
is quality.

Note to students: Only use this if your instructor approves. Many places this will be considered
dishonesty. When in doubt, ask. Also, be fair in your use of the technique. Don't dominate the
keyboard. Don't fade into the background and let your partner carry the load.

Note to instructors: You would be wise to enable this in your courses. Your grading may need to be
different in order to make it so, but there are fairly simple techniques for this. For example, you can
pair students differently on different projects and even though you give the students in a pair the same
grade on each assignment, the better students, doing better work generally, will still rise to the top.
Team work generally is highly valued in the workplace. This can also help the weaker students, as they
have an easy way to get their questions answered. The pair exercise is almost a tutorial in some cases.

(2) Time on Task (Planning)**
In the real world, you will need the ability to quickly estimate how long it will take you to perform a
given development/programming task. Most software development methodologies depend on this
ability. This is a skill that can only be learned with practice.

Therefore, whenever you are given a development project by an instructor estimate how long it will
take you to do it before you begin and then measure and record the time as you proceed. Keep a
permanent record of the tasks, estimates, and actual times in a notebook that you use just for this
purpose. You need the tasks recorded so you can look back when you get a new project to see if it
seems to have a similar difficulty to one you worked on previously.

You need to keep a permanent record that you can refer to when estimating in the future. The
difference between estimates and actuals should improve over time, but you can use these differences
in other ways as well. If you are given a new task that seems about as hard as one you have done
before, you can use the old actual time as the estimate of the new project. If your differences stay fixed,
you know how optimistic or pessimistic you are in estimating.

Be honest with your estimates and be accurate with your actuals. This is only for your use.

Estimating is hard even with practice. It is easier to estimate small things and add up the estimates than
it is to estimate big things. Therefore when you are estimating, break up the task at hand into small
pieces that you can build one at a time and estimate these instead of trying to estimate the whole task.
Record the individual times and the breakdown into tasks.

At the end of each project try to say why you differ between estimated and actual time and record this
in the notebook as well.

See [PSP] for more on this idea and many other ideas for improving your Personal Software Practice.

(3) Piecemeal Growth (Planning)**
Large programs are hard to write correctly, especially in one go. It is easer to modify a good small
program into a better and bigger program than it is to write the bigger program from scratch.

© Copyright 2001-2006, Joseph Bergin Page 5

Therefore, if you need to write a large program, consider what small program inside it you can get
working first.Then expand on that core until you have the whole job done. The first piece can be fairly
large or not, but it should be useful by itself. What small part of your overall program is the key to the
problem as a whole?

Piecemeal growth is actually the key thing that object-orientation enables. It is much more important
than reuse. It is easy to add classes to projects, especially when those classes add new services. So, start
with the key services needed in your program and implement these. Even if you first write only the
simplest cases of the key services you will have made an important start. More sophisticated versions
of the first services you write might be developed through inheritance, or maybe not.

It is useful if the first part you write is the most important or most critical part. In large projects it is
useful to work in the order of "value to the client", with the most valuable parts done first. This way the
client has useful functionality early.

For more on getting started, see Kent Beck's Early Development pattern language on the wiki at:
http://c2.com/ppr/early.html. You can learn more about an important new development methodology
called Extreme Programming that depends fundamentally on this idea at
http://extremeprogramming.org/ and at http://xprogramming.com

Designing
(4) One Service Per Class (Structural)**
A program is easiest to maintain when it is made up of small, simple parts. The more complex a part
gets the harder it is to understand and maintain. Classes can often best be thought of as defining
services for the users (clients). The public methods of the class define the services.

Therefore, give each class one job to do; one service that it presents to its clients.

This doesn't mean just one public method. It might require several. For example, a Symbol Table in a
compiler needs methods to insert information and to retrieve information. But it has just one job. It
serves as a repository for information about the programmer defined identifiers in a program.

(5) Polymorphism Before Selection (Structural)**
Good object-oriented programs actually use relatively few if statements and very few switch
statements. This is because polymorphism, both that provided by inheritance, and in Java, that provided
by interfaces, provides a better, cleaner, and more maintainable way to make decisions in your
programs.

Therefore, organize your code so that most decisions are made via the polymorphic nature of the
system, not with if and switch statements.

You need to be aware, however, that only methods are polymorphic. While Java will permit you to
define a field in a subclass that has the same name as a field in a superclass, doing so is almost always
wrong. It results in two variables with the same name and the type of the reference is used to choose
which will be used--even by a polymorphic method. This will usually result in very hard to find errors
in your programs if you have polymorphic methods that refer to these variables. The fact that Java
permits it is probably a flaw in the Java design, actually.

© Copyright 2001-2006, Joseph Bergin Page 6

See also the similar advice in http://c2.com/cgi/wiki?InheritDontBranch

See also Selection(http://csis.pace.edu/~bergin/patterns/Patternsv4.html) and Polymorphism
(http://csis.pace.edu/~bergin/patterns/polymorphism.html). Examples and commentary can be found in
the following notes.

[Bergin and Winder] Understanding Object Oriented Programming
(http://csis.pace.edu/~bergin/patterns/ppoop.html)

[Bergin] Moving Toward Object-Oriented Programming and Patterns.
http://csis.pace.edu/~bergin/patterns/persongender.html

(6) Logical Interface (Maintainability)**
A program is most adaptable if it is can easily be thought of and read in the terms of the problem it
solves, rather than the solution it provides. When you write a class you do so to solve some problem,
and you use some internal implementation to represent the solution. If the only way to understand the
class is to think of it as manipulating the implementation you will too often need to get mired in detail
of the state changes. If, however, you can consider it in terms of the services it provides to clients and
in the terms of the original problem, it is more likely that you can take an overview that obscures the
detail so that you can get the "big picture".

The interface of a class (its public methods) gives the best overview of the class and what it does. This
is the set of services it provides to its clients.

Therefore, the interface of your class should define its logical services, not its implementation. If your
public methods consist (largely) of accessors and mutators for individual fields, you have probably not
adhered to this rule.

In particular, if you have "designed" a class by first deciding what fields it needs and then providing
accessors/mutators for these, you do not have the basis for a maintainable program. The client must
then think in terms of your implementation, not in terms of the logic of the application. Worse, if the
implementation changes, you will be tempted to change the mutators/accessors also, since you have
developed this mind set about design. Then the client code will also need to change. This will perhaps
result in further changes that will propagate throughout the code. This is a maintenance nightmare.

In Java, the interface of a class can actually be a Java interface. If you design this way, you will be less
likely to fall into the implementation first trap.

Sometimes the best way to proceed is to examine how a typical client will need to interact with the
class you are developing. You might even write some test code that the client might incorporate. This
can give you a guide to a logical interface. The client won't want to know about the internals of your
class and will want to express things in its own terms. However, don't try to anticipate all client uses or
you may build something that is too specialized. In extreme programming such test code, written
before the class is developed, is a fundamental part of the methodology. See
http://extremeprogramming.org for example.

