
Reflective Visitor Pattern

Yun Mai and Michel de Champlain
Department of Electrical and Computer Engineering

Concordia University
{y mai, michel}@ece.concordia.ca

Abstract

The Visitor pattern wraps associated operations that are performed on the ele-
ments of an object structure into a separate object. It allows the software designer
to define new kinds of operations over the object structure without changing the
classes of this structure. But a well-known drawback of this standard Visitor struc-
ture is that extending the object structure is hard. This paper presents the design
and implementation of a flexible Visitor pattern based on the reflection technique,
we call it the Reflective Visitor pattern. The reflection technique enables the Visitor
to perform the run-time dispatch action on itself. The separation of the run-time
dispatch action from the object structure makes any extension to the object struc-
ture become easy. It also removes the cyclic dependencies between the Visitor and
the object structure, so the reusability and extensibility of the system are improved.

Intent

Define a new operation over the object structure without changing the classes of the
elements on which it operates, while in the meantime, allow the element classes in the
object structure to be extended constantly without changing the existing system.

Motivation

Consider the code generation design in a compiler framework. The responsibility of the
code generation is to generate a target code list as the output of the compiler. The format
of the target code list is specified by the system requirements, which may require the tar-
get code list to be compatible with different operation platforms. In order to support the
cross-platform features, different code generation operations need to co-exist and allow
easily switching from one to another. On the other hand, the code generation process de-
pend on the parser result. The parser result, normally in terms of an abstract syntax tree,
can be represented as a compound data structure, each of whose elements is constructed
from the language structure. The language structure is a composite hierarchy consist-
ing of a set of terminals and non-terminals, which can be extracted from the language

grammar specification. Since the operation of code generation is actually performed on
the abstract syntax tree, its design should accommodate any potential changes on the
language structure. For a compiler framework, the design of the code generation needs
to:

1. Prepare for changes of the generated code format.

2. Prepare for modifications in the language grammar.

3. Reduce the coupling between the language structure and the code generator in order
to promote the system reusability.

Expression

SubExprAddExpr MulExpr

ArithmeticExpr AssignmentExpr

DivExpr

2

2

«interface»
Visitable

Constant Variable

New extended classes

Figure 1: An Expression Hierarchy

Given a simple expression example, suppose it supports arithmetic expression such as
addition, subtraction, multiplication, and division for constants. Figure 1 shows the
language structure hierarchy for this expression example. The language (expression)
structure hierarchy is organized as a composite structure and can be implemented by
a Composite design pattern [3]. The abstract syntax tree therefore is represented as a
composite object, which is recursively constructed with the instances of the node classes
in the expression structure during the parsing. The code generation process then performs
the code generation operations over this abstract syntax tree.

Basically, there are two kinds of potential extensions to the above example: one is
the changing of the expression structure, the other is generating different code formats.
For example, the expression structure can be extended with supports of variable and
assignment expression that will be used to assign the value or expression to the variable.
As shown in figure 1, they are represented as two extended classes in gray. On the other
hand, the code generation may require target code to be generated in different code format
according to the design requirements. It may also require easy switching from one format
to another and easy addition of new kind of output code format. For simplicity, we
suppose the code generation for above example should support the two different virtual
machines, VM1 and VM2.

The basic design issues in the design of code generation for this expression example
are:

1. Both the code generations for VM1 and VM2 should be represented as different
operations that are performed on the abstract syntax tree.

2. The code generation should support easy switching between the VM1 output format
and the VM2 output format. Any future extension of the output format can be easily
added without modifying and re-compiling the existing system program.

