
Java Idioms: Exception Handling

Arno Haase

Arno.Haase@acm.org

Arno.Haase@Haase-Consulting.com

Abstract
Exceptions are a powerful feature for the propagation and handling of failure of operations.
Naive use of exceptions however introduces subtle complexity into a system due to the non-
local nature of throwing an exception.

This paper presents a pattern language of eleven Java idioms which serve as a framework for
using exceptions. The patterns help to balance the forces that the overall complexity must be
limited, that the code must be modifiable and extensible, the source code must be clear and the
overall system must be robust.

Introduction
In procedural programming languages like C, the usual way to communicate failure of a func-
tion call is to use the return value. A special value - often null or -1 - indicates failure of the
operation.

In order to handle every such potential failure, the calling code has to check the return value of
every single function call, resulting in heaps of if statements throughout the code. This
spreads the handling of failures and errors throughout the entire application, making it difficult
to understand and test as well as easy to get wrong in the first place.

Especially the propagation of failure up the call stack is rather painful to implement because it
must be carefully done in every single function. As a result, failure propagation is often conve-
niently forgotten; developers implement local handling of the failure as nothing more than a
logged message, hoping against hope that everything will work out fine.

But what does this have to do with Java programming? After all, Java is a modern language
which has exceptions as a language feature. Using the built-in exception mechanism, error and
failure handling is a piece of cake, the problem is solved once and for all. Using exceptions,
error handling is easy. But is it?

Well, exception handling certainly allows a better separation of failure handling from the main
flow of the program, making the source code both shorter and easier to read. But throwing an
exception is a powerful way to affect control flow with high inherent complexity. It has a lot in
common with a non-local goto statement jumping to an unknown target in another method.

This raises two issues. Firstly, there is exception safety: If an exception is thrown, the program
must make sure that all necessary clean-up operations are performed, particularly freeing any
resources that were allocated for the operation. This important aspect is treated separately in
the next chapter.

Secondly, there is exception organization. The mechanism that is used for notification of fail-
ure couples the caller to the called method. Exception throwing is non-local in nature, so this
coupling is not very strong. But then it is not very straightforward either.

There are two conflicting forces at work that make this issue difficult. On the one hand, if cli-
ents know about the details of the exceptions that are thrown then a big system can become
difficult to change. If for example the persistence layer of a business system uses a relational
database and the SQLExceptions are propagated all the way up and caught in the presenta-
tion layer then the presentation layer directly depends on details of the relational database that
is used. In such a system, changing an implementation in one place results in subtle changes in
many other places.

But on the other hand, clients often need to handle exceptions that are thrown somewhere fur-
ther down the call stack, so they need to know something about the exceptions that are thrown
by code that they use.

This chapter is about building systems where exceptions pull their weight separating the nor-
mal flow from the handling of failures without introducing subtle non-local coupling that gets
in the way of evolving and maintaining the system.

The Pattern Language
The pattern language in this chapter consists of eleven patterns; the figure below gives an
overview of the patterns. The arrows between the patterns express how the resulting context of
some patterns are part of the problem that other patterns solve. Grey ovals stand for patterns
from other chapters that are referenced but not included in this chapter.

The starting point of this pattern language is EXPRESSIVE EXCEPTION INTERFACE which intro-
duces the concept of exceptions as an explicit part of the interface of a class or package.

THROWING SERVER describes when a method should throw an exception as part of an expres-
sive exception interface and when it should attempt to handle failure locally.

Safety
Net

Throwing
Server

Exception
Tunneling

Exception
Wrapping

Unhandled
Exception

Unchecked
Client Problem

Checked
Server Problem

Homogeneous
Exception

Expressive
Exception Interface

Exception
Hierarchy

Smart
Exception

Null
Object

Enumeration
Class

The cause for an exception that is thrown by a method can either be an UNCHECKED CLIENT

PROBLEM if the failure is caused by faulty client behavior or a CHECKED SERVER PROBLEM if
the problem lies inside the method.

If CHECKED SERVER PROBLEM is used extensively, many checked exceptions tend to accumu-
late in method signatures far up the call stack, creating unwieldy interfaces that expose imple-
mentation details. HOMOGENEOUS EXCEPTION addresses this problem by throwing only a
single checked exception, and EXCEPTION WRAPPING shows how to maintain the details of the
original exception.

EXCEPTION HIERARCHY and SMART EXCEPTION are a pattern pair showing ways to equip
exceptions with information so that handling code can handle different exceptions differently.
EXCEPTION HIERARCHY uses specialization through inheritance and provides a loose coupling
between different types of failure whereas SMART EXCEPTION introduces an ENUMERATION

CLASS (53) as a field so that all cases are defined in a single class.