© Copyright 2001-2006, Joseph Bergin Page 7

(7) Complete Interface (Design)**
When you write a class, its public methods define the services that this class provides to its clients. If
clients find that there is some aspect of this service that they don't have access to, then they will be
frustrated and will look elsewhere for solutions.

Therefore, provide a set of public methods in your class that permits the client software to perform all
legal transformations. Make sure that the clients will have access to all needed aspects of this service
(but nothing more).

For example, suppose you are writing a Stack class (not really needed in Java, which has a complete
one in java.util). You know about the push and pop methods of course, as these define a class. A top
(or peek) method that retrieves the top element in the stack without altering the stack contents is also
very useful. However, critical to the correct use of a stack is the isEmpty predicate by which the client
can know if a pop is legal. Without this the processing using the stack will be awkward at best, with the
client always needing to keep track of something so that a pop isn't issued in error. Likewise if the
stack contents are bounded (such as with an array implementation) you also need an isFull predicate.

You should also be aware of the needs of every class if it is to act smoothly within the Java system.
There is a Java Canonical Class Form that describes what needs to be implemented in ANY Java class.
See http://csis.pace.edu/~bergin/patterns/CanonicalJava.html

A consequence of this rule is that you also need to consider what to do when the client does issue an
instruction that cannot be carried out. Usually the worst thing you can do is to write a message to
System.out. There are many reasons for this. First is that you limit where your class can be used to
code in which writing to output is possible and appropriate. A pacemaker probably needs a stack in its
software, but doesn't have a printer or screen attached so that you can see these messages. What would
the pacemaker wearer do if there was such a device and a message showed up on it that said "Stack
Underflow"? More importantly, simply writing to System.out doesn't let the client that sent the
improper message recover from the error.

Part of the complete interface of any class involves the ability of the client to recover from errors.
Writing to System.out does not permit this to happen. In the case of trying to pop an empty stack in
Java the correct response is to throw an Exception (a new NoSuchElementException, perhaps). Then, if
the client is using an algorithm in which this situation cannot occur, there is no cost. But if the client is
at risk of an "underflow", then he or she can anticipate this by catching this exception in a try block and
take appropriate action. The key message is that the Stack code itself can't anticipate what will be the
correct response to an error in every case, so must make it possible for the client to make this
determination.

This also requires that separate levels of concern (here normal processing vs. error processing) be
handled with different mechanisms, perhaps. Here exceptions are recommended for error processing.

However, this does NOT mean that every instance field of the class needs an accessor and mutator.
This does not lead to good (or even adequate) design. See Logical Interface.

(8) Strong Encapsulation (Safety)**
If you reveal, through your accessor methods, the implementation details of your class, a client can
take improper advantage of the knowledge, perhaps making it impossible to maintain invariants and
certainly making a change in implementation difficult and costly.

Therefore, don't reveal the details of your implementation, even indirectly.

© Copyright 2001-2006, Joseph Bergin Page 8

Generally this means that the accessors of your class should not return references to the variables used
to implement the class.

The most common example in which revealing implementation appears is when the service provided
by the class requires that (perhaps among other things) it serve as a container for values. The clients
need to access the things that are contained. You may choose to use a Vector as the container
mechanism. Then, to provide clients access to the values, you have an accessor that returns the vector.
This is poor practice for two reasons. Most important is that you lose control over what is in the Vector
as any client can access it and modify it. Also, you lose control over changing the implementation to
something else, like a Hashtable once clients take advantage of the fact that it is known to be a vector.
Instead, you should return an Iterator or Enumeration over the Vector. Note that a Java 2 Iterator may
actually not be safe to return, since it implements a remove method. Thus a client getting an iterator
into an encapsulated Vector, could remove elements from it while iterating over it. This has the
potential to invalidate your class invariants. In Java 2, however, you can return an immutable version
of any container. This will give access to the contents but will prevent modification.

A general solution in situations like the above, is to define a Java interface for the thing returned
(Enumeration is an interface, by the way). Then have the accessor return type be this interface. You are
then free to implement with any class that implements this interface and your clients are free to take
advantage of all of the methods defined in the interface, but nothing more.

For more on this, and an even stronger recommendation. See the Law of Demeter.
http://c2.com/cgi/wiki?LawOfDemeter. What we have done here is not the Law of Demeter, but a
consequence of it.

Notice that the same thing can happen if you pass an object into a constructor and the constructor saves
a reference to that object in a field. Remember that the code that called the constructor has a reference
to that object and can still modify it. If this is a problem, you should clone the object passed in and save
the result instead. You can find a discussion of thse issues on Wiki at:
http://c2.com/cgi/wiki?ReturnNewObjectsFromAccessorMethods

On the other hand, if the essence of a class is to define a container, then almost certainly it should be
able to return the objects that it contains using some method. Stacks for example return their elements
when popped. They don't return clones of the elements.

Getting Ready To Program
(9) Rewrite (Planning)**
Your programs are a kind of literature. They will be read by many people. If they are important and
valuable programs they will live a long time and be read by many, many people. They will become the
basis of a small industry. Literature is never created in one go. Authors rewrite constantly to achieve
beauty and clarity of thought and expression.

Therefore, plan on rewriting your program several times. Rewrite it at least once before you show it to
anyone.

And read it between rewritings.

Think about how it reads. Think about the names you have used. Do they convey the appropriate
concepts. Are your algorithms clear? Correct? Have you the appropriate comments to express your
intent? Does it look good on the screen and on the printed page?

© Copyright 2001-2006, Joseph Bergin Page 9

Would you be proud to have your name associated with it? To show it to your mother?

It has been said (Dick Gabriel) that all successful large programs grew out of well written and designed
small programs.

Note that there is a formal notion of rewriting called refactoring. You can read more about this at
http://extremeprogramming.org/rules/refactor.html

(10) Optimize For Readability (Maintainability)**
Also Known As: Optimize Later or even Don't Optimize.

Programs need to be correct before they can be fast. If they are to be correct, they usually need to be
readable. If they are not clear to the reader, the reader will not be able to verify correctness. The more
readable you can make your programs through naming, structure, correct use of comments and even
formatting, the more maintainable they will be.

Therefore, make your code as clear and correct as possible, not as fast as possible.

Nearly everything you do to make a program fast, other than the choice of a good algorithm, will also
tend to obfuscate it. A program that is faster than it needs to be has wasted other precious resources
(programmer time, clarity,...).

Occasionally you will find, when nearing the end of a project, that it isn't fast enough. In this case get a
good program profiler that will tell you where it is spending its time and optimize only where the
bottlenecks are and only as needed. Comment liberally in this case, perhaps leaving the original code in
place (as comments) so that the next programmer on the project can see the intent.

