Java ldioms: Exception Handling

Arno Haase
Arno.Haase@acm.org
Arno.Haase@Haase-Consulting.com

Abstract

Exceptions are a powerful feature for the propagation and handling of failure of operations.
Naive use of exceptions however introduces subtle complexity into a system due to the non-
local nature of throwing an exception.

This paper presents a pattern language of eleven Java idioms which serve as a framework for
using exceptions. The patterns help to balance the forces that the overall complexity must be
limited, that the code must be modifiable and extensible, the source code must be clear and the
overall system must be robust.

| ntroduction

In procedural programming languages like C, the usual way to communicate failure of a func-
tion call isto use the return value. A specia value - often nul | or - 1 - indicates failure of the
operation.

In order to handle every such potentia failure, the calling code has to check the return value of
every single function call, resulting in heaps of i f statements throughout the code. This
spreads the handling of failures and errors throughout the entire application, making it difficult
to understand and test as well as easy to get wrong in the first place.

Especialy the propagation of failure up the call stack is rather painful to implement because it
must be carefully donein every single function. As aresult, failure propagation is often conve-
niently forgotten; developers implement local handling of the failure as nothing more than a
logged message, hoping against hope that everything will work out fine.

But what does this have to do with Java programming? After al, Java is a modern language
which has exceptions as alanguage feature. Using the built-in exception mechanism, error and
failure handling is a piece of cake, the problem is solved once and for all. Using exceptions,
error handling is easy. But isit?

WEell, exception handling certainly allows a better separation of failure handling from the main
flow of the program, making the source code both shorter and easier to read. But throwing an
exception is apowerful way to affect control flow with high inherent complexity. It hasalotin
common with anon-local got o statement jumping to an unknown target in another method.

This raises two issues. Firstly, thereis exception safety: If an exception isthrown, the program
must make sure that all necessary clean-up operations are performed, particularly freeing any
resources that were alocated for the operation. This important aspect is treated separately in
the next chapter.

Secondly, there is exception organization. The mechanism that is used for notification of fail-
ure couples the caller to the called method. Exception throwing is non-local in nature, so this
coupling is not very strong. But then it is not very straightforward either.

There are two conflicting forces at work that make thisissue difficult. On the one hand, if cli-
ents know about the details of the exceptions that are thrown then a big system can become
difficult to change. If for example the persistence layer of a business system uses arelationa
database and the SQLExcept i ons are propagated all the way up and caught in the presenta-
tion layer then the presentation layer directly depends on details of the relational database that
isused. In such a system, changing an implementation in one place results in subtle changesin
many other places.

But on the other hand, clients often need to handle exceptions that are thrown somewhere fur-
ther down the call stack, so they need to know something about the exceptions that are thrown
by code that they use.

This chapter is about building systems where exceptions pull their weight separating the nor-
mal flow from the handling of failures without introducing subtle non-local coupling that gets
in the way of evolving and maintaining the system.

The Pattern Language

The pattern language in this chapter consists of eleven patterns; the figure below gives an
overview of the patterns. The arrows between the patterns express how the resulting context of
some patterns are part of the problem that other patterns solve. Grey ovals stand for patterns
from other chapters that are referenced but not included in this chapter.

Expressive
ception I nterfacg
Throwing
Server
Homogeneous Checked
Exception Problem
Exception Smart
Wrapping Exception

Enumeration
Class

Unchecked
Client Problem
Exception
Tunneling

Unhandled
Exception

Exception
Hierarchy

The starting point of this pattern language is EXPRESSIVE EXCEPTION INTERFACE which intro-
duces the concept of exceptions as an explicit part of the interface of a class or package.

THROWING SERVER describes when a method should throw an exception as part of an expres-
sive exception interface and when it should attempt to handle failure locally.

The cause for an exception that is thrown by a method can either be an UNCHECKED CLIENT
PrROBLEM if the failure is caused by faulty client behavior or a CHECKED SERVER PROBLEM if
the problem lies inside the method.

If CHECKED SERVER PROBLEM is used extensively, many checked exceptions tend to accumu-
late in method signatures far up the call stack, creating unwieldy interfaces that expose imple-
mentation details. HOMOGENEOUS EXCEPTION addresses this problem by throwing only a
single checked exception, and EXCEPTION WRAPPING shows how to maintain the details of the
original exception.

EXCEPTION HIERARCHY and SVMART EXCEPTION are a pattern pair showing ways to equip
exceptions with information so that handling code can handle different exceptions differently.
EXCEPTION HIERARCHY uses specialization through inheritance and provides a loose coupling
between different types of failure whereas SMART EXCEPTION introduces an ENUMERATION
CLASs (53) asafield so that all cases are defined inasingle class.

A TUNNELING EXCEPTION isaway to propagate a CHECKED SERVER PROBLEM through frame-
work code that does not contain the checked exception in its method signature.

UNHANDLED EXCEPTION shows away to postpone actually implementing exception handling
for a CHECKED SERVER PROBLEM without the full risk of creating empty catch blocks even
temporarily.

And finally, SAFETY NET serves as a counterweight to THROWING SERVER by describing how
a default handler can be installed that catches and handles unchecked exceptions that dip
through regular handling code.

Each of the patterns solves a distinct problem, but they are most useful if they are applied
together. As a whole, the pattern language describes a proven and useful way to organize
exception handling in large Java systems.

EXPRESSIVE EXCEPTION INTERFACE

Handling exceptional and error conditions is inherently complex. Therefore make exception
handling an explicit part of the design at the method, class, package and system level.

Problem

Naive ad hoc decisions about how failure is handled lead to tangled code that is difficult to
maintain or extend. Clients are tightly coupled to the implementation of the methods they call,
and changes of a method implementation force changes of the method signature, causing other
changes throughout the system.

Worse ill, the non-local nature of exception throwing means that some of the necessary
changes in seemingly unrelated parts of the system tend to go unnoticed. At best, the result is
the surprising appearance of subtle bugs during system testing, at worst the bugs make it into
production and crash the system at a very inconvenient moment.

There are several aspects of the problem that make it more difficult to solve.

Firstly, the handling and propagation of failure and error conditions is usually inherently non-
local so that any local approach has only limited usefulness.

Then, errors that occur can typically not ssimply be ignored - some sort of handling is usually
called for. But often such handling is not sensibly possible where the error is noticed, so some
sort of notification is necessary.

Clients need to know what can go wrong in code they are calling so they can handle errors
appropriately, but the naive use of exceptions creates a dependency on the implementation
rather than the interface.

And exceptions that methods can throw become part of the interface of a class; for checked
exceptions this is explicit whereas for unchecked exceptions it happens implicitly. The actua
throwing of the exceptions however is dispersed throughout the implementing code. Therefore
changes of the implementation have a tendency to cause different exceptions to be thrown,
resulting in a changed interface.

Error handling and propagation is so deeply engraved in the source code of a system that it
takes very significant effort to change it after the initial stages of implementation. Refactoring
often does not work well here. Firstly the changes are quite onerous, requiring thought rather
than mechanistic repetition. And secondly, test coverage for error handling is typically not
quite as good as for functionality, adding risk to effort.

Solution

Treat exceptions as full members of the interface - not only at the method level but also for
classes and particularly for packages and subsystems.

Since exceptions create subtle coupling, actively manage this coupling. During design plan-
ning at all levels, take the propagation of failure into account. Decide on an exception strategy
at the architectural level, and make sure there is understanding and consensus on it in the
entire project team.

The coupling caused by exception throwing should be taken as seriously as coupling caused in
any other way. Therefore, exception handling should be included in the architectural planning.

This has the benefit that laying down a system-wide policy for the use of exceptions makes it
possible to address the non-local issues of exception throwing. The throwing, propagation and
handling of exceptions can be adjusted so that they fit together well.

