
 
Three Patterns from the ADAPTOR Pattern Language 

 
 

Alan O’Callaghan 
Software Technologies Research Laboratory 

SERCentre 
Faculty of Computing Sciences and Engineering 

The Gateway 
LEICESTER LE1 9BH 

United Kingdom 
 

+44 116 2551551 x6718 
aoc@dmu.ac.uk 

 
Introduction 
The patterns below are part of an emerging pattern language called ADAPTOR. The acronym 
stands for ‘Architecture Driven And Patterns-based Techniques for Object Re-engineering’. 
As the name implies, ADAPTOR is used in projects where the aim is to migrate an existing 
legacy system to an object-based and/or component-based architecture.  
 
History 
The ADAPTOR patterns were originally mined from a series of five different migration 
projects in different business domains within the telecommunications sector beginning as far 
back as 1993. Originally, the lessons of these projects were not captured as patterns, but this 
became a conscious aim from 1995 when, at first, individual design patterns were collected in 
a catalogue. Very quickly it became apparent that other kinds of patterns, notably 
organisational patterns, were needed to deal with some of the challenges that routinely emerge 
when an attempt is being made to change an existing, brittle structure into one which is more 
flexible to change. At the same time interconnections between the individual patterns 
suggested that there was a possibility of developing less a catalogue of individual, 
“standalone” patterns and more of a pattern language whose patterns, when applied in context 
in an appropriate sequence, could “generate” solutions. The ADAPTOR project became a 
conscious one from 1996 onwards, though as mentioned above, the patterns were mined from 
projects from 1993. Incidentally, in its current version, patterns have been mined from further 
projects in rather more varied sectors such as the defence industry, the oil exploration industry 
and the retail buying industry. 
 
Refactoring 
The realisation that there existed a possibility to explore a pattern language for migration 
required more than just adding new patterns to the catalogue and rearranging existing links. 
The original patterns themselves had to be recrafted. A general effect was that existing 
patterns became much smaller, and apparently simpler (to the extent that some, when viewed 
in isolation, almost seemed simplistic) because some of the ground they had covered was now 
addressed by newer patterns that were linked to them. The language, even in its current, 
immature form is sophisticated, even complex, but that complexity is distributed through the 
language as a whole and is no longer apparent by viewing patterns in isolation.  The patterns 
below are part of that recrafting process which has already seen seven other patterns 



workshopped at EuroPlop ’99 and EuroPlop 2000. A map of the relationship between those 
patterns and the three presented below is included at the end of this paper  
 
Pattern template 
The Coplien pattern form (Coplien 1995) was adopted to present the patterns in the public 
domain (some of the patterns are held in different template form in-house by the companies 
that hosted the original projects). The relevant sections of this template are: Name, Problem, 
Context, Forces, Solution, Resulting Context, Rationale. The attractiveness of this form is that 
the Context and Resulting Context sections provide the links in the language, i.e., the 
Resulting Context of a pattern applied in a system should be the Context of the next one to be 
applied, and so on. Coplien’s form was developed to present his organisational patterns, of 
course, and ADAPTOR contains at least design patterns and organisational patterns and, 
possibly, other kinds of patterns too. Recognising this an additional section, Classification, 
has been added to the template. The emboldening of the Problem statement, which is always 
posed in the form of a question, and the first sentence of the Solution section provides 
thumbnails for shorthand descriptions of the patterns for searchability. 
 
The ADAPTOR approach to legacy system migration 
As can be readily seen from examining the patterns below, ADAPTOR’s approach to legacy 
system migration is radically different from ‘traditional’ approaches which are based on the 
application of formal methods to existing source code. Legacy systems are, by definition, 
living systems and we find it no more appropriate to use methods akin to archaeology than we 
would if they were suggested for the diagnosis of symptoms of ill-health to living organisms 
such as people. The traditional approaches, in common with all masterplan or blueprint 
approaches (see Coplien 1999 and Gabriel 2000), seek to systematically exclude the human 
dimension in favour of automation. In the context of legacy business systems this means two 
crucial factors are ignored: first, both the explicit and tacit knowledge of the system under 
redevelopment which is held exclusively in the heads of those who have developed and 
maintained it are ignored; second, the actual needs of the various classes of user of the 
system-to-be built (i.e., the ‘migrated’ system) play no part.  
 