Sometimes the best way to get better performance out of a program is to buy more or better hardware.
This will make all programs run faster, not just the one being developed now. This won't help you if
you are using an exponential running time algorithm when a faster one is available, but it can easily
halve the running time of most algorithms.

Also see: http://c2.com/cgi/wiki?OptimizeLater

I first saw this in a book on Fortran by Henry Ledgard. It is supposedly due to Dijkstra ("Optimization
is the root of all evil.")

Also note that modern compilers for languages like Java are much better at optimization than you are.
Often a clear program, simply written, can be a better base for compiler optimization than one that tries
to be clever and fast. This is because of both the speed of modern machines and the sophistication of
modern compilers. A compiler can make tens of millions of decisions about how to optimize your
program in just a few seconds. This is more than you can do yourself. Java has been called an excellent
language for optimization, though current compilers for Java can be greatly improved.

The standard java interpreter has a profiling option (-prof) that you can use to find out where the
program spends its time.

© Copyright 2001-2006, Joseph Bergin Page 10

(11) Intention Revealing Name (Maintainability)**
It is helpful if our programs read naturally and don't need excessive documentation to understand them.
One of the things that the programmer has most under his or her control is the names used to denote
things. If names are correctly and carefully chosen our programs will read quite naturally and be almost
like poetry.

Therefore, all of the names in your programs (variables and parameters, classes, methods) should
denote the purpose of the item they refer to.

In creating a name, especially a method name, think how the name will look when used. Often long
names, catenating many words are best, but this can be over done.

Flag (boolean) variables should be named for the condition they represent. Variables should be named
for the objects they represent. In Java, the name does not usually include the type of the variable,
though it might. And NEVER name a flag flag.

Stack myStack = new Stack(); // Poor name. How is myStack used? Stack
expressionStack = new Stack(); // Better. It will be used to hold expressions.

Keep a thesaurus by your keyboard to help you choose good names. See
http://c2.com/cgi/wiki?SystemOfNames for more on this important idea.

Also see the Consistent Naming pattern, below.

Special rule for visibility. The more visible a thing is the more care needs to be taken with naming it.
For example, package and class names have wide visibility. They need to be carefully named. The
names can be quite long. Local variables in (short) methods are visible over only a few lines of code.
These names are not as important, but not unimportant. A simple indexing variable over an array of
Vector might be just "i" if the loop used is short. Beyond that, think about the meaning of the thing the
name refers to and choose accordingly. Even local names visible over a few lines of code can help the
reader understand the intent of the code if the names are well chosen.

Special rule for parameters. Always take special care in naming parameters of your methods. The user
of your class will depend on these to help understand what the method does. This is especially
important when the method has more than one parameter of the same type. If you have several methods
in your program that take the same kinds of parameters, then develop a style for which will come first
and stick to your style. For example, if several methods manipulate a bank account that is passed in as
a parameter, you might decide to always put this parameter first.

Special rule for accessors (getters) and mutators (setters). Accessors are methods that retrieve
information from an object. Mutators send information to an object that they somehow retain for later
use. The simplest case is when an accessor gives us the value of a field, for example. A poor style has
developed lateley that we don't like to see. That is naming accessors by preceeding the thing to be
accessed with the word "get.". For example, to access foo, some will define a method getFoo().
Likewise mutators are often prefixed with "set." This is a terrible style and leads to stilted reading of
programs. You don't walk up to a new acquaintance and ask "John, what is your get last name?" or
"Mary, what is your get income?" A function returning information should be named with a noun
describing the information, not a verb phrase as in getName. See Consistent Naming. (Note that
setName is not so objectionable, but if your accessors and mutators are simply getting and setting
intance variables, you should probably rethink your design. You may not have an interface at the right
level of abstraction. See LogicalInterface.)

Special rule for Java Beans. Unfortunately, Java Beans suggests that you prefix your accessors with
get and your mutators with set. If you are writing Beans, you may want to do this. However, not
everything needs to be a Bean, and in fact few programs need to be built with a Bean (Component)
architecture, though those that should be are very important. Also, you may use a BeanInfo class to

© Copyright 2001-2006, Joseph Bergin Page 11

define the accessors and mutators of a bean even when they have more suitable names than get... and
set... Learn about BeanInfo if you are writing beans.

Special rule for the results of casts. Another special circumstance arises in Java. You sometimes have
a variable of a given class. You somehow check and find that the variable actually refers to a value
from a subclass so you can safely cast the variable. What do you call the resulting cast value? One
convention is to choose a good name indicating the intent and then use a prefix of "checked" to indicate
that the new reference resulted from a checked cast. For example, in the following, we cast the item
retrieved from the Stack to an Expression knowing that we put only Expression objects into the stack.
In the first fragment we have used the "throwaway" name temp which is not very good, event though it
is temporary.The word temp is too generic.

private void generateCode(LinkedList expressionStack)
{ ListIterator expressions = expressionStack.listIterator(0);

while (expressions.hasNext())
{ Expression temp = (Expression) expressions.next();

temp.checkType();
 temp.generateCode();
 }
}

Contrast the above fragment with the equivalent one which follows.

private void generateCode(LinkedList expressionStack)
{ ListIterator expressions = expressionStack. listIterator (0);
 while (expressions. hasNext ())

{ Expression checkedExpression =
 (Expression) expressions.next();
 checkedExpression.checkType();

checkedExpression.generateCode();
 }
}

Flags (boolean variables) should never be named flag. Variables should never be named variable.
Methods should never be named method.

This pattern comes from Kent Beck [SBPP]

(12) Consistent Naming (Maintainability)*
What we name things in our programs greatly affects their readability. If a program is not easily
readable, it can be painful to debug and modify. The language structure of the programming language
we use as well as the language structure of the natural language (English,...) we use should be our
guide to making programs readable. When you name something it is useful to consider how it will be
used and how it will appear when used and sound when read aloud.

Therefore, use a consistent style for naming the things in your programs. The suggested standard is:

• Classes should have singular nouns for names: Stack.
• void methods should have verbs (or verb phrases)for names describing what they do:

openFiles().
• boolean methods and variables should have verb phrases using the verb "to be" and variations

as the initial word: isFinished().
• Other non-void methods should have nouns (or noun phrases) for names describing what they

return: sizeOfFigure().

© Copyright 2001-2006, Joseph Bergin Page 12

• non-boolean variables should have noun (or noun phrases) for names describing what they
represent: age.

A consequence of this is that accessor methods will not be named get..., etc.

(13) Public Features First (Stylistic)*
When you write a class, the most important use of the class description itself will be reading by other
programmers who wish to use your class. They can only use the public features. The private (and
protected) features are more specialized and are part of the implementation. It is awkward to have to
read through things you don't need and can't use to find the things of use to you.

Therefore, list the public parts of your class first, and the private parts last.