Planning and documenting high-level use of exceptions also help to avoid situations where a
programmer is confronted with an error condition without seeing how to either handle it or
propagate it. Since there are rules and examples for the use of exceptions, developers have
help integrating their exception concerns with the rest of the system.

Then, dealing with exception handling at the global level makes it possible to strike informed
trade-offs between the need to notify clients and the resulting coupling.

Explicitly designing exceptions at the class and package level alow the “exception interface”
which is visible to clients to be isolated from implementation details, making it stable even
when significant changes are made to the implementation.

And thinking about exception handling right from the beginning allows an informed choice to
be made as to how much up-front planning is warranted for a particular system and to what
degree this aspect can be refactored | ater.

Any form of error propagation and error handling introduces a coupling between source and
handler of the error, but several other patterns in this pattern language help to reduce or man-
age the coupling introduced through exceptions.

THROWING SERVER addresses the question which failures to propagate to the caller at al.
CHECKED SERVER PROBLEM and UNCHECKED CLIENT PROBLEM discuss the trade-off between
checked and unchecked exceptions and the different kinds of coupling between a method and
itscalersthey create.

The question of how to uphold encapsulation for the exception interface is addressed by
HOMOGENEOUS EXCEPTION; thisis especially relevant for packages and subsystems.

Exceptions for which handling code does more than print a message string in some way can be
implemented with SMART EXCEPTION in order to reduce coupling by convention between
caller and handler.

And SAFETY NET shows how a default handler for unchecked exceptions that would otherwise
not be handled can be installed, reducing the risk of loose coupling between throwing and han-
dling code.

These patterns help to strike the right balance in the strength of coupling, on the one hand
allowing encapsulation so that different parts of the system can be changed independently of
each other and on the other hand upholding a sufficiently strong coupling to alow reasonable
handling of exceptions.

THROWING SERVER

In order to create an EXPRESSIVE EXCEPTION INTERFACE, let the caller of a method deal with
exceptions that can not be locally handled in a satisfactory way.

Problem
It isafact of life that things go wrong.

Sometimes a method can address a problem locally, for example by substituting default values
if a configuration file is not found. But more often than not, a problem cannot be completely
resolved where it first occurs, smply because there is not enough information available.

For example, consider a business component that is asked to update a specific record. If it can-
not do so because constraints are violated, it has no way of knowing how to handle the prob-
lem. That is a natural consequence of good separation of concerns - a customer management
component does only one thing and does that well, and itsinterface is not cluttered with issues
which are unrelated to its primary purpose.

It is obviously evil to silently consume an exception that indicates failure of the operation:

// BAD CODE - the exception is ignored and consuned
public voi d updat eCustoner (String id, CustonerData newRecord)
{

try {
. I/ performthe actual update in the database
}

/1l the exception is silently ignored, and calling code
/1l has no way of knowing if the operation was successful
catch (SQ.Exception exc) {}

Another more subtle but no less common way of achieving the same misbehavior is to first
perform avalidity check and not notify calling code if that fails:

/1 BAD CODE - silently ignores invalid data
public voi d updateCustomer (String id, CustomerData newRecord)
{
if (! isvValid (newRecord)) {
/1 silently abort the operation w thout notifying the
/] caller
return;

}

. I/ performthe actual update operation

}

Both these scenarios share the fundamental flaw of attempting to hide failure from the caller
without being able to completely handle it localy. Calling code is presented with the fiction
that every operation completes successfully, and in the rare but important case of failure there
isno oneto handleit.

So how should failures be addressed that can not be handled locally?

Solution

Notify the calling code by throwing an exception. Use UNCHECKED CLIENT PROBLEM if the
exception was caused by the client, for example because erroneous data was passed in as a
parameter. Use CHECKED SERVER PROBLEM in all other cases.

Make sure that only those exceptions are thrown which can not be handled locally in a mean-
ingful way.

If there is default behavior associated with the failure, consider returning a NuLL OBJECT (?77?)
as an alternative to throwing the exception.

Throwing an exception to notify calling code of afailure has several benefits. Thereisno dan-
ger of the failure going unnoticed, even if the immediate caller does not handle it. Exceptions
can hold data regarding the details of the underlying failure, but this datais encapsulated in the
exception class, and changes to the exception class concern only throwing and handling code
and are transparent to code between them.

And exceptions are automatically propagated by the VM as opposed to the cumbersome cas-
cadesof i f statements required for error codes as return values.

Using exceptions to notify callers of failure has no liabilities in and of itself. But there are
some aspects that can become problematic because throwing exceptions seems to be so easy.

One such aspect isthat it is convenient to ignore exception handling entirely and just throw an
exception and let callers worry about handling the problem. It is often appropriate to notify
callers of afailure rather than trying to hush it up, but there are cases where some handling is
appropriate before declaring an operation to be failed. Network code for example should often
retry an operation or wait for a timeout before throwing an exception. And if there is an I/O
problem when saving afile, the operation could prompt the user for another file name before
throwing an exception.

For these reasons it is important to strike a balance. It is necessary to notify callers of failure,
but it is equally important to implement a “caller-friendly” definition of failure by handling
locally what can be handled locally. Thisis the mark of a good interface that encapsulates an
abstraction well.

It is also easy to forget the complexity of the non-local goto caused by exceptions. Again, this
complexity is not per se aliability of using exceptions because non-local control flow isinher-
ent in handling failure. But exceptions are easy to use in Java, and that can result in careless
use of them. The end result can be trouble, especialy for large systems.

A perceived obstacle to the use of exceptions is the notion that they introduce significant per-
formance overhead. Thisis not true for the normal case: If no exception isthrown, there isno
performance overhead at al. In the case of failure, performance is typically much less of an
issue because failure occurs much less frequently; as usual, the best approach to performance
optimization is to put clarity and simplicity first and optimize only if necessary.

CHECKED SERVER PROBLEM

Use checked exceptions to express possible failures in a THROWING SERVER interface that
have their root cause in the inner workings of the operation rather than invalid input by the
caler.

Problem
In order to use aclassit is necessary to know and understand what it does.

This is obvioudly true for the functionality, but it also holds for the question of how failureis
handled and propagated. In order to write code using a class, it is necessary to know what can
go wrong and which exception is thrown.

How can this be expressed in the source code?

Source code comments tend to get out of date. So while they some help in documenting and
illustrating failure modes, it is desirable to express them in away that is more directly coupled
to the source code and its changes, and preferably supported by the compiler.

Further, every client needs to address the handling of failure of amethod it calls. If it does not,
subtle errors tend to result that have a nasty tendency to slip through testing unnoticed and
become apparent only after the system has been released. Preferrably away of expressing pos-
sible failures of a method should let the compiler force clients to address them.

Solution

Use checked exceptions (exceptions that are not subclasses of Runt i meExcept i on and must
therefore be declared in the t hr ows clause of a method) to notify callers that the operation
failed. That way, it is explicit and obvious both in the source code and in the generated Java-
doc comments which exceptions a method can thrown.

In the example of the customer management component which was introduced for THROWING
SERVER, the updat eCust omer method should be declared to throw a checked exception,
making it explicit in the method signature how invalid data is handled. The following source

code presupposes the existence of a checked Const r ai nt Vi ol ati onExcept i on which is
used for this purpose:!

/1 signature comment explicitly expresses howinvalid data is

/1 handl ed, but without a javadoc coment the details are

/1 left to the reader’s imagination

public voi d updateCustomer (String id, CustomerData newRecord)
throws ConstraintViol ati onException

{

if (! isvValid (newRecord)) {
/1 notify the caller
t hrow new ConstraintViol ati onException ();

}

. I/ performthe actual update operation

}

Declaring to throw checked exceptions forces every client to take into account that an opera-
tion can fail, either handling it themselves or again explicitly declaring to throw it. Because of
this, the compiler ensures that there is a handling cat ch statement for every checked excep-
tion.