3. The addition of the variable and assignment expression needs not affect the rest of
the system.

4. The language (expression) structure can stand alone and has no knowledge about
the code generator.

+visitAddExpr(in : AddExpr)
+visitSubExpr(in : SubExpr)
+visitMulExpr(in : MulExpr)
+visitDivExpr(in : DivExpr)
+visitConstant(in : Constant)
+visitVariable(in : Variable)
+visitAssignmentExpr(in : AssignmentExpr)

«interface»
Visitor

+accept(in v : Visitor)

ArithmeticExprClient

+accept(in v : Visitor)

Constant

+accept(in v : Visitor)

AddExpr

+accept(in v : Visitor)

SubExpr

+accept(in v : Visitor)

MulExpr

+accept(in v : Visitor)

DivExpr

+accept(in v : Visitor)

Variable

+accept(in v : Visitor)

AssignmentExpr

+visitAddExpr(in : AddExpr)
+visitSubExpr(in : SubExpr)
+visitMulExpr(in : MulExpr)
+visitDivExpr(in : DivExpr)
+visitConstant(in : Constant)
+visitVariable(in : Variable)
+visitAssignmentExpr(in : AssignmentExpr)

VM1CodeGenVisitor

+visitAddExpr(in : AddExpr)
+visitSubExpr(in : SubExpr)
+visitMulExpr(in : MulExpr)
+visitDivExpr(in : DivExpr)
+visitConstant(in : Constant)
+visitVariable(in : Variable)
+visitAssignmentExpr(in : AssignmentExpr)

VM2CodeGenVisitor

Adding new Expreesion subclasses
requires the visitXxx(Xxx) methods

to be added across the Visitor hierarchy

2

2

+accept(in : Visitor)

«interface»
Expression

Figure 2: Apply GoF Visitor Pattern to the Expression Example

As Gamma et al. pointed out in their Design Patterns book [3], the Visitor pattern is
suitable to represent an operation to be performed on the elements of an object structure.
We refer this Visitor pattern as GoF Visitor pattern in this paper. The GoF Visitor
pattern lets the designer define a new operation over the object structure without changing
the elements of that structure. Figure 2 shows the design of the above expression example
with the GoF Visitor pattern. By applying GoF Visitor pattern, the code generation can
be easily changed or extended to support different kinds of output code formats, for
example, switching between the VM1 output format and the VM2 output format. But
we can also see that the extension of the expression structure becomes difficult. In our

example, to support the addition of the variable and assignment expression, the GoF
Visitor pattern requires the new code generation methods, such as visitVariable(Variable)
and visitAssignmentExpr(AssignmentExpr), to be added across the Visitor hierarchy (the
Visitor interface the VM1CodeGenVisitor class and the VM2CodeGenVisitor class in
figure 2). Therefore, all classes in the Visitor hierarchy need to be modified and re-
compiled due to changings of the expression structure. Obviously, the GoF Visitor pattern
could not fit our system design requirement and it is not suitable for the code generation
design in a compiler framework.

There are several variations of the Visitor pattern [6] intended to overcome this short-
coming so that the Visitor pattern can also be used in an environment that the object
structure changes often. A brief summary of them is mentioned in the Related Patterns
section of this paper.

The Reflective Visitor pattern introduced in this paper supports both the changes of
the generated code format and the changes of the language grammar without changing the
existing classes. It achieves this goal by performing the dynamic operation dispatch in the
Visitor class through reflection. The Visitor class declares a visit method to be responsible
for the dynamic dispatch. The corresponding operation can be invoked automatically at
run-time. Therefore the accept methods are no longer needed and the cyclic dependencies
are removed. This visit method is defined as the only interface visible to the outside of
the system so that detailed implementation of code generation is hidden from the outside
of the system.

+visit(in : Visitable)
-findMethod(in : Visitable) : Method
-isAncestorOf(in : String, in : Class) : boolean

Visitor

#evaluate(in : AddExpr)
#evaluate(in : SubExpr)
#evaluate(in : DivExpr)
#evaluate(in : MulExpr)
#evaluate(in : Constant)

VM2CodeGenVisitor

#evaluate(in : AddExpr)
#evaluate(in : SubExpr)
#evaluate(in : DivExpr)
#evaluate(in : MulExpr)
#evaluate(in : Constant)

VM1CodeGenVisitor

Client

#evaluate(in : AssignmentExpr)
#evaluate(in : Variable)

ExtendVM2CodeGenVisitor

#evaluate(in : AssignmentExpr)
#evaluate(in : Variable)