Note that in Java, you don't need to define something before you use it, so there is no need to ever
break this rule.

If you Javadoc your public classes and methods, then this becomes much less important.

(14) Private Fields (Safety)**
If your class fields are not private you won't be able to guarantee the maintenance of class invariants.
This is a major cause of problems in large projects.

Therefore, all of your fields should be private. Provide protected accessor functions when necessary.

Remember that in Java, protected opens visibility (beyond the default package visibility), it does not
restrict it. Subclasses within the same package will be able to see default visibility fields and methods.
Protected opens visibility to those subclasses defined outside the current package. Sometimes it is
appropriate for all code to be inside the package. In which case you don't need or want anything
(except Main) to be public. Other times (library code) you want to provide services for other packages.
Then you will need public and possibly protected methods. But your fields should always be private.

(15) Initialize (Safety)*
Every variable needs to have a value before you can use it. Java is very good about requiring this. Java
even initializes some things for us automatically. Java also permits fields of classes to be initialized as
part of their declarations, making constructors unnecessary for many classes. You want to think about
what value each of your variables should begin with.

Therefore, when you declare a field or local variable, initialize it immediately.

Java permits quite sophisticated code to be executed as part of variable initialization. For example you
can send messages to various objects as part of initializations. Take advantage of this and initialize as
part of declarations, rather than in your constructors.

For example, the following are equivalent.

© Copyright 2001-2006, Joseph Bergin Page 13

class Container
 { public Container()
 { this.size = 0;

}
...
private long size;

 }

We prefer the next form, however, since it initializes in the declaration. Here we don't even need the
constructor.

class Container
{ ...

private long size = 0;
}

(16) Test Everything Now (Safety) **
You want your code to be correct. You know you will change things. You also know that changes to
one part can affect other parts as well. So, you want your code to be correct now and want it to remain
correct in the future. You also know that over time you will forget decisions you make now about your
code, and that there is too much detail in it anyway to remember it all for very long.

Therefore, when you write any code, write a test for it as well. Write this test when you write the code
or even before.

You can either use a testing framework or you can just put a main in every class you write and put your
tests into the main. Then when you want to run the tests for a class, you can just run java naming that
class.

There are testing frameworks available for most languages. These are relatively easy to use with
practice and have the advantage that they aren't included in your code itself, so a bug in the test won't
mean a bug in the code. See http://c2.com/cgi/wiki?TestingFramework. For Java see http://junit.org.

Every non-private method in every class should have a test. These are called unit tests. They don't test
the overall correctness of your program, but they test that invariants and other assumptions hold.
Anything that can break should have a test.

Sometimes you feel foolish writing a test for a one line method. Indeed it seems so when you write it.
However, after the program changes a bit it won't seem so foolish anymore. Especially when the test
breaks. When it does, something needs fixing. Maybe you added something inconsistent with old
assumptons. Maybe the needs have changed and the old code is no longer appropriate.

If you write a test for a method before you write the method, your code won't compile. However, you
have designed the interface for that method in order to write the test. Then you can write a "stub"
method that has that interface but an empty body. Now it will compile, but the test will fail. Now write
the simplest code that will make the test pass.

Programming without testing is like bungee jumping with worn out equipment. Eventually you crash.

If this still feels awkward to you, read http://www.objectmentor.com/publications/xpepisode.htm.

© Copyright 2001-2006, Joseph Bergin Page 14

(17) Assign Variables Once (Design)*
Your programs will usually have several variables. At any given point in the program several may be in
play at once. This makes it hard to understand what is going on at times since you don't know what the
current values of your variables are. Your computations depend on the values, of course. If you execute
the same statement several times (in a loop, for example) a variable may have a different value each
time. This can make it hard to reason about the correctness of your programs. Especially when there
are lots of variables that "vary."

Constants, on the other hand are easy to reason about since they always have the value they were
defined with. Our programs can become much easier to reason about and hence understand if we have
to consider a minimum of data that actually varies.

Therefore, once you have given a variable a value, do not change it if at all possible. The value should
preferably be assigned when the variable is declared. If possible, make them final so that the system
will enforce this rule for you.

A corollary to this rule is that Immutable Objects are a good thing. An Immutable is an object whose
class will not permit it to be changed after it is constructed. This means the class must provide a
constructor that provides values for all fields of the object and further, the class defines only private
fields and no mutator methods for the fields. Once you create such an object and give it a "value," it
always has that same value. Such objects are easier to reason about than objects that can change their
state. An immutable object is like a structured constant.

Immutable objects are especially valuable when the program uses concurrency, since two threads can
safely share references to an immutable without synchronization.

This pattern is from Gabriel's Simply Understood Code. On the Wiki, see
http://c2.com/cgi/wiki?ImmutableValue

Of course, not every value can be immutable. Loop counters, for example only work because they
CAN change. Likewise many of our objects are useful only because they encapsulate mutable state. An
Employee class in which you could never change the currentSalary would not be very useful in most
applications. However, not every class needs to be mutable.

(18) Short Method (Structural)**
People have a limited attention span and a limited ability to deal with simultaneous detail. If methods
are short a person can read and usually understand them quite easily. If they are short and clear they
may not even need to be commented for the intent to be clear.

Therefore, your methods should usually be short. Ten lines is actually quite long.

This is easiest to arrange if each of your methods does only one thing. It may take a few statements to
do that thing, but usually one task per method is the right idea.

There are only a few exceptions to the use of this pattern. If the logic of the method is all sequential (no
if, while,...) and if it is doing the same thing to a sequence of data (initialization sequences for
example), then you may not need or want to apply this pattern.

On the other hand, if your method is long because it has a switch statement with lots of options, you
should really see if you can't use polymorphism to make the switch go away altogether. See
Polymorphism Before Selection.

© Copyright 2001-2006, Joseph Bergin Page 15

(19) Composed Method (Implementation)**
You are writing a method and it is getting long. You realize it should be a Short Method. Often it does
several things, though they may be related to each other.

Therefore, break up long or complicated methods into parts. The parts are implemented as private, or
possibly protected, methods. The original method becomes a sequence of method calls to the parts you
have factored out.

The information that a factored part uses become the parameters of the new method.

Each part that you factor out needs to stand alone on its own. You need to be able to give it a short and
descriptive name.

Factoring out loops into separate methods is also a very good idea. (This is mentioned in Gabriel's
Simply Understood Code also.)

If the factored methods are protected rather than private, you will give yourself opportunity for
specialization and hence polymorphism in subclasses. This is worth remembering when you are
deciding what to factor. What might change in a more specialized subclass?

[Beck SBPP] and on Wiki at: http://c2.com/cgi/wiki?ComposedMethod

(20) Method Object (Implementation)*
You are trying to factor a long method using Composed Method. However, one of the sections that you
want to factor out into its own method requires a large number of variables since it uses a lot of
information. This would result in a new method with a large number of parameters. If there is a lot of
this then the final composed method would be hard to follow.