Having checked exceptions in a method signature also provides documentation about which
exceptions can be thrown. Sometimes the type of the exceptions even suggests when and in
what ways they are thrown - for example, having an SQLExcept i on in the signature of a
readCust omer method strongly suggests that all SQLExcepti ons occurring inside the
method are propagated.

But usually additional information should be supplied about the details of when the exception
isthrown, and the @ hr ows JavaDoc tag is useful for just that; the following listing shows the
method signature of the updat eCust omer method, but this time with an explaining JavaDoc
comment:

/1 JavaDoc comment using "@hrows" to provide details about

/1 an exception

[** ..
@ hrows ConstraintViol ati onException if the data in the

newRecord paraneter is not valid.

*/

public voi d updat eCustoner (String id, CustonerData newRecord)
throws ConstraintViolationException

{

If amethod declares to throw a checked exception under certain circumstances, it is important
that the checked exception is thrown consistently. The code must for example be written in
such away that no Runt i meExcept i on isaccidentally thrown instead of the checked excep-
tion.

1. Thissource code example does not perform industry strength checking; it is simplified to illustrate
the underlying idea. The separate check approach works for simple sanity checks or authorization
checks, but it isinsufficient for ensuring that a subsequent update of the database is going to be valid.
The main issue is that the checking must be performed in the same transaction as the update.

It is particularly easy to accidentally throw aNul | Poi nt er Except i on because of uninitial-
ized references; the following listing gives an example how explicit checks can be used to
avoid this:

/1 this inplementation must take care that invalid input
/1 does not accidentally cause a Nul | Poi nt er Excepti on to be
/] thrown
public bool ean isValid (CustomerData newRecord)
{

// without the first check, the second check coul d

/1 throw a Null Poi nterException instead of causing

/] 'false to be

if (newRecord.get Name() == null |

newRecord. get Name() .| ength() > MAX_NAME_LENGTH) {
return fal se;

}
}

. I/l further checks and the actual update

The benefits of checked exceptions can be summarized by saying that their use provides docu-
mentation and ensures that exceptions are handled. There is however a downside to this,
namely that using checked exceptions reduces flexibility. Other patterns of this pattern lan-
guage help to address this.

If all methods simply pass through all unhandled exceptions, there tends to be a proliferation
of checked exceptions near the top of the call stack, and many method signatures must be
changed if the implementation of a method far down the call stack is changed to throw an
additional checked exception. HOMOGENEOUS EXCEPTION addresses this problem.

Sometimes it is desirable to postpone implementing the handler for a checked exception until
the throwing method is more mature, but the compiler prevents this. UNHANDLED EXCEPTION
shows away out of this dilemma.

Java does not allow an overriding method in a subclass to throw checked exceptions that are
not declared in the superclass; that can lead to problems if the superclass is part of a library
and can not be changed, especialy if the subclass method is called from a framework. TUN-
NELING EXCEPTION shows a way how checked exceptions can be thrown “through” unknow-
ing code.

And finally, SWART EXCEPTION and EXCEPTION HIERARCHY discuss how handling code can
preform different operations based on detailed information about why an exception was
thrown.

HOMOGENEOUS EXCEPTION

If CHECKED SERVER PROBLEM is extensively applied, method signatures have a tendency to
be cluttered with many different checked exceptions, making exception handling complex and
counterintuitive. To resolve this, introduce a new exception class and have all methods of a
class or package declare only this.

Problem

Using CHECKED SERVER PROBLEM shows explicitly which exceptions are thrown in a method,
making the code communicative and helping to prevent forgotten exception handling.

As a system grows, however, the lists of thrown exceptions tend to become long and unintui-
tive as exceptions that are thrown further down the call stack are propagated. This effect
occurs at the method, class and package level.

If a single method naively passes all checked exceptions which it does not handle on to its
caller, aproliferation of exceptions tends to occur on the way to the root of the call stack, and
in the highest layer of a layered architecture, methods would tend to have just about every
checked exception in the whole system in their list of thrown exceptions. The following artifi-
cia example shows how such an accumulation of exceptions occurs unless countermeasures
aretaken.

/1 BAD CODE: all checked exceptions are directly propagated
/1 to the caller, making the list of thrown exceptions very
/1 unwi el dy
public void witeNanme (String nane)

throws | CException, Cl assNot FoundExcepti on,

NoSuchMet hodExcepti on, NoSuchFi el dException, SQ.Excepti on

Logger.log ("doSormething"); // throws | OCException

/1 uses reflection and throws C assNot FoundExcepti on,
/1 NoSuchMet hodExcepti on, NoSuchFi el dExcepti on
Persi stenceFramework.init ();

/| accesses the database and throws SQLException
updat eNane (nane);

}

This confronts calling code with awhole lot of possible exceptions, al of which must be han-
dled or propagated. The only way to handle them in asingle cat ch block isto catch Excep-
ti on itself, catching all other exceptions as well.

The exceptions that are thrown are also at another level of abstraction than the rest of the
method: While they give detailed information about what went wrong, they are not very help-
ful for understanding the significance of the failure. For example, if afailed initialization is
signalled by throwing a Cl assNot FoundExcept i on and client code handles it in this way,
that may lead to surprising bugs if another method that is by some chance called close to the
initialization also throws a Cl assNot FoundExcept i on but for an entirely different reason.

Having the internally thrown exceptions in the t hr ows clause of the method also breaks
encapsulation because the list of exceptions publicly announces information about the kind of
method calls that are made in the implementation. So changes to the implementation poten-
tially affect the method signatures of all calling method, making the code much harder to mod-
ify or refactor.

At the class level, an additional effect further reduces comfort. Even if all methods in a class
can throw only one checked exception each, using the class is painful if these exceptions are
different. The reason is that client code often calls not only one method on an object but sev-
eral, and adding a method call on an object which is already used is one of the more frequent
changes performed on code. If each additional call means reworking exception handling,
potentially far up the call stack, this adds significant effort to otherwise simple changes to the
code and stands in the way of effortless refactoring.

The net effect is that the interface of aclassis not cohesive if checked exceptions are growing
rampant:

// BAD CODE: Different methods throw di fferent exceptions,
/1 making usage of the class awkward
cl ass NaneManager {

public String readName () throws | OException {

}
public void witeName (String nane) throws SQLException {

}

publ i c bool ean isValidName (String nane)
throws Cl assNot FoundExcepti on

{

_
}

A client using such a classisforced to catch severa seemingly unrelated exceptions and dupli-
cate exception handling code for each of the cat ch blocks. The exception classes are unre-
lated to each other as well as to the abstraction of the class interface, making the source code
difficult to read.

/1 Code using NaneManager. Witing and changing the code is
/1 awkward because different methods throw different
/| exceptions
NaneManager nanmeMgr = new NaneManager ();
try {

if (naneMyr.isValidNanme (name)) {

nameMyr. wi t eNanme (nane);
}

}
catch (SQ.Exception exc) {

\

catch (Cl assNot FoundException exc) {
. /] duplicated exception handling code

}

At the package levdl, this effect is even more pronounced. Clients using a package usually are
not interested in its implementation details. They do not want to spend much effort under-
standing awide variety of exceptions thrown under varying conditions.

So how can a smple and stable exception interface be achieved if a variety of exceptions
occur that cannot be handled locally and therefore need to be passed to the caller?

Solution

Create a single checked exception and have al methods declare to throw only this. Internally,
tranglate all checked exceptions to this new, homogeneous exception, for example using
EXCEPTION WRAPPING to maintain the original information.

This makes the class or package simpler and more intuitive to use because clients need not
worry about handling different kinds of exceptions. Instead, there is a single checked excep-
tion which is at the same level of abstraction as the interface which declaresto throw it.

It is often handy to use a single homogeneous exception across several packages that arein
some way related, for example because they belong to the same layer in alayered architecture.
That makes the group of packages ssimpler to use for clients and underscores that they together
make up a bigger something.