A TUNNELING EXCEPTION is a way to propagate a CHECKED SERVER PROBLEM through frame-
work code that does not contain the checked exception in its method signature.

UNHANDLED EXCEPTION shows a way to postpone actually implementing exception handling
for a CHECKED SERVER PROBLEM without the full risk of creating empty catch blocks even
temporarily.

And finally, SAFETY NET serves as a counterweight to THROWING SERVER by describing how
a default handler can be installed that catches and handles unchecked exceptions that slip
through regular handling code.

Each of the patterns solves a distinct problem, but they are most useful if they are applied
together. As a whole, the pattern language describes a proven and useful way to organize
exception handling in large Java systems.

EXPRESSIVE EXCEPTION INTERFACE

Handling exceptional and error conditions is inherently complex. Therefore make exception
handling an explicit part of the design at the method, class, package and system level.

Problem
Naive ad hoc decisions about how failure is handled lead to tangled code that is difficult to
maintain or extend. Clients are tightly coupled to the implementation of the methods they call,
and changes of a method implementation force changes of the method signature, causing other
changes throughout the system.

Worse still, the non-local nature of exception throwing means that some of the necessary
changes in seemingly unrelated parts of the system tend to go unnoticed. At best, the result is
the surprising appearance of subtle bugs during system testing, at worst the bugs make it into
production and crash the system at a very inconvenient moment.

There are several aspects of the problem that make it more difficult to solve.

Firstly, the handling and propagation of failure and error conditions is usually inherently non-
local so that any local approach has only limited usefulness.

Then, errors that occur can typically not simply be ignored - some sort of handling is usually
called for. But often such handling is not sensibly possible where the error is noticed, so some
sort of notification is necessary.

Clients need to know what can go wrong in code they are calling so they can handle errors
appropriately, but the naive use of exceptions creates a dependency on the implementation
rather than the interface.

And exceptions that methods can throw become part of the interface of a class; for checked
exceptions this is explicit whereas for unchecked exceptions it happens implicitly. The actual
throwing of the exceptions however is dispersed throughout the implementing code. Therefore
changes of the implementation have a tendency to cause different exceptions to be thrown,
resulting in a changed interface.

Error handling and propagation is so deeply engraved in the source code of a system that it
takes very significant effort to change it after the initial stages of implementation. Refactoring
often does not work well here. Firstly the changes are quite onerous, requiring thought rather
than mechanistic repetition. And secondly, test coverage for error handling is typically not
quite as good as for functionality, adding risk to effort.

Solution
Treat exceptions as full members of the interface - not only at the method level but also for
classes and particularly for packages and subsystems.

Since exceptions create subtle coupling, actively manage this coupling. During design plan-
ning at all levels, take the propagation of failure into account. Decide on an exception strategy
at the architectural level, and make sure there is understanding and consensus on it in the
entire project team.

The coupling caused by exception throwing should be taken as seriously as coupling caused in
any other way. Therefore, exception handling should be included in the architectural planning.

This has the benefit that laying down a system-wide policy for the use of exceptions makes it
possible to address the non-local issues of exception throwing. The throwing, propagation and
handling of exceptions can be adjusted so that they fit together well.

Planning and documenting high-level use of exceptions also help to avoid situations where a
programmer is confronted with an error condition without seeing how to either handle it or
propagate it. Since there are rules and examples for the use of exceptions, developers have
help integrating their exception concerns with the rest of the system.

Then, dealing with exception handling at the global level makes it possible to strike informed
trade-offs between the need to notify clients and the resulting coupling.

Explicitly designing exceptions at the class and package level allow the “exception interface”
which is visible to clients to be isolated from implementation details, making it stable even
when significant changes are made to the implementation.

And thinking about exception handling right from the beginning allows an informed choice to
be made as to how much up-front planning is warranted for a particular system and to what
degree this aspect can be refactored later.

Any form of error propagation and error handling introduces a coupling between source and
handler of the error, but several other patterns in this pattern language help to reduce or man-
age the coupling introduced through exceptions.

THROWING SERVER addresses the question which failures to propagate to the caller at all.
CHECKED SERVER PROBLEM and UNCHECKED CLIENT PROBLEM discuss the trade-off between
checked and unchecked exceptions and the different kinds of coupling between a method and
its callers they create.

The question of how to uphold encapsulation for the exception interface is addressed by
HOMOGENEOUS EXCEPTION; this is especially relevant for packages and subsystems.

Exceptions for which handling code does more than print a message string in some way can be
implemented with SMART EXCEPTION in order to reduce coupling by convention between
caller and handler.