Therefore, apply the following process to break up the long method.

1. Create a class to represent the section of the original method that you intend to factor out. The
class needs a method called compute, with no parameters. The class will have one private
field for each piece of information that is needed by the section of code that you are factoring
out. It may need an additional parameter for the "this" of the original method if that is used

2. The constructor of the class will have one parameter for each of its fields. That is, the
constructor will completely initialize the objects it defines.

3. The section of the original that you factor out becomes the body of the compute method of the
new class.

4. The section of the original method now becomes the creation of an instance of this new
method object and a call to its compute method.

5. Now you may use Composed Method on the new compute method itself to get a better
factoring. These new factorizations become additional (private) methods in the new Method
Object class.

The compute method, of course, has access to all of the fields of the object, hence to all of the
information needed. The same will be true of the parts if you are able to apply part 4 of the rule.

© Copyright 2001-2006, Joseph Bergin Page 16

However, applying this pattern will increase the runtime complexity of your program. This will not
matter much unless it is used extensively. Use it if it helps increase clarity but be prepared to go back
to an earlier point if you later learn that it impacts performance.

[Beck SBPP] and on Wiki at: http://c2.com/cgi/wiki?MethodObject

Note that in C++ this is known as Function Object and is fundamental to the Standard Template
Library.

(21) Comment (Only) When Necessary
(Maintainability)*
Program language notations (code) is often too small scale and fine grained to clearly indicate the
intent of the programmer. Programming languages therefore provide a mechanism with which the
programmer can insert natural language comments into the code to document this intent. Comments
can be helpful or they can get in the way.

If your comments simply restate what the code says they are worthless. If your comments say
something different from what the code says, they are less than worthless. If the code and the
comments disagree they are probably both wrong (proverb). And remember that the code will change.
Your comments can, however, say what the intended meaning of the code is supposed to be. They can
help a reader adopt the correct mind set for examining the code and can also help a reader skimming
the code understand it overall.

Therefore, make your comments indicate the intent of your programs.

The kinds of comments that are generally always useful are pre- and post-conditions on methods and
invariants on classes. However, there are also important technical replacements for such comments.
Both assertions and Java Exceptions can provide executable guarantees that your pre- and post-
conditions are met.

For example, if you build a Stack class, and it has a pop method. Then a pre-condition for this method
is that the stack is non-empty. This means that the client that uses the Stack must assure that the stack
is non-empty before calling the method. On the other hand, the push operation has a post-condition that
the stack is non-empty. This means that when the push operation terminates it guarantees that the stack
is not empty.

For example, if you build a linked list class, its invariant is that every list is always properly
terminated, either with null or with an equivalent null-object. A property is invariant if no public
method will ever terminate with the invariant false, assuming the method was called under conditions
in which its preconditions were true.

The following comment is worthless.

i++; // Increment i

The following is better.

i++; // Increment the card counter.

The following needs no comment (See Intention Revealing Name) and is therefore best.

cardCounter++;

© Copyright 2001-2006, Joseph Bergin Page 17

This last example indicates that often the names you choose in your program are the best comments of
all.

Usually comments on every line of a Java (or similar language) program are not a good idea. They may
be needed for languages like Assembler, however.

A comment at the beginning of a method or class detailing the intent of the code and any special needs
is often useful. Likewise, if the code implements a well known algorithm (quick sort) then it is good to
name the algorithm. Even better would be to have the name of the method capture all needed
information.

One very useful way to comment a class and its public methods is to use Javadoc. These comments can
be extracted into web pages (HTML) that can give the users of your class all the important information
they need to utilize it. Here is a Javadoc example.

The name of this pattern indicates that it actually has two parts. Comment when you need to say
something that you can say more clearly than the code. Don't comment if you can make the code clear
enough by itself to be easily understadable without the comments.

(22) Say It Once (Structural)*
If you have to repeat the computation of something in your program you are both wasting your time
and also building in opportunities for errors. When something that should be said once is said more
often, then the opportunity occurs that the multiple expressions will become insonsistent with each
other as the program grows and is modified.

Therefore, say each thing in your program just once.

To do this well, your program will be made up of lots of little pieces. Probably your classes will be
small and certainly your methods will also be small.

If you find yourself rewriting some code that looks familiar, see if it already appears in your program.
If it does, see if this code can become a method of some appropriate class, or the foundation for a new
class.

Object-orientation and especially polymorphism helps with this. In procedural programming conditions
normally have to be repeatedly tested to determine what to do. As the program grows these tests need
to be re-written. In well written object-oriented programs, polymorphism is used instead of these tests
and the different behaviors are built into different objects, each adhering to this rule.

I think this is due to Beck. See the Wiki: http://c2.com/cgi/wiki?OnceAndOnlyOnce

Note that this principle applies to computations that are necessarily the same. It does not mean that
every use of x++, for example, has to be collected together, of course. Things that are only accidentally
the same should be separate. Things that need to be the same should be said once and only once.

However, in very large projects (many people, many components) it may be difficult to apply this
efficiently. It may even be difficult to find that something has already been said before.

Coding

© Copyright 2001-2006, Joseph Bergin Page 18

(23) Indent for Structure (Stylistic)**
You are writing a structured statement using these (or other) patterns. You want to write readable code.
In particular you want to indicate to your reader what the individual parts of your structure are.

The eye is good at grouping things. It is probably better at this than the mind is.

Therefore, the parts of a structure should be indented from the keywords and punctuation symbols that
define its structure. All of the statements at the same level of the structure should be indented exactly
the same amount.

Don't indent too much or you waste horizontal real estate. Don't indent too little, or the eye won't see
the structure. See the code fragments above for examples of the use of this pattern. Also compare the
following.

Too much indentation. Losing real estate fast. If the lines are long then you won't get to see the right
ends of the lines properly.

if(reactorOK()) // Too much. Losing real estate fast.
{ if(transmissionOk()

{ fullPower();
 }

else
{ reducedPower();

 }
} else
{ shutDown();
}

Too little indentation. The eye can't line up the structure if the sections are long.

if(reactorOK())
// Too little. Eye can't line up if sections are long.
{ if(transmissionOk()
 { fullPower();
 }
 else
 { reducedPower();
 }
}
else
{ shutDown();
}

Just Right.

if(reactorOK()) // Just right.
{ if(transmissionOk()

{ fullPower();
 }
 else
 { reducedPower();
 }

}
else
{ shutDown();
}

© Copyright 2001-2006, Joseph Bergin Page 19

It is important that within a structured statement that all of the statements are indented the same
amount. Consider the following two samples.

private void putForks()
 { pickBeeper();
 pickBeeper();
 turnLeft();
 move();
 putBeeper();
 turnAround();
 move();
 move();
 putBeeper();
 turnAround();
 move();
 turnRight();
 showState("Think ");
 }

Contrast the above fragment with the equivalent one which follows.

private void putForks()
{ pickBeeper();
 pickBeeper();
 turnLeft();
 move();
 putBeeper();
 turnAround();
 move();
 move();
 putBeeper();
 turnAround();
 move();
 turnRight();
 showState("Think ");

}

The second sample indents consistently. The first is harder to read. (This example comes from "Dining
Robots" in Karel J. Robot.)