Often clients are not interested in details about afailure; it is sufficient for them to just know
that an exception occurred. If clients need more detailed information about the kind of failure,
SMART EXCEPTION or EXCEPTION HIERARCHY can be used to give clients additional details
without giving up the single homogeneous exception.

The following source code illustrates the use of a single homogeneous exception for the
NameManager example of the problem section; all checked exceptions are wrapped in asin-
gle Fai | edBusi nessOper at i on (the definition for this checked exception is straightfor-
ward and was left out):

/'l Honbgeneous Exception was applied: Now all methods
/1 throw a single checked exception which can contain
/1 the original exception
cl ass NaneManager {
public String readName () throws Fail edBusi nessOperation {

try {

}
catch (1 CException exc) {

t hrow new Fai | edBusi nessOper ation (exc);
}
}

public void witeNanme (String nane)
throws Fail edBusi nessCperati on

{
try {

}
catch (SQ.Exception exc) {
t hrow new Fai | edBusi nessOper ation (exc);
}
}

publ i c bool ean isValidName (String nane)
throws Fail edBusi nessQOperati on

{
try {

}
catch (Cl assNot FoundException exc) {
t hrow new Fai | edBusi nessOper ation (exc);
}
}
}

This example illustrates the genera way to implement HOMOGENEOUS EXCEPTION in a
method. The body is enclosed in atry block which is followed by cat ch blocks for all
checked exceptions that can occur. All other exceptions are handled by throwing an instance
of the homogeneous exception. Of course the homogeneous exception can be thrown for other
reasons than an exception further down the call stack.

Exception handling in code using the NanmeManager now is much simpler, and the code is
easier to understand because the exception is at the same conceptual level as the rest of the
interface of NameManager .

/1 Code using NaneManager. The honpbgeneous exception nakes
/1 the usage sinpler and cl earer
NameManager nameMgr = new NameManager ();
try {

if (naneMyr.isValidNane (nanme)) {

naneMgr. wi teNanme (nane);

}

}

catch (Fail edBusi nessOperation exc) {

}

Wrapping all checked exceptions of an interface in a single, homogeneous exception has sev-
eral benefits. First of al, there is only a single exceptions which clients need to address.

The interface is also more homogeneous as a whole because the exception is at the same con-
ceptua level asthe method calls; callsto the methods and exception handling in client code fit
together and make sense together.

Using a single homogeneous exception also encapsul ates implementation details: If theimple-
mentation of amethod is changed so that an additional checked exception can occur inside the
implementation, this additional exception is simply also wrapped in the homogeneous excep-
tion, and the method interface remains unchanged.

These benefits however come at a price which istypical of encapsulation in general. Encapsu-
lation makes the interface simpler to use and more robust against implementation changes, but
the interface becomes less transparent. Clients have lessinsight and control over what is actu-
ally happening inside the method.

If an interface is very mature and well designed, this is often not a problem - it is for example
not necessary to understand the implementation details of the j ava. i o package in order to
use it. But if the interface is less mature, encapsulation can come in the way of development,
forcing at least an ongoing refactoring of the interface.

Therefore applying this pattern poses an additional responsibility on the specification of inter-
faces, especiadly if they are published in some way so that they become difficult or impossible
to change.

SMART EXCEPTION

If clients need details in order to handle an exception which is caused by a CHECKED SERVER
PrROBLEM and there is a fixed number of different cases that need to be handled differently,
create an ENUMERATION CLASS (53) for these cases and give the exception a field of the enum

type.

Problem

Clients catch and handle exceptions based on the exception class; the parameter of thecat ch
clause specifies an exception class, and it catches only those exceptions which are assignable
to this exception class. This allows client code to handle exceptions selectively. Exceptions
with different classes can be handled in different places, using different handlers.

But sometimes a client handling an exception needs additional information to handle the
exception.

For example, alogin may be denied for several reasons - the id/password combination may be
wrong, the authentication server may be down, or the user account may be temporarily dis-
abled. And if login failure is propagated using an exception, a client handling the exception
would need to handle these cases differently.

In this case, the following forces apply. All different failure modes are always caught and han-
dled in the same place. There is no situation in which only a subset of the cases needs to be
handled and other cases need to be propagated further up the call stack.

All different failure modes also originate in roughly the same place. The complete list of cases
is under the control of the same part of the system, and it is not necessary that different sub-
systems can add new cases independently.

And client code handling the exception actually performs different operations based on the
different cases. So there is conditional logic basing decisions on the differences between the
states, and a simple message string in the exception is insufficient.

Solution

Create an ENUMERATION CLASS (53) with the different cases, and make the exception “ smart”
by giving it the enum class as afield. This alows client code to handle the exception differ-
ently based on the value of thisfield.

Some of the handling logic and the different behavior can be moved into the enum class,
improving testability and making the actual handling code smpler.

For the example of the failed login, the enum class would look something like the following:

/1 Enum Cl ass with possible reasons for a failed |ogin
public class Logi nFai |l edReason {
[/l contains information if an imredi ate retry nakes sense
private final boolean _mayRetry;

private LoginFail edReason (bool ean mayRetry) {
_myRetry = mayRetry;
}

publ i c bool ean mayRetry () {
return _mayRetry;

}

/1l conplete list of all instances of this class

public static final LoginFail edReason | NVALI D_PASSWORD =
new Logi nFai | edReason (true);

public static final LoginFail edReason SERVER DOWN =
new Logi nFai | edReason (true);

public static final LoginFail edReason USER DI SABLED =
new Logi nFai | edReason (fal se);

}

Some of the logic of handling, namely the information if an immediate retry of the login has
any chance of success, is contained in the enum class.

The constructor is private, so the only instances of the class are those declared as publ i c
static final fiedsinthe classitsef. This provides acomplete list of instances in one sin-

gle place and makes these instances accessible by name?.

The exception classitself holds afield with the reason the exception was thrown:

public class Logi nFail edExcepti on extends Exception {
private final LoginFail edReason _reason;

/** Constructor takes a reason as a paraneter to ensure
* that handling clients can | ater base deci si ons on
* this reason.*/

publ i ¢ Logi nFai | edExcepti on (Logi nFail edReason reason) {
_reason = reason;

}

publ i ¢ Logi nFai | edReason get Reason () {
return _reason;
}
}

The constructor of Logi nFai | edExcepti on takesalogi nFai | edReason as a parameter,
so whenever such an exception is created and thrown, areason must be given.

This reason can then be queried by client code handling the exception, and decisions can be
based on this reason.

/1 client code handling a failed |ogin
try {

}

catch (Logi nFai | edException exc) {
// all login failures are handled in the sane catch bl ock

/]l try the actual l|ogin

if (exc.getReason() == Logi nFail edReason. SERVER_ DOMN) {
/1 different reasons can be handled differently in
/1l a way which makes the conditional |ogic easy to read

/1 Logi nFai | edReason contains |ogic which now sinplifies
/1 handling
if (exc.getReason().myRetry()) {

}

el se {

}

The conditional logic in the exception handling code is comparatively easy to read and under-
stand because all instances of the enum class have descriptive names. The logic which was
moved into the Logi nFai | edReason class aso helps to keep the exception handling code
clean.

The only liability that a Smart Exception incursisthe effort of creating - and later maintaining
and understanding - the additional enum class. This overhead must be weighed against the
benefit of simpler exception handling code and code which is clearer and structured better.

2. In order to make thisimplementation serializable, areadResolve method must be added, otherwise
object identity will not be guaranteed. For details, see the description of Enum Class.

EXCEPTION HIERARCHY

If only a HOMOGENEOUS EXCEPTION is declared to be thrown but clients need to handle some
cases specifically, create an inheritance hierarchy of subclasses of the homogeneous exception
and throw subclasses. Thisallows clientsto treat all exceptions homogeneously as instances of
a single exception class but also gives clients the option to treat specific exceptionsin adis-
tinct way.

