
Step out of integration hell –
Protocol Interception Wrapper

Christian Wege
DaimlerChrysler AG

+49 711 17 92952
wege@acm.org

DaimlerChrysler is a typical IT user rather than an IT producer. We try to base our application
systems development on the integration of existing components rather than on custom made
solutions. This is part of our effort to limit the number of different technologies within the
company. Otherwise they would build up a huge pile of legacy. In our daily work as a
strategic IT department this means that we have to find ways to integrate new technologies or
products with our infrastructure already in place. Some of the best insights into this job stems
from application development projects in which we are involved as part of our job. The
Protocol Interceptor Wrapper pattern is the first of a series of patterns which help you to step
out of integration hell.

Protocol Interception Wrapper

Context
You build your application from existing commercial-of-the-shelf components. Some of those
components can be plugged together via a well-defined interface (like the ones in the Java 2
Enterprise Edition specification) but they are from different sources or vendors (i.e. a hosting
system talks to the plugged-in component which implements the interface). For example you
might want to understand the details of the protocol between an application server and a
JDBC database driver.

Problem
How do you find out how to configure the plumbing mechanism of a hosting system so that it
talks correctly to a plugged-in subsystem?

Forces
• Knowing the interface definition between two components is not enough to plug them

together if you don’t know the specifics of the plumbing mechanism.

Application
Server

JDBC Driver



• A detailed documentation of this case might not be available (e.g. a combination of
components not anticipated by the vendors) or is out of date.

• The definitive specification of the specifics is the source code but it might be unaccessible
to you or too complex to understand.

• The configuration options of the hosting system is the main limiting factor for the
applicability of this pattern. It must be possible to configure another subsystem instead of
the original one.

• The interface may not be well designed which makes it hard to reveal the meaning of the
protocol elements.

• To understand the protocol dynamics you have to follow the single steps manually. With a
complex protocol this can very easily get intangible.

Solution
In place of the original subsystem plug in an interception wrapper which talks the same
protocol as the original subsystem. This interception wrapper injects it’s logging calls and
delegates all calls from the hosting system to the original subsystem. The interception
wrapper works much like a specialized proxy which stands in for the original subsystem.
[Gamma+95].

Try different configurations of the plumbing mechanism of the hosting system and make it
run to see the effects on the dynamics of the protocol between the hosting system and the
plugged-in subsystem. Backtrack from what you expect as input for the plugged-in subsystem
to configure the plumbing mechanism correctly in the hosting system.

Examples
We had to configure a database JDBC driver plugged into an application server (see figure)
and didn’t have documentation on how to configure the application server to provide the
database driver with the right arguments. The JDBC driver needed a connection string which
was put together by the application server based on some configuration parameters. For being
able to provide the application server with the right configuration parameters we needed to
understand how the connection string was constructed from these parameters inside the
plumbing mechanism of the application server. With the Protocol Interception Wrapper we

could set breakpoints at the relevant delegation methods and examine the actually provided
parameters. We found out how the connect string and was constructed by the plumbing
mechanism of the application server.

Application
Server

JDBC Driver

Protocol
Revelation

Interceptor



In another case we had to understand the protocol between the user manager and the internet
portal application framework. The user manager of this framework is responsible for the user
and security management of the portal. Our job was to change the authentication to go to
another system but keep the rest of the user manager. From reading only the interface we
didn’t have enough insight to understand the protocol. With the help of the wrapper we could
analyze the dynamics of it.

JInsight is a tool from the IBM alphaworks site to better understand what a Java program is
doing [JInsight]. This tool uses an instrumented Java VM to intercept the calls between the
components.

COM+ uses interceptors to add transactional capabilities to server-side components. The
wrapper intercepts every call to the component to inject the calls to the transaction manager -
transparent for the component. [Raj99]

Resulting Context
The Protocol Interception Wrapper pattern provides the following benefits:
1. Minimal modification of hosting system (Host).This pattern work independent of the

logging or debugging capabilities of the hosting system. The only necessary feature is that
the plugged-in subsystem can be configured.

2. No modification of plugged-in subsystem. The plugged in component can be used as is. No
debugging or logging capabilities are necessary. Thus the component is used in a way
very close to a productive operation.

3. Statistical analysis possible. Introducing the wrapper into a running system allows to run a
large number of tests across the protocol and to analyze the resulting data with statistical
methods.

There are some liabilities of the pattern:
1. The complete Protocol interface has to be implemented by Interception Wrapper.

Implementing an interface means to implement every declared method. This could mean
much work for debugging potentially only one method call. As a workaround the
PluggedComponent could be subclassed if possible. Then only the relevant methods have
to be redefined. Instead of delegating the accepted method calls to a private instance of the
plugged component the every redefined method calls its superclasses method. However
this workaround only works if the plugged component can be extended in this way.

2. Introducing the Interception Wrapper might degrade the performance of the system. The
additional level of indirection itself consumes performance. More important is to
implement the logging in a performant way. Simple output to the system console or to a
file might be too expensive.

Related Patterns
The interceptor is some kind of Proxy which adds the functionality of making the dynamics of
the protocol visible. Kent Beck writes about an effort to refactoring the protocol between two
classes in [Beck96]. Schmidt describes the Interceptor architectural pattern which "allows
services to be added transparently to a framework and triggered automatically when certain
events occur" and the Component Configurator pattern which "allows an application to link
and unlink its component implementations at run-time without having to modify, recompile,
or statically relink the application". [Schmidt+00]



Credits
At ECOOP 2000 Wim de Paauw explained me some details about JInsight. Klaus Kiehne
showed me the fastest way to create a custom JDBC driver as described in the examples.
Special thanks to Klaus Marquardt who shepherded this paper.

References
[Beck96] Kent Beck: Smalltalk Patterns: Best Practices. Prentice Hall, 1996.
[Gamma+95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:

Elements of reusable Object-Oriented Software. Addison-Wesley,
1995.

[JInsight] JInsight at alphaworks. Online at
http://www.alphaworks.ibm.com/tech/jinsight

[Meszaros+98] Gerard Meszaros, Jim Doble: A Pattern Language for Pattern Writing.
In Pattern Languages of Program Design 3, Addison-Wesley, 1998.

[Raj99] Gopalan Suresh Raj: COM+, 1999. Online at
http://www.execpc.com/~gopalan/com/complus.html

[Schmidt+00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for concurrent and
Networked Objects. Wiley&Sons, 2000.