Future work 
In placing the human dimension at the centre of its concerns, the ADAPTOR approach to 
migration is brought closer to piecemeal growth approaches to the construction of large, 
business systems. In fact many of its patterns, for example Modello below, are applicable in 
greenfield development. This realisation has resulted in a new project called Janus in which 
ADAPTOR is regarded as a subset of an  pattern language for the praxis of software 
architecture. We do not yet know whether the Janus/ADAPTOR patterns that currently exist 
indicate the feasibility of such a language though we are increasingly confident that that is the 
case. It is certain that such a language will include many more patterns than are currently 
included in the language. It is equally certain that the construction of this language will 
involve the efforts of far many more developers and pattern authors than has been the case to 
date. The next phase of this work will begin in the New Year with the publication, in book 
form, of the existing set of ADAPTOR/Janus patterns. 
 
 



 

Mercenary Archaeologist 
 
Classification 
Role 
 
Problem 
How do you deal with information in the existing documentation of a legacy system? 
 
Context  
A legacy system is to be migrated to an object or component-based architecture. Get the 
Model from the People and related problem-setting patterns have been applied. At best, 
fragmentary and unreliable documentation of the legacy system is available. 
 
Forces 
� Legacy systems worthy of the name add significant value in their current usage, and 

are often indispensable BUT they are inflexible to the needs of anticipated future 
requirements. 

�  ‘Good’ architecture requires that the nature of the software solution be shaped as far 
as possible by the nature of the problem BUT existing software assets should not be 
thrown away needlessly. 

� Traditional reverse engineering techniques rest on the notion that source code is the 
only reliable documentation of a system BUT the function of source code is to instruct 
the virtual machine, not to represent the problem space. 

� Detailed information pertaining to the current state of the legacy system can provide 
valuable insight into the problem BUT there is a danger of the existing system design 
overconstraining the new one.  

� Documentation can be useful BUT, under deadline pressure, very often it is only 
source code that is updated and cannot therefore be relied upon to describe the existing 
state of the system. 

� The people involved in using the system, those who have developed it and those who 
maintain it are the wellspring of the most valuable information about the system BUT 
detailed knowledge of the intricacies of the current implementation may include 
redundancies, “dead” data etc., which is outside of their knowledge. 

 
 
 

 
Solution 
Hire specialist resources (people and or tools) to recover the information from the code 
itself, but keep this activity off the critical path of the project. 
 
Resulting Context 
Information retrieved from system documentation and/or source code is accepted as input into 
the requirements engineering and/or specification activities but does not drive the 
development itself. Scoped by careful problem-setting using means familiar to the 
development team when it does “greenfield” development, this information can be audited, 
given its appropriate weight and designated a level of usefulness. The project as a whole 



proceeds on lines similar to a greenfield development, and scarce and expensive reverse 
engineering resources are applied selectively. 
 
Rationale  
A legacy system is not a problem, it is a possibly inadequate or misconceived solution to a 
problem. The problem itself cannot be reconstructed from code, only the details of the 
existing solution can be. Since, by definition, a legacy system migration involves finding a 
new and, hopefully, better solution to the problem a migration project should begin by using 
the same kinds of problem-centred techniques as would a Greenfield system. If object 
modelling is being used this might involve an object model of the problem space, built by 
using patterns such as Get the Model from the People.In this initial, problem-centred work, 
the legacy system need only be modelled as a black box providing services. 
 
However it is unlikely that the legacy system can be ignored completely. Firstly, if there is 
maintenance documentation it may reveal information about domain descriptions, 
requirements and even software specifications that might not otherwise be readily available. 
Secondly, a legacy migration always involves keeping some parts of the legacy in the new 
configuration (‘harvesting’) and that will involve some form of dependency and constraint 
analysis in order to identify where surgery can take place to separate it from unwanted and 
replaceable code. In either case traditional reverse engineering techniques, using formal 
methods to recover specifications from code, may be appropriate – but only as an adjunct to 
the main modelling tasks. 
 
This pattern is inspired by, and in some cases can be regarded as a specialisation of, Coplien’s 
Mercenary Analyst (Coplien 1995) applied to the specific context of legacy system 
migration. 



 
 

Reception Committee 
 
Classification 
Role 
 
Problem 
How do you downstream lessons learned in a pilot project involving ‘new’ technology 
such as objects or components? 
 