Problem

One key benefit of using HOMOGENEOUS EXCEPTION is that clients are not forced to deal with
details of which exception is thrown when, they need to address only a single type of excep-
tion and can ignore al further details. That is a big benefit which most clients will want to
enjoy most of the time.

But there are situations in which a class or even a method can fail in different ways which at
least some clients need to handle differently. For example aread operation from afile can fail
either because the end of the file was reached or because of a more general 1/0 problem. For
some clients the end of the file isnot afailure but rather the sign that they are finished, so they
need to differentiate between the two cases.

So on the one hand, some clients want to treat all exceptions indiscriminately. For such clients
it isimportant that as far as they are concerned, the single homogeneous exception is the only
exception which is thrown.

But other clients need to handle only some of the possible failures and let others propagate up
the call stack. For example, code reading from a file might want to handle the case that the end
of the file was reached but let failure due to a general 1/0 problem propagate up the call stack.
In such a situation, SMART EXCEPTION is hot a natural fit although it supports clients in exe-
cuting different code based on the details of the exception.

Knowledge about different ways in which methods can fail are often spread across many
classes and potentially many developers or even teams, especialy if a single homogeneous
exception is used for several packages in a big system. If al the special failure cases were
coded into a single class, this class would easily become harder and harder to change and
extend because every change would affect many different parts of the system. In such a situa-
tion, SMART EXCEPTION is not agood solution either.

On the other hand, some clients handle different failure modes differently, so a field with a
message string containing the details is not sufficient.

Solution

Create an inheritance hierarchy of exceptions with the HOMOGENEOUS EXCEPTION as a com-
mon superclass. Thisalowsall methods to declare just the homogeneous exception, and disin-
terested clients can choose to treat all exceptions uniformly.

However it alows every operation to provide optional additional information about the cause
of failure by throwing one or severa subclasses of the homogeneous exception. In the exam-
ple of the r ead operation from afile, this might mean throwing an instance of | OExcept i on
itself for general 1/0 problems but creating a subclass EOFExcept i on of | OExcept i on for
the case that the end of the file was reached.

This additional information is purely optional - the method declares to throw only | CExcep-
ti on, so clients can entirely ignore the inheritance hierarchy if they chooseto - but it is possi-

ble for a client to catch just one specia case and let the rest propagate up the call stack. The
following sample code shows this for a method reading from aDat al nput St r eam

/1 This nethod reads doubl es from a Datal nput Stream unti |
/1 the end of the file is reached. Only the subcl ass
/| EOFException of |OException is caught and handl ed, all
/1 other | CExceptions are propagated.
/1 The read net hods of Datal nput Stream have | CExcepti on as
/1l a hompgeneous exception, and this method shows how speci al
/1 failures can be handl ed sel ectively
public Col |l ection readDoubl es (Datal nput Stream di s)
throws | CException

{

final Collection result = new ArrayList ();

try {
while (true) {

/1 this loop is term nated by an EOFExcepti on
result.add (new Doubl e (dis.readDouble ()));
}

/| EOFException is a subclass of | OException. Only this
/1 subclass is caught, all other | OExceptions are
/1 propagated up the call stack
catch (EOFException exc) {
// do nothing: it is just the end of the file
}

return result;

}

It is possible for a class or package to provide a new subclass of the homogeneous exception
which is specific for this class of package. That makes it possible to add special failure modes
which can be handled separately to the single homogeneous exception in a decentralized fash-
ion; in order to add anew subclass, it is not necessary to make any change whatsoever to exist-
ing classes, and the new exception can be located in the same package that throws it so that not
even adifferent package is affected.

If a method declares to throw just a homogeneous exception but also throws a subclass to
express aspecia kind of failure, it isagood ideato document this behavior. A good way to do
that isto use several @xcept i on tagsin the javadoc comment of the method, one for each
possible class that is thrown. That ensures that the information is available in the generated
HTML documentation in a standardized place.

This shows the main liability of an EXCEPTION HIERARCHY, though: It does not allow the com-
piler to perform static checking. Javadoc comments can get outdated just as all kind of com-
ments can, and the method interface itself does not express that a subclass is thrown for a
gpecial case. That is the price one must pay for having a homogeneous exception which allows
clientsto ignore the differentiation if they choose to.

TUNNELING EXCEPTION

If a method signature can not declare checked exceptions - for example in a callback in a
framework - but the implementation needs to throw checked exceptions because of a
CHECKED SERVER PROBLEM, then create a subclass of Runt i meExcept i on which can hold a
reference to another exception and throw instances of this unchecked exception.

Problem

Libraries are intended for use in avariety of contexts and therefore their interfaces need to be
generic; the sameis true for infrastructure code that is widely used throughout an application.

This causes a problem if the library classes® are subclassed and methods are overridden and
the subclass can fail in away that would usually warrant throwing a checked exception.

The overriding method can not throw a checked exception because the subclass method can
not declare to throw more exceptions than declared in the superclass as shown in the following
code sample.

/] DOES NOT COWPI LE because the run nethod in Runnabl e does
/1 not declare any exceptions so neither nust the overriding
/[met hod
cl ass SpecificRunnabl e inpl ements Runnabl e {
public void run () throws | OException {
. I/ code that performs 10O

}
}

This situation often occurs in callbacks where an interface or an abstract class isimplemented
and passed to alibrary method in order to be “executed” there. If a checked exception occurs
in the overriding method, it can not be handled locally in a meaningful way.

But the checked exception which is thrown in a callback can not be simply propagated
“through” the library to surrounding code either, and since the method signature is part of
library codeit can not be extended to declare to throw specific checked exceptions.

Solution

Create aclass Tunnel i ngExcept i on asasubclass of Runt i meExcepti on which can hold
a checked exception; if an exception occurs, create an instance of Tunnel i ngExcepti on
around it and throw it instead. Since it is an unchecked exception, it can “tunnel” through the

limited method signature in the superclass or even surrounding library code®.

Surrounding client code can then catch the Tunnel i ngExcepti on, extract the contained
original exception, and handle or throw that. If in a specific situation client code can be sure
that no exception is tunneled out, the corresponding cat ch block can of course be l€eft out.

3. orinterfaces. Both classes and interfaces impose the limitation that an overriding method in an inher-
iting class may not throw more checked exceptions than originally declared, and for the scope of this
pattern, “class’ and class specific terminology is used to include interfaces as well unless otherwise
stated.

4. The name is borrowed from quantum mechanics where the tunnel effect denotes the phenomenon
that particles can under certain circumstances move through walls which would be impenetrable to
them according to classica physics.

The class Tunnel i ngExcept i on can be declared as part of the library and for all callbacks.
The following code shows atypica implementation.

public class Tunnel i ngException extends RuntimeException {
private final Exception _inner;

publ i c Tunnel i ngExcepti on (Exception inner) {
_inner = inner;

}

public Exception getlnner () {
return inner;

}

The following source code illustrates how a checked exception can be tunneled through
framework code. It assumes that there is a CommandExecut er that takes an implementation
of Runnabl e as a parameter and calls the r un method of it:

/1 define the cal |l back to be executed
Runnabl e cnd = new Runnable () {
public void run () {

/1 The | OException does not appear in the signature
/1 of the run method, so throw a Tunnel i ngExcepti on
/! instead
t hrow new Tunnel i ngExcepti on (new | OException ());
}
};

try {
/'l the command is executed by a library class which is
/1 generic and therefore does not have a checked exception
/1l in the signature of the conmand it takes
CommandExecut er . execute (cnd);
}
catch (Tunnel i ngExcepti on exc) {
/1 A Tunnel i ngExcepti on neans that a checked exception
/'l was thrown in the call back inplenmentation

/1 We know that | OException is the only checked exception
// which was can be thrown in this call back, therefore the
/] type cast is safe
| OException i oExc = (1 OException) exc.getlnner ();

/1 handl e the | OException

The implementation of Runnabl e wraps occurring exceptionsinthe Tunnel i ngExcept i on
and throws it. Surrounding code can catch this and extract and handle the original exception.