[Bergin: Selection]

(24) Brace All (Stylistic)**
You are writing a selection or other structure and notice that some of the actions consist of single
statements. The language doesn't require that you write braces or other grouping symbols in this
situation.

However, you recognize that programs change as the problems that they solve change. In real
programming this is a very frequent occurrence. If you have a single statement in an action, chances
are that later it may need more statements.

Therefore, completely brace all statement parts in all structures when you first write the program.

© Copyright 2001-2006, Joseph Bergin Page 20

 if (measuredHeat() > this.subBoilThreshold) { shutDownGenerator();
}

can be modified more easily and with less possibility for error than the logically equivalent

 if (measuredHeat() > this.subBoilThreshold) shutDownGenerator();

[Bergin: Selection]

(25) Braces Line Up (Stylistic)**
You are writing a structured statement that requires braces or other grouping symbols. You want your
code to be as readable as possible.

When structures are nested, the indentation structure is often hard to follow. It is especially hard when
the inner structures end and the outer structure resumes. The eye cannot always easily see what goes
with what level of the overall structure.

if(reactorOK())
{ if(transmissionOk())
 { fullPower();
 }

else
 { reducedPower();
 }

}
else
{ shutDown();
}

The braces of a structure give its real intent, independent of how it is indented.

Therefore, when writing brace symbols or other grouping symbols such as parentheses, if the opening
and closing symbol don't both fit on the same line, then make them line up exactly vertically.

 if (measuredHeat() > this.subBoilThreshold) { shutDownGenerator(); }

Note that when the opening brace begins a line, you can put a full statement on that line as well, so that
you don't waste vertical real estate. Only the closing brace is on a line by itself if you need more than
one line. But use this trick rarely. See One Statement Per Line.

Note that this pattern is at odds with the Java Standard Form in which you will find most published
programs. This form hides the opening brace on the line on which the structure starts. This more
typical style would have the opening brace at the end of the line on which it opens and the closing
brace under the keyword that indicates the structure.

if(reactorOK()){
 if(transmissionOk(){
 fullPower();
 }
 else{
 reducedPower();
 }

}
else{

© Copyright 2001-2006, Joseph Bergin Page 21

 shutDown();
}

We find the standard style more difficult to read and error prone.

The official Java coding standard can be found on the web at:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

[Bergin: http://csis.pace.edu/~bergin/patterns/Patternsv4.html]

(26) Be Spacey Not Tabby (Maintainability)*
You want your indentation to be preserved no matter how someone reads your programs. However,
many printers and editors interpret tabs differently and most deal differently with font faces that are not
monospaced.

Therefore, use spaces for indentation, rather than tabs, and use a monospaced font in your documents
when you have a choice.

Many editors will insert spaces when you hit the tab key. Look for this in the options.

(27) Consistent Capitalization (Stylistic)**
Your programs should give both semantic (meaning) and structural information to the readers.
Semantic information is conveyed by the names we use, but structural information is given in many
ways. Often it is useful to know if a name seen in a program fragment is a variable, constant, class, or
...

Therefore, capitalize consistently to show the kind of thing a name refers to.

In Java, the conventional style is as follows:

• Always capitalize the first letter of any class or interface name: Stack.
• Never capitalize the first letter of any method or variable name: push(...).
• Constant names are completely capitalized: java.lang.Math.PI;
• Package names are written in all small case letters: java.lang.
• If a name is the catenation of several words, the second and subsequent subwords are

capitalized: mustCopyToRunstack(...). Underscores are not preferred to separate words. Thus,
mustCopyToRunstack is better than must_copy_to_runstack

Constant names are discussed in Name Your Constants.

(28) Name Your Constants (Maintainability)**
42 may be the answer to the question "What is the meaning of life, the universe, and everything?" but it
can also be the number of departments in your company, the number of ..., whatever.

© Copyright 2001-2006, Joseph Bergin Page 22

If the literal value appears throughout out your program and appears in different places with different
meaning, it will be difficult to change when conditions change. Maybe 42 isn't a good example, but
values like 1 and 10 are used for a variety of purposes even in the same program. If one of the uses
requires that the value be changed, but the other uses do not, it may be very hard to determine which
values need to be updated. Even if a constant is used only once in your program and can't be confused
with another value that might be equal to it, you would still like a point of definition giving the intent.

Therefore, name any important constant values in your program and thereafter refer to those values
only by name.

public static final int lifeTheUniverseAndEverything = 42;
public static final int departmentsInNYC = 42;
public static final double pi = 3.14159; // Better value in java.lang.Math.PI.
public static final int USStates = 50;
public static final int ageOfMaturity = 50;
public static final int legalAgeOfMaturity = 18;
...
double [] departmentBudget = new double[departmentsInNYC];

Now they can be easily changed easily, independently, and in one place and have an effect throughout
a long program.

A common stylistic suggestion is to completely capitalize all constants. If we use this we would get the
following instead.

public static final int LIFETHEUNIVERSEANDEVERYTHING = 42;
public static final int DEPARTMENTSINNYC = 42;
public static final double PI = 3.14159; // Better value in java.lang.Math.PI.
public static final int USSTATES = 50;
public static final int AGEOFMATURITY = 50;
public static final int LEGALAGEOFMATURITY = 18;

I PERSONALLY DON'T CARE FOR THIS STYLE. Oops. I personally don't care for this style. I
guess it reminds me too much of the punch card machines of my youth. Others insist on this style to
differentiate constants from variables. Of course, the above could be improved with underscores:

public static final int AGE_OF_MATURITY = 50;
public static final int LEGAL_AGE_OF_MATURITY = 18

A good place to name constants relating to a single concept is in an interface for that concept. See
http://c2.com/cgi/wiki?InterfacesForDefiningConstants

(29) Spell It Out (Maintainability)**
If you use abbreviations in naming things you will likely spend a lot of time trying to remember
whether you abbreviated or not the next time you need to type the name. You will find yourself
scrolling to find the original declaration. If abbreviations are arcane or uncommon in any way your
readers won't easily understand the intent of the thing named. The easiest thing to remember is the full
name of a concept, not some particular shortcut for its name.

Therefore don't abbreviate your method and variable names. Use full words in the natural language in
which you write.

© Copyright 2001-2006, Joseph Bergin Page 23

Use abbreviations only if they are in common use in normal speech. The more visible a name is, the
more important this rule. Class names and public method names have wide visibility.