And SAFETY NET shows how a default handler for unchecked exceptions that would otherwise
not be handled can be installed, reducing the risk of loose coupling between throwing and han-
dling code.

These patterns help to strike the right balance in the strength of coupling, on the one hand
allowing encapsulation so that different parts of the system can be changed independently of
each other and on the other hand upholding a sufficiently strong coupling to allow reasonable
handling of exceptions.

THROWING SERVER

In order to create an EXPRESSIVE EXCEPTION INTERFACE, let the caller of a method deal with
exceptions that can not be locally handled in a satisfactory way.

Problem
It is a fact of life that things go wrong.

Sometimes a method can address a problem locally, for example by substituting default values
if a configuration file is not found. But more often than not, a problem cannot be completely
resolved where it first occurs, simply because there is not enough information available.

For example, consider a business component that is asked to update a specific record. If it can-
not do so because constraints are violated, it has no way of knowing how to handle the prob-
lem. That is a natural consequence of good separation of concerns - a customer management
component does only one thing and does that well, and its interface is not cluttered with issues
which are unrelated to its primary purpose.

It is obviously evil to silently consume an exception that indicates failure of the operation:

// BAD CODE - the exception is ignored and consumed
public void updateCustomer (String id, CustomerData newRecord)
{

try {
.... // perform the actual update in the database

}
// the exception is silently ignored, and calling code
// has no way of knowing if the operation was successful
catch (SQLException exc) {}

}

Another more subtle but no less common way of achieving the same misbehavior is to first
perform a validity check and not notify calling code if that fails:

Both these scenarios share the fundamental flaw of attempting to hide failure from the caller
without being able to completely handle it locally. Calling code is presented with the fiction
that every operation completes successfully, and in the rare but important case of failure there
is no one to handle it.

So how should failures be addressed that can not be handled locally?

Solution
Notify the calling code by throwing an exception. Use UNCHECKED CLIENT PROBLEM if the
exception was caused by the client, for example because erroneous data was passed in as a
parameter. Use CHECKED SERVER PROBLEM in all other cases.

Make sure that only those exceptions are thrown which can not be handled locally in a mean-
ingful way.

If there is default behavior associated with the failure, consider returning a NULL OBJECT (???)
as an alternative to throwing the exception.

Throwing an exception to notify calling code of a failure has several benefits. There is no dan-
ger of the failure going unnoticed, even if the immediate caller does not handle it. Exceptions
can hold data regarding the details of the underlying failure, but this data is encapsulated in the
exception class, and changes to the exception class concern only throwing and handling code
and are transparent to code between them.

And exceptions are automatically propagated by the JVM as opposed to the cumbersome cas-
cades of if statements required for error codes as return values.

Using exceptions to notify callers of failure has no liabilities in and of itself. But there are
some aspects that can become problematic because throwing exceptions seems to be so easy.

One such aspect is that it is convenient to ignore exception handling entirely and just throw an
exception and let callers worry about handling the problem. It is often appropriate to notify
callers of a failure rather than trying to hush it up, but there are cases where some handling is
appropriate before declaring an operation to be failed. Network code for example should often
retry an operation or wait for a timeout before throwing an exception. And if there is an I/O
problem when saving a file, the operation could prompt the user for another file name before
throwing an exception.

For these reasons it is important to strike a balance. It is necessary to notify callers of failure,
but it is equally important to implement a “caller-friendly” definition of failure by handling
locally what can be handled locally. This is the mark of a good interface that encapsulates an
abstraction well.

// BAD CODE - silently ignores invalid data
public void updateCustomer (String id, CustomerData newRecord)
{

if (! isValid (newRecord)) {
// silently abort the operation without notifying the
// caller
return;

}

.... // perform the actual update operation
}

It is also easy to forget the complexity of the non-local goto caused by exceptions. Again, this
complexity is not per se a liability of using exceptions because non-local control flow is inher-
ent in handling failure. But exceptions are easy to use in Java, and that can result in careless
use of them. The end result can be trouble, especially for large systems.

A perceived obstacle to the use of exceptions is the notion that they introduce significant per-
formance overhead. This is not true for the normal case: If no exception is thrown, there is no
performance overhead at all. In the case of failure, performance is typically much less of an
issue because failure occurs much less frequently; as usual, the best approach to performance
optimization is to put clarity and simplicity first and optimize only if necessary.

CHECKED SERVER PROBLEM

Use checked exceptions to express possible failures in a THROWING SERVER interface that
have their root cause in the inner workings of the operation rather than invalid input by the
caller.