Using TUNNELING EXCEPTION yields several benefits. First of al, it allows the overriding
class to notify clients of failure rather than silently ignoring it and faking success. This is of
course the key reason for using atunneling exception in the first place.

The pattern even allows an object to pass al details about the failure to surrounding code, no
information is lost. The actual exception object that represents the failure is preserved and
made available to clients, including its message text and stack trace. That is true even if the

exception did not originate in the overridden method itself but in another method which is
called fromit.

All thisis achieved without the necessity for the method signature to declare specific excep-
tions. And exception propagation is optional: calling code can catch and handle exceptions if
that is necessary, but other clients are not forced to do so in the absence of exceptions.

There are however some liabilities and limitations as well.

The main liability of the pattern isthe loss of compile time checking which isadirect result of
the use of an unchecked exception. It is possible for a client to forget to handle a tunneling
exception, especialy as code evolves.

Thisis usually an advantage because it does not force all clients to implement sensel ess empty
cat ch clauses - which would introduce potential for bugs of their own - but it does introduce
some potential for careless mistakes.

This sort of bug can only be caught at runtime, although thorough testing with JUnit can help
detect it. A SAFETY NET can at least ensure that an uncaught Tunnel i ngExcept i on does not
go unnoticed at runtime.

The pattern also relies on at least some cooperation of library code through which the excep-
tion is supposed to tunnel insofar as there must not be any indiscriminate cat ch clausesfor all
Runt i meExcept i ons. If the library is designed with the tunneling of exceptions in mind,
that is not a problem, but with third-party libraries there is no guarantee that it will work.

Thereisavariant of this pattern if the library operation which performs the callback can itself
fail with a CHECKED SERVER PROBLEM. In such a situation, exceptions can be tunneled in this
checked exception rather than an unchecked dedicated Tunnel i ngExcept i on. Client code
must deal with the checked exception anyway so there is no additional handling overhead
involved, but the danger of forgetting to handle the tunneling exception is removed.

This approach is for example taken by the SAX standard for XML handling. The par se
method of or g. xn . sax. XM_Reader can throw the checked SAXExcepti on which can
optionally act as a wrapper of another exception. The callback interface Cont ent Handl er
declares SAXExcepti on for its methods, allowing implementations to tunnel exceptions
through the XM_Reader .

UNHANDLED EXCEPTION

If a method has a CHECKED SERVER PROBLEM and needs to throw a checked exception but
you would rather finish implementing the method first instead of immediately implementing
comprehensive handling code for the exception, do not implement an empty cat ch clause
even temporarily but rather wrap the exception in a generic unchecked Unhandl edExcep-
tion.

Problem
Writing code which handles exceptions is both necessary and distracting.

If a method is called which can throw a checked exception, a corresponding cat ch clause
must be implemented somewhere or the compiler will rgject the code. This is usually an
advantage since it helps prevent careless mistakes, but it has a tendency to distract the focus
from the train of thought the developer was following. If you are implementing new function-
ality, you often want to finish that before serioudy switching your attention to handling the
exceptions.

But the compiler will reect the class until the exception is either declared in the t hr ows
clause or caught.

If the exception isadded to thet hr ows clause of the method that may work for the classitself,
but it will usually make the compiler reject other methods which call this one; they suddenly
need to handle an additional exception. So propagating the exception in general requires sig-
nificant work in other classes.

Implementing code that handles the failure which caused the exception aso often requires
thought, luring developers into making ad hoc implementations of cat ch blocks, sometimes
even empty, just so they can finish implementing the functionality they were working on.

Of course they make a resolution to come back later and clean the mess up, but the human
weakness of forgetting good resolutions means that this does not always happen. The result is
at best exception handling which is less than optimal, at worst some exceptions simply disap-
pear and make the system behave in subtly unexpected ways.

How can this dilemma be resolved?

Solution

Declare an unchecked Unhandl edExcept i on that acts as a wrapper for an arbitrary excep-
tion.

The following listing shows a typical implementation of an Unhandl edExcept i on; such an
implementation can be stored in alibrary and reused without change across systems.

i mport java.io.*;

/** intended for ad hoc handling of exceptions to help
* post pone inpl enenting proper handling w thout the
* danger of it being forgotten.
*/
public class Unhandl edException extends Runti nmeException {
private final String _cause;

publ i ¢ Unhandl edException (String nmessage, Throwabl e cause) {
super (message);

/| store the stacktrace of the cause in a string field
final StringWiter sw = new StringWiter ();

cause. print StackTrace (new PrintWiter (sw));

_cause = sw.toString();

}

public String get Message () {
return "Unhandl ed Exception: " + super.getMessage () +
"\n " + _cause;
}
}

The constructor takes a message string in addition to the Thr owabl e which is being wrapped
so that every Unhandl edExcept i on contains ashort explanation.

The get Message implementation prints both the message and the stacktrace of the original
Thr owabl e so that all details about the cause are presented when either get Message or
print StackTrace are caled onthe Unhandl edExcepti on.

With this class readily available, when you want to postpone implementing handling of an
exception you wrap the exception in an Unhandl edExcept i on and throw it instead. That is

particularly useful for checked exceptions but can serve as a mnemonic in cases where
unchecked exceptions need to be handled as well.

That makesit possibleto first finish atrain of thought before giving full attention to exception
handling. It also significantly reduces the risk of forgetting to handle the exception at al
because any usage of UnhandledException serves as a reminder that the code is unfinished.
Such usages are easys to spot and identify both by humans, for example in a code review, and
by tools.

The following example shows how the Unhandl edExcepti on can be used to postpone
addressing | OExcept i ons while writing file handling code.

/1 internedi ate stage of the program Unhandl edException
/1 is used to postpone handling | OExceptions but needs to
/] be renoved before the code is finished
try {

/1 file access can throw | CExcepti on

Fi |l eReader file = new Fil eReader ("config.ini");

.... I/ actually read and process the file
}
catch (1 CException exc) ({
/1 throws an unchecked exception instead of | OException
t hrow new Unhandl edException ("readi ng config.ini", exc);

}

Using an instance of UNHANDLED EXCEPTION has several benefits.

It makes the source code immediately compilable, and when an exception is actually thrown,
there is no danger of it silently disappearing - the Unhandl edExcept i on isbound to be han-
dled somewhere further up the call stack. So the details of the failure are available for debug-
ging even while the final exception handling has not been implemented yet. To have control
over exception handling in such situations, a SAFETY NET is useful.

Usages of Unhandl edExcept i ons are aso easy to find both by humans and by tools. So
although the Unhandl edExcept i on isan unchecked exception and therefore easy to forget -
which iswhy it was introduced in the first place - there is little danger that it will be forgotten
in the long run and accidentally left in release code.

To make surethat all usages of Unhandl edExcept i on are replaced by meaningful exception
handling in due time, one can use simple “find in files” functionality to monitor its use in the
whole system.

There is however the danger that these possibilities are not used and the temporary solution
remainsin the code. After al, there is no immediate pressure to remove it, and other things are
prioritized by management... It isimportant to keep this potential danger in mind; in a context
where such things tend to be the rule rather than the exception, it is better to avoid this pattern.

The other main liability of the pattern is that means writing some code which will be thrown
away for the final system. Often this is more than made up for by the benefit of being able to
address one problem at a time, but sometimes it is less effort to just immediately implement
the real handling code.

UNCHECKED CLIENT PROBLEM

Let a THROWING SERVER throw an instance of a subclass of Runt i neExcept i on for failures
that are directly or indirectly due to bad input data. This ensures that the failure will not go
unnoticed but does not force every client to explicitly handle the exception.