ExtendVM1CodeGenVisitor

Expression

Visitable

Figure 3: Apply Reflective Visitor Pattern to the Expression Example

Figure 3 shows the solution for the above expression example by applying the Reflec-
tive Visitor pattern to the code generation. The visit method declared in the Visitor class
takes the concrete Expression object as argument. It queries the concrete Expression

class information through reflection to find the evaluate method based on the concrete
Expression object and then invokes the evaluate method to perform the operation. In our
example, to support two code generation formats for the virtual machine VM1 and VM2,

we define two concrete visitors VM1CodeGenVisitor and VM2CodeGenVistor respectively.
The addition of the variable and assignment expression in the expression structure only re-
quires two new visitor classes (ExtendVM1CodeGenVistor and ExtendVM2CodeGenVisitor)
to be added in the Visitor hierarchy and their evaluate methods to be implemented. All
existing classes in both the expression structure and the Visitor hierarchy need not to be
modified and re-compiled. All the evaluate operations in the Visitor hierarchy are declared
protected so detailed implementation information of code generation is encapsulated.

With the Reflective Visitor pattern, the system designer can easily add new operations
to the object structure by simply defining new concrete Visitor classes, as what the GoF
Visitor pattern does. On the other hand, the designer can also easily add new concrete
Element classes by simply defining new Visitor subclasses in the Visitor hierarchy. The
visit method is the only visible interface of the Visitor hierarchy. The client only needs to
invoke this method to perform any desired operation on the object structure. Since the
interface and the implementation of the operations on the object structure are separated,
the client is shielded from any potential changes of the implementation details.

Applicability

The Reflective Visitor pattern can be applied when:

1. The programming language that the designer uses to implement the Reflective Vis-
itor design pattern should support reflection. For example, Java.

2. An object structure contains many classes of objects with differing interfaces, and
the designer performs operations on these objects that depend on their concrete
classes [3].

3. Distinct and unrelated operations need to be performed on objects in an object
structure [3].

4. The object structure may be changed often to fit changing requirements. The de-
signer don’t want to redefine the interface and recompile all existing classes.

5. The designer may need to reuse the object structure in the future and thus wants
to break the cyclic dependencies and de-couple the object structure and the Visitor
hierarchy.

6. The designer wants to define a unified stable operation interface for the client and
to encapsulate the implementation details.

7. The run-time efficiency is not a major concern in the design.

Structure

Figure 4 shows the structure of the Reflective Visitor design pattern.

visit(in : Visitable)
findMethod(in : Visitable) : Method
isAncestorOf(in : String, in : Class) : boolean

Visitor

Element

ElementA ElementB evaluate(in : ElementA)
evaluate(in : ElementB)

Visitor1

evaluate(in : ElementA)
evaluate(in : ElementB)

Visitor2

Client

ElementC

evaluate(in : ElementC)

ExtendVisitor1

evaluate(in : ElementC)

ExtendVisitor2

«interface»
Visitable

Figure 4: The Reflective Visitor Pattern Structure

Participants

Visitor (Visitor)

1. The abstract class Visitor is the facade and the root of the Visitor class hierarchy.
All the concrete Visitor classes are derived from it.

2. The Visitor class defines a public visit operation, which is the unified operation
interface for the Visitor class. The client invokes the visit method to execute the
corresponding operations on the object structure.

3. The visit method takes a Visitable interface object as argument. It performs
the dynamic dispatch for the concrete Element object. That is, the visit method
finds the corresponding concrete evaluate operation from the Visitor hierarchy and
invokes it at run time.

ConcreteVisitor (VM1CodeGenVisitor, VM2CodeGenVisitor)

1. The ConcreteVisitor defines a set of evaluate operations, each implements the
specific behavior for the corresponding ConcreteElement class.

2. The evaluate operations are declared as protected so that the implementation infor-
mation can be hidden from the outside of the system.

Visitable

The interface Visitable is the interface for all the classes that can be visited. It is an
empty interface and provides the run time type information for the Visitor.

Element (Expression)

The Element class is the root of the Element class hierarchy to be visited. It implements
the Visitable interface. All the concrete Element classes derive from the Element class
and they have no knowledge about the Visitor.

ConcreteElement (AddExpr, SubExpr, MulExpr, DivExpr)

The ConcreteElement class is a descendant of the Element class. The Element class and
all the concrete Element classes construct the Element class hierarchy.