Problem
In order to use a class it is necessary to know and understand what it does.

This is obviously true for the functionality, but it also holds for the question of how failure is
handled and propagated. In order to write code using a class, it is necessary to know what can
go wrong and which exception is thrown.

How can this be expressed in the source code?

Source code comments tend to get out of date. So while they some help in documenting and
illustrating failure modes, it is desirable to express them in a way that is more directly coupled
to the source code and its changes, and preferably supported by the compiler.

Further, every client needs to address the handling of failure of a method it calls. If it does not,
subtle errors tend to result that have a nasty tendency to slip through testing unnoticed and
become apparent only after the system has been released. Preferrably a way of expressing pos-
sible failures of a method should let the compiler force clients to address them.

Solution
Use checked exceptions (exceptions that are not subclasses of RuntimeException and must
therefore be declared in the throws clause of a method) to notify callers that the operation
failed. That way, it is explicit and obvious both in the source code and in the generated Java-
doc comments which exceptions a method can thrown.

In the example of the customer management component which was introduced for THROWING

SERVER, the updateCustomer method should be declared to throw a checked exception,
making it explicit in the method signature how invalid data is handled. The following source

code presupposes the existence of a checked ConstraintViolationException which is

used for this purpose:1

Declaring to throw checked exceptions forces every client to take into account that an opera-
tion can fail, either handling it themselves or again explicitly declaring to throw it. Because of
this, the compiler ensures that there is a handling catch statement for every checked excep-
tion.

Having checked exceptions in a method signature also provides documentation about which
exceptions can be thrown. Sometimes the type of the exceptions even suggests when and in
what ways they are thrown - for example, having an SQLException in the signature of a
readCustomer method strongly suggests that all SQLExceptions occurring inside the
method are propagated.

But usually additional information should be supplied about the details of when the exception
is thrown, and the @throws JavaDoc tag is useful for just that; the following listing shows the
method signature of the updateCustomer method, but this time with an explaining JavaDoc
comment:

If a method declares to throw a checked exception under certain circumstances, it is important
that the checked exception is thrown consistently. The code must for example be written in
such a way that no RuntimeException is accidentally thrown instead of the checked excep-
tion.

// signature comment explicitly expresses how invalid data is
// handled, but without a javadoc comment the details are
// left to the reader’s imagination
public void updateCustomer (String id, CustomerData newRecord)

throws ConstraintViolationException
{

if (! isValid (newRecord)) {
// notify the caller
throw new ConstraintViolationException ();

}

.... // perform the actual update operation
}

1. This source code example does not perform industry strength checking; it is simplified to illustrate
the underlying idea. The separate check approach works for simple sanity checks or authorization
checks, but it is insufficient for ensuring that a subsequent update of the database is going to be valid.
The main issue is that the checking must be performed in the same transaction as the update.

// JavaDoc comment using "@throws" to provide details about
// an exception
/**

@throws ConstraintViolationException if the data in the
newRecord parameter is not valid.

*/
public void updateCustomer (String id, CustomerData newRecord)

throws ConstraintViolationException
{

....

It is particularly easy to accidentally throw a NullPointerException because of uninitial-
ized references; the following listing gives an example how explicit checks can be used to
avoid this:

The benefits of checked exceptions can be summarized by saying that their use provides docu-
mentation and ensures that exceptions are handled. There is however a downside to this,
namely that using checked exceptions reduces flexibility. Other patterns of this pattern lan-
guage help to address this.

If all methods simply pass through all unhandled exceptions, there tends to be a proliferation
of checked exceptions near the top of the call stack, and many method signatures must be
changed if the implementation of a method far down the call stack is changed to throw an
additional checked exception. HOMOGENEOUS EXCEPTION addresses this problem.

Sometimes it is desirable to postpone implementing the handler for a checked exception until
the throwing method is more mature, but the compiler prevents this. UNHANDLED EXCEPTION

shows a way out of this dilemma.

Java does not allow an overriding method in a subclass to throw checked exceptions that are
not declared in the superclass; that can lead to problems if the superclass is part of a library
and can not be changed, especially if the subclass method is called from a framework. TUN-
NELING EXCEPTION shows a way how checked exceptions can be thrown “through” unknow-
ing code.

And finally, SMART EXCEPTION and EXCEPTION HIERARCHY discuss how handling code can
preform different operations based on detailed information about why an exception was
thrown.

HOMOGENEOUS EXCEPTION

If CHECKED SERVER PROBLEM is extensively applied, method signatures have a tendency to
be cluttered with many different checked exceptions, making exception handling complex and
counterintuitive. To resolve this, introduce a new exception class and have all methods of a
class or package declare only this.