Problem

Many methods depend on client cooperation for their successful completion, either through
passing in parameters or initializing the object. Asaresult, they differentiate between “permit-
ted” states and parameter values and “forbidden” ones that prevent successful completion.

An example of such an assumption is the constructor of a Nane class that takes afirst and last
name as two strings, neither of which may be nul | or empty. If one or both parameters are
invalid, the constructor cannot perform its operation successfully.

The following code shows a client trying to create a Nane instance, passing invalid parameters
to the constructor.

/1 How shoul d the Name constructor react to invalid input
/1 which prevents it from conpleting successfully?
Nanme name = new Nanme (null, null);

How should this sort of failure be treated? Obvioudly, it is not an option to silently fail and
fake success.

If a checked exception is thrown, that forces every client to explicitly handle it, adding effort
to the usage of the class. The benefit of making the mode of failure explicit which comes with
checked exceptions does not pull its full weight here becauseitisin the clients hands to avoid
the exceptionsin the first place by keeping their side of the contract. If indeed this sort of fail-
ure occurs, it ismorein the nature of abug appearing at runtime than of anormal runtime fail-
ure.

But if neither covering failures with the veil of mercy nor making the innocent suffer with the
guilty is adesirable solution, how should such client-induced failures be treated?

Solution

Throw an instance of a subclass of Runt i meExcept i on if an operation fails due to incorrect
client behavior.

This ensures that the failure neither goes unnoticed nor forces immediate clients to explicitly

address the problem. Clients which find it more convenient to handle the exception than to
check the validity before the call can do so, but others are not forced to bother.

In the following example, the constructor of the Nanme class throwsan | | | egal Ar gunent -
Except i on if one of the parametersisnul | or empty.

/1 The Name constructor throws an unchecked exception if it
/1 cannot conpl ete successfully so that clients are notified
/1 but are not forced to explicitly address failure
cl ass Nane {

private final String _firstNane;

private final String _| ast Nane;

public Name (String first, String last) {

if (first == null || first.length() == 0)

throw new ||| egal Argunment Exception ("first nane");
if (last == null || last.length() == 0)

throw new ||| egal Argument Exception ("l ast name");

_firstName = first;
_lastNane = | ast;

}

. I/ inplenentation of accessors and | ogic

}

This ensures that invalid parameters are rejected but does not force clients to address potential
failure directly if they are confident it can not happen.

Although immediate client code should not be forced to handle such exceptions - after all, that
isthe reason why they are unchecked - they must be handled somewhere, at least so that their
details are written to alog file to trigger a bug report and help fix the bug. A SAFETY NET pro-
vides confidencein ignoring Runt i meExcept i onslocaly.

The package j ava. | ang contains a wide variety of subclasses of Runt i neExcepti on, and
often it is sufficient to use one of them instead of creating anew one. Especially | | | egal Ar -
gunment Exception and I | | egal St at eExcepti on with an expressive message string are
often a good first choice.

If on the other hand handling code is to be enabled to handle different kinds of Runt i meEx-
cept i on differently, it is of course possible to provide specific subclasses of Runt i meEx-
cept i on and throw them. Since more technical problems are more or less covered by the
exceptions from j ava. | ang, additional Runti meExcepti on classes will typically be
domain specific.

But introducing specific subclasses of Runti meExcepti on makes code throwing them
harder to read while the benefit is often more perceived than real - more often than not all
Runt i meExcept i onsareindiscriminately handled anyway.

EXCEPTION WRAPPING

If an exception is converted into a HOMOGENEOUS EXCEPTION, wrap the original exception
inside the new one so that all details about the original exception are preserved.

Problem

Catching one exception and throwing another instead, for example because HOMOGENEOUS
EXCEPTION is applied, hides implementation details - which is one reason why it is done. For

debugging purposes, however, these details about the root cause of the exception are desirable
because they help understand the problem.

The following example illustrates this. The execut eOper at i on method performs a compli-
cated operation in the course of which a number of different exceptions can occur. These were

united into a single exception so that exception handling for clients of the method is easier®.

/1 BAD CODE: the nmethod throws only one exception which is
/1 at the semantic |level of the operation, but all details
/1 about the root causes of the exceptions are |ost.

voi d executeOperation () throws OperationFail edException {
try {
. // conplicated code which can throw a variety of
/'l exceptions
}
catch (Exception exc) {
t hrow new Operati onFai |l edException ();

}
}

However, it discards al details about the root cause of the exception. And while these are not
necessary for handling the exception it makes debugging harder. Thetype, stacktrace and mes-
sage of the exception that is passed further up the call stack do not directly correspond to the
context in which the problem originated.

On the one hand there are forces working towards hiding the details of the original exception
so that the interface is stable even in the face of implementation changes and implementations
can be exchanged; on the other hand there is the need to make all details of the original excep-
tion available for debugging.

Solution

Allow an exception to optionally take a reference to the exception that caused it as a construc-
tor parameter. Override the get Message method so that it yields the type, message and stack-
trace of the causing exception. This presents exception handling code a homogeneous view of
the exception but gives humans access to all details of the root cause of the exception.

Overriding the get Message method has two big benefits. Firstly, the wrapped information is
logged almost automatically since the message string is printed by both thet oSt ri ng and the
print StackTrace methods of Thr owabl e, so there is no additional effort to make the
information available.

Secondly, using the get Message method in this way ensures that the information about the
root cause is kept even if the exception is wrapped several times. Every wrapping exception
includes the message string of the wrapped exception in its own message string, so no infor-
mation is|ogt.

The wrapping exception should keep no reference to the original exception but rather store its
details in a string. This allows serializing and deserializing of the exception across process
boundaries asisfor example used by RMI.

It is possible that the VM which is deserializing the exception does not have the class defini-
tion of the wrapped exception in its classpath so that a O assNot FoundException is

5. The definition of OperationFailedException was left out because it is arbitrary at this point.

thrown at runtime. This runtime dependency can be avoided by storing only a string represen-
tation of the causing exception rather than the exception itself.

The following source code shows a typical definition of awrapping exception.

/1 | nplenentati on of COperationFail edException whi ch takes
/1 a causing exception as a paraneter
i mport java.io.*;

cl ass OperationFai |l edException extends Exception {
private final String _cause;

publ i c OperationFail edException () {
_Cause = "";

}

publ i c OperationFai |l edException (Throwabl e cause) {
/] store the stacktrace of the cause in a string field
final StringWiter sw = new StringWiter ();
cause. print StackTrace (new PrintWiter (sw));
_cause = sw.toString();

}

public String get Message () {
return "Qperation failed:\n " + _cause;

}

}

A method which throws this exception can now pass an exception which causes the Oper a-
ti onFai | edExcepti on to the congtructor of the new exception so that all details are pre-
served for debugging.

/] executeQperation revisited: Al details about the
/1 root cause are contained in the thrown exception

voi d executeQOperation () throws QperationFail edException {
try {
/1l conplicated code which can throw a variety of
/'l exceptions
}
catch (Exception exc) {
/1 the causing exception is now passed on to the new one
t hrow new Operati onFai | edExcepti on (exc);

}

JDK 1.4 introduces direct support for this pattern. The class Thr owabl e and many of its sub-
classes (including Except i on, Runt i meExcept i on and Er r or) have constructors that take
a causing exception as an argument. The data of this stored exception is used for both get -
Message and pri nt St ackTr ace.

There is one major difference between the implementation in the JDK and the one suggested
here: The class Thr owabl e stores a reference to the actual causing object. That gives han-
dling code access to this object but can lead to problemsif exceptions are serialized and dese-
rialized in different address spaces.

This feature is called “chained exception” in the JDK documentation, but that name is mis-
leading because SUN uses the same term for a dightly different concept in the description of

java.sql . SQLExcepti on.
Wrapping the causing exception in this way has the benefit of presenting client code with a
cleanly encapsulated view of the called class, effectively hiding all implementation details. It

also makes all details about the root cause of the exception available for debugging, even if
several such conversions take place between the throwing and the handling.