Collaborations

A client who uses the Visitor pattern must create a ConcreteVisitor object and pass
the ConcreteElement object to the Visitor for visiting.

The Visitor uses reflection to query the ConcreteElement class information and
finds the corresponding evaluate method whose argument type is same as that of the
ConcreteElement. The search process begins from the ConcreteVisitor class, and then
traces up its ancestors until it reaches the root of the Visitor hierarchy. If the method is
found, it is invoked. Otherwise, we assume that this evaluate method is defined for the
ancestor classes of the ConcreteElement, so the search process repeats for these ances-
tors. If all the ancestors of the ConcreteElement have been tried and the corresponding
evaluate method can not be found, an error is thrown. Figure 5 is the sequence diagram
of the visit method.

c : Visitor1 : Client

e : ElementA

visit(e:Visitable)

findMethod(e:Visitable)

evaluate(e:ElementA)

Figure 5: The Sequence Diagram for the Visiting Process

Consequences

Some of the benefits of the Reflective Visitor pattern are:

1. As that of the GoF Visitor pattern, adding a new operation is easy. The existing
code can be avoided from modifying by simply subclassing the Visitor hierarchy if
a new operation over an object structure is to be added.

2. Adding a new Element class ExtendElement is easy. Since the Visitor is responsi-
ble for the dynamic dispatch, any operation operating on this new ExtendElement

can be defined within a new subclass of the ConcreteVisitor without modifying
the existing codes. The system’s extensibility is then improved.

3. The cyclic dependencies are broken and the coupling between the object structure
and the Visitor hierarchy is reduced. As the key of the standard Visitor pattern,
the double-dispatch technique is used to bind the operation with the concrete ele-
ment in the object structure at run time. But this technique reduces the system’s
reusability. With the reflection technique, the Reflective Visitor pattern can avoid
the cyclic dependencies by performing the dynamic dispatch within the Visitor class.
Since the Visitor is responsible for the dynamic dispatch, the Element hierarchy has
no knowledge about the Visitor. Hence the system’s reusability is improved. On
the other hand, the Visitor can visit any object that has a corresponding evaluate
operation in the Visitor hierarchy only if this object has a Visitable interface.

4. The visit method is the only visible interface of the Visitor hierarchy. The client
only needs to invoke this method to perform any desired operation on the object
structure. Since the interface and the implementation of the operations on the
object structure are separated, the client is shielded from any potential changes of
the implementation details.

The Reflective Visitor pattern has some liabilities:

1. The name of the operation needs to be fixed. The system designer should follow the
name convention and keeps all the operations named evaluate. Since the evaluate is
only visible within the Visitor hierarchy, there is no direct influence to other parts
of the system.

2. The programming languages that used to implement this Reflective Visitor pattern
need to support reflection. This limitation lets some languages, like C++, can not
be used as the implementation language for the Reflective Visitor pattern.

3. The use of reflection imposes a significant performance penalty and reduces the
system efficiency [9]. This pattern can be considered to be used only in time non-
critical systems.

Implementation

The abstract Visitor class declares a unique method visit that takes a ConcreteElement

object for visiting. This visit method invokes the findMethod operation to fetch the
corresponding evaluate method object through reflection. Then the visit method invokes

the evaluate method object to execute the operation related to the ConcreteElement

object.
The findMethod takes a Visitable interface object as argument. It queries the

corresponding evaluate method object based on the method name ”evaluate” and the
ConcreteElement class object. The search process starts from the current ConcreteVisitor
class and traces up until it reaches the root class (Visitor) in the Visitor hierarchy. If
the corresponding evaluate method is found, the findMethod returns the method object.
Otherwise, the search process repeats for the ancestors of this ConcreteElement until it
reaches the root class (Visitable) in the Element hierarchy. If all the ancestors have
been tried and the corresponding evaluate method can not be found, an error is thrown.