(30) Locals (Only) When Needed (Design)*
Good programs don't recompute the same thing repeatedly for two reasons. The least important today
is that it is wasteful of the computer resource. More important is that if you compute the same thing in
two places and the problem changes you may need to find all of the places in which you computed
some item and make consistent changes. This is notoriously error prone. You can use a local variable
within a method to capture the result of a computation and use it several times within that method.

On the other hand, readable programs are not overly wordy. If it takes you five lines of code to say
what can better be said in 1 or 2 lines, your reader will not apprieciate you. If you use a local variable
to save the results of every sub expression of a complex expression you will take a lot of statements to
say what, perhaps, can better be said in a single statement.

Therefore, use local variables when they are used to avoid duplicate computation and otherwise avoid
their use when the intent is clear without them.

For example,

FileReader fr = new FileReader("greatamericannovel.txt");
BufferedReader novel = new BufferedReader(fr);

is probably better written as follows unless the variable fr needs to be reused, in which case it needs a
better name.

BufferedReader novel = new BufferedReader(
new FileReader("greatamericannovel.txt")

);

In Java, if you need to do a cast and use the "casted" result several times, capture the cast in a variable
and then use the new variable.

In Java it is usually better if you declare your locals at the place at which you first use them and can
initialize them, rather than collected together at the beginning of your method. This minimizes the
searching your reader will need to do to find the types of your variables.

Kent Beck gives advice here on the Wiki: Caching Temporary Variable (http://c2.com/ppr/temps.html)

(31) One Statement Per Line(Stylistic)*
When you write a method, you want your readers to be able to easily follow your logic. Sometimes
they will need to stop and think about it for a second. They need to be able to continue easily and
gracefully. In some sense, programs are more like poetry than like prose. It is useful if there can be
only one idea on a give line

Therefore, write your programs so that there is only one statement on each line.

A statement is supposed to represent a single idea. Contrast the following equivalent fragments for
readability.

© Copyright 2001-2006, Joseph Bergin Page 24

for(int i = 0; i < string.length(); ++i) { if(i % 5 != 0) { dest[i] += src[i]; } }

and

for(int i = 0; i < string.length(); ++i)
{ if(i % 5 != 0)

{ dest[i] += src[i];
}

}

(32) Short Lines (Maintainability)*
You want to be able to read your programs both on the screen and on paper. If you use long lines you
may not see everything on one line without scrolling and some printers will truncate your lines when
you print. Others will wrap the lines to the next lines destroying indentation in most cases

Therefore, keep your line length to 80 characters or less. This will accommodate even very old
printers.

Some editors can be set to enforce this and most will give you some indication of the length of the line,
usually on a status line.

(33) Function For Complex Condition (Structural)*
If you are writing a selection or other structured statement that uses a boolean condition, the easy
understanding of the meaning of the condition is critical for understanding what follows. Complex
booleans with many parts connected with && and || can be hard to grasp quickly.

Therefore, any complex condition should be written as a separate method, expressing a positive
condition. Then call the method in the if or while statement instead of writing out the complex
condition.

If the method name is well chosen the intent will be clear without comments. By the way, methods that
return booleans are often called "predicates."

For example:

if(reactorError() || (transmissionError() && heatRising()))
{ stutdownReactor();
}
else
{ fullPower();
}

If we write a function to capture the condition, this becomes

 boolean shutdownRequired()
{ return reactorError() || (transmissionError() && heatRising())
}
...
if(shutdownRequired ())
{ stutdownReactor();

© Copyright 2001-2006, Joseph Bergin Page 25

}
else
{ fullPower();
}

[Astrachan and Wallingford: Loops]

(34) Say "this."(Maintainability)
You want to be able to tell, when reading code, where the various values were defined. Local variables
of the current method have a different use and meaning than fields of the current object.

Therefore, when you refer to a field of the current object, prefix the reference with "this."

So, instead of referring to the size field of the current object as just size, use this.size instead.

Some would also say that you should do the same with all instance method messages of the current
class as well. Then every message is explicitly sent to a particular object, perhaps "this." However, in
Java, a message that is not preceeded by the name of any object can only be directed to "this" so it is
perhaps less important for messages than for fields.

(35) Local Variables Reassigned Above Their Uses
(Design)*
Sometimes you must give a new value to a variable. In the presence of loops, the new value could be
given either above or below its use. However, most people like to read programs from the top down.

Therefore, if you must change the value of a variable, arrange the code so that the change appears
above any subsequent use.

If you reassign a value below its use then the reader will have a difficult time reading the code and
understanding its meaning. This can lead to subtle misunderstanding, which can lead the reader to
make improper changes, thus introducing bugs.

This pattern is from Gabriel's Simply Understood Code.

Using These Patterns - How To Write A Program - A
Story
You have been given a programming task by a boss, a team, or an instructor.

Starting

© Copyright 2001-2006, Joseph Bergin Page 26

First, you want to work with someone so that you can avoid bugs and draw on each other's growing
expertise, so find a buddy and do PAIR PROGRAMMING. Next, you will want to know how well you
can estimate the time for the task, so in your notebook describe the problem you are trying to solve and
write down a time estimate for its completion. Probably in hours. Now you must keep track of TIME
ON TASK as you proceed.

The problem may be too big to solve in one go, so break off part of it that seems do-able and proceed
to solve this smaller problem. Hereafter you will grow your overall solution using PIECEMEAL
GROWTH.

Designing

You now need to solve the small part of the problem that you have factored out. Think about the
problem in terms of services that must be performed and of objects that can perform these services.
You want simple objects so you make sure you have ONE SERVICE PER CLASS. You may discover
that there are many similar services and these will behave the same in some ways, but differently in
others. You can group the objects that perform similar services into a family and imagine either a
hierarchy of servers or a general interface that describes the class of services. You are using
POLYMORPHISM BEFORE SELECTION here.

Now think about the classes that you have discovered. You must design the public interface of these
classes (public methods). You want the program to be written in the language of the problem, not the
solution, so make sure each of your classes has a LOGICAL INTERFACE. Make sure that the object
can perform all necessary tasks by giving its class a COMPLETE INTERFACE as well.

At this time you can think about two additional desirable properties of your classes. Since your
program will be easier to reason about if many of the objects have fixed state, see if any of your objects
can be IMMUTABLE. You will also want think about class invariants and to guarantee that clients
can't invalidate these invariants, so you will need to be sure that you use STRONG
ENCAPSULATION to be sure that your interface doesn't "leak" information about your proposed
implementation.

Getting Ready To Program

Since you are going to be going over this program many times as you develop it using PIECEMEAL
GROWTH, you will need to REWRITE it several times. Therefore you will need to OPTIMIZE FOR
READABILITY so you don't get lost in your own work--your instructor or teammates will appreciate
this also. You have already targeted may objects and their classes so be sure you give them
INTENTION REVEALING NAMES and that you use CONSISTENT NAMING when you do.