But there are some minor liabilities as well because the messages of the exceptions can
become quite long, especialy if the root exception is wrapped severdl ti mes’.

Firstly, if the exceptions are logged to a file, the information about the wrapping significantly
increases disk consumption, potentially causing trouble during development when many
exceptions occur in ashort time.

Secondly, the long combined stacktraces of the exceptions can make log files hard to navigate.

SAFETY NET

Install a default handler for Thr owabl es that accidentally are not handled regularly. This
rounds off the EXPRESSIVE EXCEPTION INTERFACE of an entire system by making explicit how
unexpected exceptions are treated, for example forgotten instances of TUNNELING EXCEPTION
and UNHANDLED EXCEPTION.

Problem

No matter how much attention is paid to exception handling during the development of a sys-
tem, there can always be places where it is forgotten. For checked exceptions the compiler
makes sure that this does not happen, but Runt i meExcept i ons can slip through - including
those introduced by TUNNELING EXCEPTION and UNHANDLED EXCEPTION. The same istrue of
Errors.

The default behavior of the VM isto print the stack trace of an otherwise unhandled excep-

tion®to Syst em err and end the thread® which is better than crashing the system or aborting
the application with a core dump but nonetheless is not very helpful for real-world applica-
tions.

Exceptions that are simply ignored potentially result in corrupted internal structures, leaving
the system in an undefined state - especially since an application thread is terminated by the
VM.

6. java.sgl.SQLException also supportslinking several exceptions, but there theideaisto propagate the
original exception and append other exceptions that occurred later, whereas here the ideaisto hide
the origina exception and propagate awrapper around it.

7. The memory overhead introduced by EXCEPTION WRAPPING are usually not an issue because the
memory is used only temporarily. An upper limit for the amount of memory taken up is <Cumulative
size of wrapped exceptions>* <Max. number of concurrent tasks> which even for very large systems
isonly in the order of a couple of MB.

8. For therest of this pattern, “exception” is used to denote all throwables to make the text easier to
read.

9. Many frameworks provide some default handling, alleviating some of these consequences. Swing
and RMI for example ensure that no thread is accidentally terminated, and many application servers
additionally log the exception.

Thereisaso the problem that an exception just written to Syst em er r easily goes unnoticed,
creating the impression that an operation terminated normally without however performing its
designated task. This can lead devel opers on awild-goose chase for bugs that are actually in a
different part of the system.

How can you make sure that unhandled exceptions do not go unnoticed and trigger a default
handler?

Solution

Install a default handler as a safety net which is called for all exceptions that have dlipped
through the application’s regular handling mechanisms.

The system should be built in such away that there is no known way an exception could pos-
sibly reach the safety net; all expected exceptions should be handled regularly.

This introduces a distinction between expected and unexpected exceptions.

Expected exceptions are those which the developer thought of and which are therefore han-
died in some way. For them, the system ensures that all necessary clean-up is performed, and
they leave the system in awell-defined state. These exceptions are typically handled based on
their type, and when a system is rel eased to the customer, all exceptions should be in this cate-
gory.

Unexpected exceptions are all those that are not in the “expected” category. For them there is
by definition no well-defined and specific handling, so they potentially leave the system in an
undefined state. Those are the exceptions for which a default handler is necessary as a safety
net.

Due to the unspecific nature of these exceptions and the potential severity of their cause, the
safety net can and should not do much beyond logging the exception. In a critical server sys-
tem, triggering a message to the system administrators would be atypical action.

But how do you implement and register such a safety net?

If the creation of all threads is under direct control of the application, the best way isto create
asubclass of j ava. | ang. Thr eadGr oup and override the uncaught Except i on method.

[/l This ThreadG oup acts as a default handler for exceptions
/1 which are not otherw se caught
cl ass Saf eThreadGroup extends ThreadG oup {
/1 every thread group needs a nane
public Saf eThreadG oup (String name) {
super (nane)

}

public voi d uncaught Exception (Thread t, Throwable e) {
if (! (e instanceof ThreadDeath)) {
. // handling code goes here
}
}
}

Then all threads are created with an instance of this thread group.

/1 a single instance of SafeThreadG oup is enough for

/1 the purposes of the Safety Net

private final SafeThreadG oup gl obal ThreadG oup =
new Saf eThreadG oup ("gl obal safe ThreadG oup");

// all threads are created with the instance
/1 of SafeThreadG oup
Thread thread = new Thread (gl obal ThreadG oup,
new Runnable () {
public void run () {
/1 the thread inplenentation goes here.

/1 all exceptions thrown by this method trigger
/1 a call to uncaught Exception in the thread group.
}
1)

This causes acal to uncaught Except i on whenever the r un method of athread throws an
exception.

Implementing a SAFETY NET using a customized ThreadGroup with an overridden
uncaught Except i on method providesfull control over the actual handling of the exception.
There is however the severe limitation that this approach only works if the application has
direct control over the creation of al threads. Since this is not the case if frameworks like
Swing or RMI are used, most systems need an alternative.

As noted above, the default way that Java handles an exception isto print it to System err,
and most frameworks leave this behavior unchanged so that another way of providing a
SAFETY NET ispossible.

It is based on the assumption that all output to Syst em er r means that something went terri-
bly wrong. If that is so, why not implement the SAFETY NET as an Qut put St r eamand regis-
teritasSystemerr?

cl ass Saf et yNet Qut put St ream ext ends Qut put St ream {
public void wite (byte b[]) throws | OException {
....1lI1 log the nessage and take additional action

}

public void wite (byte b[], int off, int Ien) throws | CException {
....1/I1 log the nessage and take additional action

}

public void wite (int b) throws | CException {
....1lI1 log the nessage and take additional action

}

/'l override flush() and cl ose() as needed

Then Syst em err must be set to this class.

/1 An instance of SafetyNetQutputStreamis registered as
/1l Systemerr so that all output to to Systemerr triggers
/1 a global failure handl er

public static void main (String[] args) {

System set Err (new PrintWiter (
new Saf et yNet Qut put Stream ()));

}

Whenever the pri nt St ackTr ace method is called on an exception - or any other output to
System err is done - one or several of the writ e methods of the Saf et yNet Qut put -
St r eamare called, making sure that the output is logged and triggering any additional emer-
gency behavior.

The main advantage of this approach is that it works in the presence of many frameworks
where using a special Thr eadG oup is hot an option. This comes at a price, however:

* System err isoccupied. Each and every output to Syst em err istreated like an unex-
pected exception, triggering serious consequences.

» Failuresare not atomic. A single unexpected exception may result in several callsto sev-
eral of the write methods of the Saf et yNet Qut put St r eam That means that all handling
code is executed several timesfor asingle unexpected exception unlessthat isheuristically
prevented, for example through a time-out.

» Information about the exception itself is not available. The exception which triggered the
handler is reduced to one - or several - sequences of bytes containing a string representa-
tion. Specific handling based on the exception type is not possible.

Despite these limitations, registering a safety net as Syst em err ensures that all exceptions

are at least logged and trigger additional handling.

Conclusion

Exceptions are a powerful tool, and like many powerful tools they can be used to disadvan-
tage. But if the pattern language presented in this paper is applied to organize exception usein
the large then exceptions will prove to be a natural and helpful part of the system, providing a
clean and potent way to propagate knowledge of failure of operations.

Acknowledgements

| would like to thank Frank Buschmann who shepherded this paper for his many suggestions
and questions; he helped to improve this paper a great deal. Further thanks for fruitful discus-
sions go to Pascal Costanza, Kevlin Henney and Jan Hermanns and the participants of the
Writers' Workshop at EuroPloP 2002. Special thanks are due to Jan Lef3ner for coming up
with the stream-based implementation of SAFETY NET and helping design robust exception
handling into the first large Java system | ever worked on.