There is a nested loop statement in the method findMethod. The inner loop is used
to search for an evaluate method with a given Element object as parameter. The outer
loop assigns the Element object to the inner loop for search. The assignment principle
is that the Element object to be visited is tried first, then the Element object whose
declare type is the superclass of the current Element is tried until the corresponding
evaluate method is found or an error is thrown if the search reaches the root Element
interface Visitable. The nested loop statement guarantees that the searches trace up
over the Visitor hierarchy for the ConcreteElement object and all its ancestors until the
corresponding evaluate method is found.

The Visitor class would be declared in Java like:

abstract class Visitor {

public void visit(Visitable v) throws NoSuchMethodException {

Method m = findMethod(v);

try {

m.invoke(this, new Object[] { v });

}

catch (IllegalAccessException e1) { /* code handling */ }

catch (InvocationTargetException e2) { /* code handling */ }

}

private Method findMethod(Visitable v) throws NoSuchMethodException {

String methodName = "evaluate";

Class visitable = v.getClass();

while (isAncestorOf("Visitable", visitable) {

Class visitor = getClass();

while (isAncestorOf("Visitor", visitor) {

try {

Method m = visitor.getDeclaredMethod(methodName,

new Class[]{visitable});

return m;

} catch (NoSuchMethodException e) {

visitor = visitor.getSuperclass();

}

}

visitable = visitable.getSuperclass();

}

String errMsg = "put error message here";

throw new NoSuchMethodException(errMsg);

}

private boolean isAncestorOf(String ancestorName, Class descendant) {

try {

return Class.forName(ancestorName).isAssignableFrom(descendant);

}

catch (ClassNotFoundException e) { /* code handling */ }

return false;

}

}

The ConcreteVisitor class derives from the Visitor class. It declares an evaluate
operation for each class of ConcreteElement that need to be visited. Each evaluate
operation in the ConcreteVisitor takes a particular ConcreteElement as argument.
The Visitor accesses the interface of the ConcreteElement directly, and the visitor-specific
behavior for that corresponding ConcreteElement class is executed.

class ConcreteVisitor extends Visitor {

protected void evaluate(ConcreteElement1 c1) {

// perform the operation on ConcreteElement1;

}

protected void evaluate(ConcreteElement2 c2) {

// perform the operation on ConcreteElement2;

}

}

Sample Code

We’ll use the Expression example defined in the Motivation section to illustrate the Reflec-
tive Visitor pattern. Instead of generating code, we implement the example as a calculator
that calculates the arithmetic expression for integers. The variables and assignment ex-
pressions are added as extensions.

Expression Hierarchy

Figure 1 is the class diagram for the Expression hierarchy. The interface Visitable may
be declared like:

interface Visitable { }

The Expression is an abstract class implementing the Visitable interface:

abstract class Expression implements Visitable { }

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant

are defined as:

abstract class ArithmeticExpr extends Expression {

protected ArithmeticExpr(Expression left, Expression right) {

this.left = left;

this.right = right;

}

public Expression getLeft() { return left; }

public Expression getRight() { return right; }

private Expression left;

private Expression right;

}

class AddExpr extends ArithmeticExpr {

public AddExpr(Expression left, Expression right) {

super(left, right);

}

}

class SubExpr extends ArithmeticExpr {

public SubExpr(Expression left, Expression right) {

super(left, right);

}

}

class MulExpr extends ArithmeticExpr {

public MulExpr(Expression left, Expression right) {

super(left, right);

}

}

class DivExpr extends ArithmeticExpr {

public DivExpr(Expression left, Expression right) {

super(left, right);

}

}

class Constant extends Expression {

public Constant(int value) { this.value = value; }

public int getValue() { return value; }

private int value;

}

Then we add two extended expressions to the Expression hierarchy. They are classes
Variable and Assignment and can be declared like:

class Variable extends Expression {

public Variable(String id) {

this.id = id;

this.value = 0;

}

public int getValue() { return value; }

public void setValue(int value) { this.value = value; }

public String getId() { return id; }

private String id;

private int value;

}

class Assignment extends Expression {

protected Assignment(Expression lvalue, Expression rvalue) {

this.lvalue = lvalue;

this.rvalue = rvalue;

}

public Expression getLvalue() { return lvalue; }

public Expression getRvalue() { return rvalue; }

private Expression lvalue;

private Expression rvalue;