You are starting to lay out your code. Be sure to list PUBLIC FEATURES FIRST and use PRIVATE
FIELDS. Also be sure to INITIALIZE values as you go. You wnat to write a correct programming so
you should TEST EVERYTHING NOW. Whenever possible you want to ASSIGN VARIABLES
ONCE to make reasoning about them easier and think again about IMMUTABLE objects.

Both because you want the objects and their services simple you want to be writing SHORT
METHODS. Sometimes this is hard so you may need to use COMPOSED METHOD and even

© Copyright 2001-2006, Joseph Bergin Page 27

METHOD OBJECT to achieve it. Each of your methods should probably have a short Javadoc
comment but remember to COMMENT (ONLY) WHEN NECESSARY.

You don't want your code to become hard to maintain, so as you go you may need to REWRITE it a
few times. When you find yourself repeating sections of code you may want to see if you can't refactor
it so that you can SAY IT ONCE.

Coding

Now you are typing and thinking with your buddy. Make sure that as you go you INDENT FOR
STRUCTURE, BRACE ALL, and be sure your BRACES LINE UP. You have probably already set
your editor so that you can BE SPACEY NOT TABBY. Your style should also use CONSISTENT
CAPITALIZATION so that you don't need to think about this issue.

As you come to constant values, be sure to NAME YOUR CONSTANTS.

As you program you are always needing to think up new names for things, but be sure you don't
shortcut and that you do SPELL IT OUT as you go. Within your methods you will create LOCALS
(ONLY) WHEN NEEDED as well.

Your code need to be readable and easy to understand so you are writing ONE STATEMENT PER
LINE with SHORT LINES. When you come to structured statements you want them to be easily
understood as well, so you use FUNCTIONS FOR COMPLEX CONDITIONS.

When referring to fields of objects be sure to SAY "THIS." so that your reader easily sees what is
being updated and you arrange all changes to values by making sure LOCAL VARIABLES are
REASSIGNED ABOVE THEIR USE.

Other Papers and Sources
Wiki Wiki Web http://c2.com/cgi/wiki The Wiki is a completely interactive web site at which readers
can update the pages. It currently (Mid 2000) contains about 10000 dynamically generated web pages.
It changes constantly. Spend some time reading before you start to edit though. It is a very valuable
resource that should be treated with respect. It was created by Ward Cunningham, who also maintains
it.

Selection This paper [Bergin] has additional advice specific to if and switch statements.
http://csis.pace.edu/%7Ebergin/patterns/Patternsv4.html

Polymorphism [Bergin] How to use polymorphism and how to look for opportunities to use it.
http://csis.pace.edu/~bergin/patterns/polymorphism.html

Iteration/Looping [Astrachan and Wallingford] More advice on
loops.http://www.cs.duke.edu/~ola/patterns/plopd/loops.html

© Copyright 2001-2006, Joseph Bergin Page 28

Recursion: Wallingford's Roundabout pattern language is done in Scheme, but its ideas are also
relevant to the Java programmer: http://www.cs.uni.edu/~wallingf/patterns/recursion.html

More Advice from Ward Cunningham can be found on Wiki at
http://c2.com/cgi/wiki?MethodCommenting

Beck has more to say on formatting your code. This was written for the Smalltalk programmer, but is
still relevant. http://c2.com/ppr/formatting.html

Kent has still more to say about how to think about starting on your project.
http://c2.com/ppr/early.html. These ideas have been developed into a programming methodology called
Extreme Programming. More on this at: http://c2.com/cgi/wiki?ExtremeProgramming. Extreme
programming is itself a pattern language.

Books
[SBBP] Smalltalk Best Practice Patterns, Beck, Prentice Hall, 1997

[PLOPD 1] Pattern Languages of Program Design, Coplien and Schmidt (editors), Addison Wesley,
1995

[PLOPD 2] Pattern Languages of Program Design 2, Vlissides, Coplien and Kerth (editors), Addison
Wesley, 1996

[PLOPD 3] Pattern Languages of Program Design 3, Martin, Riehle, and Buschmann(editors), Addison
Wesley, 1998

[PLOPD 4] Pattern Languages of Program Design 4, Harrison, Foote, and Rohenert(editors), Addison
Wesley, 2000

Advice similar to that contained herein may be found in the following book. Note that the advice is not
identical, however.

Essential Java Style: Patterns for Implementation, Langr, Prentice Hall, 2000

A book that is somewhat different and focuses on structural issues is:

Refactoring: Improving the Design of Existing Code, Fowler, Addison Wesley, 2000

[PSP] Introduction to the Personal Software Practice, Humphrey, Addison Wesley, 1997

Acknowledgements and Contributors
Kent Beck and Richard P. Gabriel did a lot of work over a long period of time that is reflected here.
Thanks to them especially. In particular is Kent's Smalltalk Best Practice Patterns and Richard P.
Gabriel's Simply Understood Code (http://c2.com/cgi/wiki?SimplyUnderstoodCode).

The direct contributors to this page include:

Peter Andreae: Victoria University, New Zealand
Kent Beck: Three Rivers Institute
Byron Weber Becker: University of Waterloo, Canada

© Copyright 2001-2006, Joseph Bergin Page 29

Larry Bliss, Pace University doctoral student
Kim Bruce, Williams College, MA
Max Hailperin: Gustavus Adolphus College, MN
James Heliotis: Rochester Institute of Technology, NY
Dorothy Nixon: Queens College, NY
Lynn Andrea Stein: Massachusetts Institute of Technology
Eugene Wallingford: University of Northern Iowa

Note, however, that the contributors don't necessarily agree with all that is said here.

The EuroPLoP 2001 shepherd for this paper is Manfred Lange of HP-Germany. He has greatly helped
improve the presentation and helped me focus on the structure of this as well as made other helpful
suggestions. In addition, he suggested One Statement Per Line. The paper is much nicer for his efforts.
Thank you.

The writer's workshop participants at EuroPLoP 2001 were: James Coplien, Arno Hasse, Kevlin
Henney, Alexander Horoshilov, Yun Mai, Christian von Mueffling, and Uwe Zdun. Thanks to all.

Neil Harrison, in discussing his work with Jim Coplien, helped me see how to sequence these patterns.
This may have been the biggest improvement of all.See the story.

The main source of inspiration for this paper is the Elementary Patterns Working Group project. You
can find the home page of this project at: http://www.cs.uni.edu/~wallingf/patterns/elementary/

Some of the practices suggested here come from a methodology called Extreme Programming. Learn
more at http://www.XProgramming.com.

If you are reading this on paper, the online version, which may be more recent, may be found at:
http://csis.pace.edu/~bergin

Last Updated for content: August 28, 2001 (for form: January 12, 2006)