Context 
An enterprise had determined upon migrating its software technology base to object or 
component-based technology. Its current personnel are trained and have high competencies in 
the ‘old’ way of doing things. A pilot project has been announced in order to begin the 
process of familiarisation with the new technology. The aim is to migrate the whole enterprise 
to this new way of doing things. 
 
Forces 
� New skills are at a premium BUT so is working knowledge of the existing system 
� Where a technology shift means acquiring a new ‘mindset’, it is always useful to hire 

some people who already have those skills, BUT there is also the tacit business 
knowledge held by those who develop and maintain the current systems to be 
remembered. 

� It takes longer to train ‘good’ and experienced structured developers in OO and 
component-based skills than it does novices, BUT in the long term the best 
technologists will be more productive irrespective of the paradigm being used. 

� Mentoring of projects is the best way to upgrade skillsets BUT experienced 
consultants are expensive to hire if, indeed, genuine experts are available at all. 

� Risk management strategies, as well as general cost implications, strongly imply an 
incremental approach to training/familiarisation in the new technology BUT this can 
be divisive as those not initially involved fear for their futures. 

� Upskilling is a minimum condition of success for a technology adoption process BUT 
in a buyers’ market, experienced developers with newly acquired skills become targets 
for headhunters. 

 
Solution 
Select a team for qualities that include the ability of the individuals concerned to act as 
mentors in future projects. Make it clear to the entire enterprise that those involved in the 
first projects will be expected to mentor and lead future project teams. In short they will 
become the key personnel in the downstreaming mechanism. This role should be reflected in 
reward schemes with appropriate status and/or financial incentives. 
 
Resulting Context 
The major consequence of the use of this pattern is twofold: first the potential for division 
between those applying the new technology and the (initial) majority still working with the 
old stuff is minimised. The enterprise as a whole has a vested interest in both the success of 
the pilot, and of the pilot project team members in gaining confidence to help disseminate the 



new ways of working. The pilot project members themselves are given an incentive to remain 
with the enterprise after their training/familiarisation period, and overall training costs are 
lowered by minimising the reliance on hired consultants for training/mentoring. An added, 
beneficial side effect is that, as opposed to hired experts, internally grown mentors are more 
likely to interpret the use of the new technology in the context of the enterprise’s development 
culture as they downstream the new stuff. The downside is that this is a slower, if possibly 
surer, way of a critical mass of developers acquiring the necessary skills than by training them 
en masse. In the meantime (i.e., before the critical mass is reached) all of the forces described 
above have impact, with possible negative consequences. 
 
Rationale 
There is a rich experience of the use of this pattern in industry, particularly as companies that 
can be considered as early adopters of object technology took up the paradigm. ‘Object 
Centres’ often played this role. The pattern can be regarded as a specialized application of two 
of Coplien’s patterns in combination: Gatekeeper and Firewall (Coplien 1995). 



 

Modello 
 
Classification 
Problem-setting 
 
Problem 
How do you visualise an architecture at the beginning of a project, or a fragment of a 
solution, without overspecifying it? 
 
Context  
A new system is being considered, either a greenfield development or the migration of a 
legacy system to a radically new structure. Mile-Wide, Inch-Deep is being applied OR a 
‘tricky’ design problem needs visualisation in order to solve it. 
 
Forces 
� Maintaining the conceptual integrity of a system requires architectural vision BUT 

software is inherently not visualizable (Brooks 1986) 
� Standard model-driven development often demands ‘seamless’ iterative changes to a 

single model through the various phases of development BUT this implies the gradual 
erosion of the original idea 

� Using drawings are a general way of abstracting aspects of difficult problems so that 
potential solutions can be envisioned BUT overuse of drawings can lead to abstract, 
unfeasible solutions being produced 

� Symbolic modelling (e.g., ‘analysis and design’ with UML) standards exist for visual 
modelling BUT these are often tied to heavyweight processes (such as the Unified 
Process) which mandate drawings for reasons other than visualisation, e.g., 
specification, documentation, code generation and so on 