}

Visitor Hierarchy

The implementation of the abstract class Visitor has been showed in the Implementation
section. The CalculationVisitor is defined to perform a calculation operation on the
expressions. Its declaration may like:

class CalculationVisitor extends Visitor {

protected void evaluate(AddExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();

Expression right = expr.getRight();

visit(left);

int leftResult = result;

visit(right);

result = leftResult + result;

}

protected void evaluate(SubExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();

Expression right = expr.getRight();

visit(left);

int leftResult = result;

visit(right);

result = leftResult - result;

}

protected void evaluate(MulExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();

Expression right = expr.getRight();

visit(left);

int leftResult = result;

visit(right);

result = leftResult * result;

}

protected void evaluate(DivExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();

Expression right = expr.getRight();

visit(left);

int leftResult = result;

visit(right);

result = leftResult / result;

}

protected void evaluate(Constant c) {

result = c.getValue();

}

public int getResult() { return result; }

protected int result;

}

In order to adapt to the changing of the Expression hierarchy, a concrete Visitor class
ExtendCalculationVisitor is defined to perform calculation operation on the newly
added Expression classes. The class ExtendCalculationVisitor is an immediate sub-
class of the CalculationVisitor and can be declared like:

class ExtendCalculationVisitor extends CalculationVisitor {

protected void evaluate(Variable var) {

result = var.getValue();

}

protected void evaluate(Assignment expr) throws NoSuchMethodException {

Expression lvalue = expr.getLvalue();

Expression rvalue = expr.getRvalue();

visit(rvalue);

if (lvalue instanceof Variable);

((Variable)lvalue).setValue(result);

}

}

Client Code

For example, to calculate the expression x= 2*y+3, a client method calculate can be
written as:

void calculate() {

Expression expr =

new Assignment(new Variable("x"),

new AddExpr(new MulExpr(new Constant(2),

new Variable("y")),

new Constant(3)));

ExtendCalculationVisitor calculator =

new ExtendCalculationVisitor();

try {

calculator.visit(expr);

System.out.println(calculator.getResult());

}

catch (NoSuchMethodException e) { /* code handling */ }

}

Known Uses

The Reflective Visitor pattern is applied to a compiler framework developed by the au-
thors [5]. This framework is implemented in Java. The code generation part of the
compiler framework is implemented using the Reflective Visitor pattern. The code gener-
ation operation is started with a direct call to the Visitor. The abstract syntax tree that
generated by the syntactical analyzer is passed to the code generation (i.e. the Visitor).
The later recursively visit each node in the abstract syntax tree to generate the corre-
sponding code. With the Reflective Visitor pattern, the dispatch action is done by the
Visitor itself. The abstract syntax tree includes no accept method and thus it can stand
alone, which improve the reusability of the system.

The Reflective Visitor pattern is also used in the design and implementation of an
extensible one-pass assembler developed by the authors [4]. This assembler is based on
a virtual micro assembly language under a simple virtual processor (SVP) system and is
implemented in Java.

Martin E. Nordberg III [8] describes an Extrinsic Visitor pattern, which focuses on
breaking the cyclic dependencies between the Visitors and the Elements.

Jens Palsberg and C. Barry Jay [9] use the Java reflection technique in the Visitor
pattern to break the double-dispatch between the dynamic linked list and the visitor
Walkabout.

Jeremy Blosser [1] and Jeanne Sebring [10] also use the Java reflection to gain the
flexibility to extend the object structure (Element hierarchy) in the Visitor pattern.

Related Patterns

Composite pattern [3]: The Reflective Visitor pattern can be used to recursively execute
operations over a composite object implemented in the Composite pattern.

Interpreter pattern [3]: The Reflective Visitor pattern can work with the Interpreter
pattern to do the interpreter.

GoF Visitor pattern [3] is used to represent an operation to be performed on the
elements of an object structure. It is most likely to be used in an environment that this
visited object structure is stable.

Vlissides Visitor pattern [12] defines a catch-all operation in the Visitor class to perform
the run-time type tests that ensure the correct code generation operations to be invoked.
It is best suitable in a situation where occasional extensions are occurred to the visited
object structure.