 
Solution 
Develop a model that projects the architectural vision of the system (or subsystem) to be 
built, but only to the level of detail that allows the next step to be taken. Where used to 
envision the architecture, keep the modello and maintain it separately from the formal 
documentation of any models used in the development phases, but require correspondence 
constraints to be put in place between these models and the modello. Where used for 
visualisation of particular problems, there is no requirement for maintaining the modello once 
it has achieved its purpose. Although formal notations such as UML can be used to depict a 
modello there is no requirement for completeness in any diagrams that describe it because it 
acts only as a visualisation. The test for its usefulness is the ability of developers to take the 
next and subsequent design choices based upon it, not its executability, its formal correctness 
or any other such  test as might otherwise be required by the following: 
� Specifications of software (either for manual coding or code generation) 
� Descriptions of the (built) systems or sub-systems 

 
Resulting Context 
As an envisioned architecture, a point of reference is created for all future design decisions in 
the development process. The model acts as a visualisation of the architecture, nothing more 
and nothing less. Particularly in the context of Mile-Wide, Inch Deep (which provides a 



global structure to the evolving system) and of the Keeper of the Flame role pattern (the 
Keeper is the role responsible for facilitating interpretation of the architecture), changes to the 
architecture necessitated by detailed design decisions or by external constraints can be 
negotiated as the system’s structure is specified. 
In more general use Modello frees programmers and other developers from the constraints of 
notation semantics, the need for formal correctness etc., in producing drawings primarily for 
their own use and designed only to see them through to the next step in their work. 
In general the pattern separates out drawings that are needed, or may simply be useful, to 
visualize solutions from those needed to provide detailed specifications, descriptions etc., in 
line with formal Quality Assurance or other standards. It complements Mercenary Analyst 
(and Mercenary Archaeologist) and lays the basis for their use. 
 
Rationale 
Modello was the term for the scale model often presented by, for example, renaissance 
architects to the panel of judges in open competitions for the contracts to build churches, 
palaces, cathedrals etc. The adopted scale model would often be placed in a knave or chapel 
as a cathedral was built around it both as reference for the various kinds of builders working 
on it, and as an  advertisement to the general public as to what it would eventually look like.  
It was a visualisation of the building that represented a requirement  rather than a detailed 
specification of the construction. Indeed, in the famous case of the dome of Florence’s 
cathedral the engineering problem of how to construct it went unsolved for many years before 
Filipo Brunelleschi presented his famous, innovative solution despite being reflected in the 
original modello of the cathedral for decades beforehand. 
 



Archetype
Keeper of the Flame

Mile-wide, inch deep

Lessons of
Folklore

Get the model
from the people

Reflective
Organisation

Modello

Time-ordered
coupling

Technology
Reception
Committee

Scenario-Buffered
System

Mercenary
Archaeologist

 

Role
Structural

Philosophy of Construction

Problem setting

Problem setting

Problem setting

Problem setting

Structural

Role

Problem setting

Role

 
 
ADAPTOR patterns 
The above patterns have been workshopped at EuroPlop conferences between 1999 and 2001. 
The wavy arrows indicate links that are be populated by other patterns (as yet 
unworkshopped, or in other public domain catalogues and languages). Each has been ‘rubber 
stamped’ with its classification. Note that Lessons of Folklore was originally entitled Pay 
Attention to the Folklore and Scenario-Buffered System was called Buffer the System with 
Scenarios when first workshopped. 
 
 
 
 
 
 
 
 
 
 



 
References 
(Brookes 1986) Brooks Jr., F.J. 1986. “No Silver Bullet” in  F.J. Brooks Jr. Mythical Man-
Month. Reading, Mass: Addison Wesley 
(Coplien 1995) Coplien J. O. 1995. A Generative Development-Process Pattern Language in 
J.O. Coplien and D.C. Schmidt (eds.)1995. Pattern Languages of Program Design. Reading, 
Mass: Addison Wesley 
(Coplien  1999) “Re-evaluating the architectural metaphor – Towards piecemeal growth” in 
IEEE Software. Special issue on Software Architecture. October 1999. pp.40-44 
(Gabriel 2000) Gabriel R.  “Mob Software – the erotic life of code”. 2000. Essay presented at 
OOPSLA 2000. Minneapolis, Minn. 


	Three Patterns from the ADAPTOR Pattern Language
	Introduction
	History
	Refactoring
	Pattern template
	The ADAPTOR approach to legacy system migration
	Future work
	Mercenary Archaeologist
	Context
	Forces
	Solution
	Resulting Context
	Rationale
	Context
	Forces
	Solution
	Resulting Context
	Rationale
	Solution
	Resulting Context
	Rationale