Visser Visitor [11] is a variation on the Vlissides Visitor framework [13]. It defines
generic counterparts AnyVisitor and AnyVisiable for Visitor and Element hierarchies
respectively.

Sablecc Visitor pattern [2] allows the visited object structure to be extended with-
out any limitation by performing a downcasting in the object structure. However, this
approach introduces a deeper binding between the object structure and the Visitor hi-
erarchy. It is used in situations where reusability of the object structure is not a major
concern to the designer.

Acyclic Visitor [7] breaks the cyclic dependency. It allows new Elements to be added
without changing the existing classes. This is done by defining individual Visitor interface
for each Element to provide the operation interface. A dynamic cast is needed in the accept
method to cast the Visitor parameter to its corresponding Visitor interface.

Extrinsic Visitor pattern [8] removes the cyclic dependencies between the object struc-
ture and the Visitor hierarchy by defining a dispatch method in the Visitor to perform the
dispatch action dynamically. Although the Extrinsic Visitor Pattern introduces a more
flexible model, adding new Element classes to the object structure is still hard because
all related Visitor classes have to redefined. The Extrinsic Visitor Pattern is limited to
be implemented under a C++ development environment.

Walkabout Visitor pattern [9] removes the cyclic dependencies between the object
structure and the Visitor hierarchy by using the Java reflection technique to perform the
dispatch action. Its drawback is that it can not visit a complex multi-level composite
hierarchy. The Reflective Visitor pattern can replace Walkabout Visitor pattern wherever
it is used.

Blosser Visitor pattern [1] and Jeanne Sebring [10] Visitor pattern also implement
the dispatch action based on Java reflection. They support re-dispatch actions so that a
complex multi-level composite hierarchy can be visited. The accept method is still used
to implement the recursive traversal. Both the Blosser Visitor pattern and the Sebring
Visitor pattern can be replaced by the Reflective Visitor pattern when the designer wants
to remove the cyclic dependencies and to define a unified operation interface and to
encapsulate the implementation details.

Conclusion

The Reflective Visitor pattern improves the extensibility and reusability features upon
the earlier implementations of the Visitor pattern. With the power of the reflection
technique, the Reflective Visitor pattern can extend the object structure in a much easier
way without changing the existing system. The Reflective Visitor pattern can be used in
an environment that the implementation language supports reflection and the execution
time is not a major concern.

Acknowledgements

We would like to thank Brian Marick, our EuroPLoP ’2001 shepherd, and Doug Lea for
their valuable comments for this paper.

References

[1] Jeremy Blosser. Reflect on the Visitor Design Pattern.
http://www.javaworld.com/javatips/jw-javatip98.html, January 2001.

[2] Etienne Gagnon. Sablecc, An Object-Oriented Compiler Framework. Master’s thesis,
McGill University, 1998.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[4] Yun Mai and Michel de Champlain. An Extensible One-Pass Assembler Framework.
Technical Report, Department of Electrical and Computer Engineering, Concordia
University, Montreal, Canada, June 2000.

[5] Yun Mai and Michel de Champlain. Design A Compiler Framework in Java. Technical
Report, Department of Electrical and Computer Engineering, Concordia University,
Montreal, Canada, November 2000.

[6] Yun Mai and Michel de Champlain. A Pattern Language to Visitors. The 8th
Conference PLoP ’2001, Monticello, Illinois, USA, September 2001.

[7] Robert C. Martin. Acyclic Visitor. PLoP ’96, September 1996.

[8] Martin E. Nordberg III. The Variations on the Visitor Pattern. PLoP ’96 Writer’s
Workshop, September 1996.

[9] Jens Palsberg and C. Barry Jay. The Essence of the Visitor Pattern. Technical
Report 05, University of Technology, Sydney, 1997.

[10] Jeanne Sebring. Reflecting on the Visitor Design Pattern. Java Report, March 2001.

[11] Joost Visser. Visitor Combination and Traversal Control. http://www.jforester.org,
2001.

[12] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley, 1998.

[13] John Vlissides. Visitor in Frameworks. C++ Report, November 1999.