Problem
Using CHECKED SERVER PROBLEM shows explicitly which exceptions are thrown in a method,
making the code communicative and helping to prevent forgotten exception handling.

// this implementation must take care that invalid input
// does not accidentally cause a NullPointerException to be
// thrown
public boolean isValid (CustomerData newRecord)
{

// without the first check, the second check could
// throw a NullPointerException instead of causing
// ’false’ to be
if (newRecord.getName() == null ||

newRecord.getName().length() > MAX_NAME_LENGTH) {
return false;

}
.... // further checks and the actual update

}

As a system grows, however, the lists of thrown exceptions tend to become long and unintui-
tive as exceptions that are thrown further down the call stack are propagated. This effect
occurs at the method, class and package level.

If a single method naively passes all checked exceptions which it does not handle on to its
caller, a proliferation of exceptions tends to occur on the way to the root of the call stack, and
in the highest layer of a layered architecture, methods would tend to have just about every
checked exception in the whole system in their list of thrown exceptions. The following artifi-
cial example shows how such an accumulation of exceptions occurs unless countermeasures
are taken.

This confronts calling code with a whole lot of possible exceptions, all of which must be han-
dled or propagated. The only way to handle them in a single catch block is to catch Excep-
tion itself, catching all other exceptions as well.

The exceptions that are thrown are also at another level of abstraction than the rest of the
method: While they give detailed information about what went wrong, they are not very help-
ful for understanding the significance of the failure. For example, if a failed initialization is
signalled by throwing a ClassNotFoundException and client code handles it in this way,
that may lead to surprising bugs if another method that is by some chance called close to the
initialization also throws a ClassNotFoundException but for an entirely different reason.

Having the internally thrown exceptions in the throws clause of the method also breaks
encapsulation because the list of exceptions publicly announces information about the kind of
method calls that are made in the implementation. So changes to the implementation poten-
tially affect the method signatures of all calling method, making the code much harder to mod-
ify or refactor.

At the class level, an additional effect further reduces comfort. Even if all methods in a class
can throw only one checked exception each, using the class is painful if these exceptions are
different. The reason is that client code often calls not only one method on an object but sev-
eral, and adding a method call on an object which is already used is one of the more frequent
changes performed on code. If each additional call means reworking exception handling,
potentially far up the call stack, this adds significant effort to otherwise simple changes to the
code and stands in the way of effortless refactoring.

// BAD CODE: all checked exceptions are directly propagated
// to the caller, making the list of thrown exceptions very
// unwieldy
public void writeName (String name)

throws IOException, ClassNotFoundException,
NoSuchMethodException, NoSuchFieldException, SQLException

{
Logger.log ("doSomething"); // throws IOException

// uses reflection and throws ClassNotFoundException,
// NoSuchMethodException, NoSuchFieldException
PersistenceFramework.init ();

// accesses the database and throws SQLException
updateName (name);

}

The net effect is that the interface of a class is not cohesive if checked exceptions are growing
rampant:

A client using such a class is forced to catch several seemingly unrelated exceptions and dupli-
cate exception handling code for each of the catch blocks. The exception classes are unre-
lated to each other as well as to the abstraction of the class interface, making the source code
difficult to read.

At the package level, this effect is even more pronounced. Clients using a package usually are
not interested in its implementation details. They do not want to spend much effort under-
standing a wide variety of exceptions thrown under varying conditions.

So how can a simple and stable exception interface be achieved if a variety of exceptions
occur that cannot be handled locally and therefore need to be passed to the caller?

Solution
Create a single checked exception and have all methods declare to throw only this. Internally,
translate all checked exceptions to this new, homogeneous exception, for example using
EXCEPTION WRAPPING to maintain the original information.

This makes the class or package simpler and more intuitive to use because clients need not
worry about handling different kinds of exceptions. Instead, there is a single checked excep-
tion which is at the same level of abstraction as the interface which declares to throw it.

//BAD CODE: Different methods throw different exceptions,
// making usage of the class awkward
class NameManager {

public String readName () throws IOException {
....

}
public void writeName (String name) throws SQLException {

....
}
public boolean isValidName (String name)

throws ClassNotFoundException
{

....
}

}

// Code using NameManager. Writing and changing the code is
// awkward because different methods throw different
// exceptions
NameManager nameMgr = new NameManager ();
try {

if (nameMgr.isValidName (name)) {
nameMgr.writeName (name);

}
}
catch (SQLException exc) {

....
}
catch (ClassNotFoundException exc) {

.... // duplicated exception handling code
}

It is often handy to use a single homogeneous exception across several packages that are in
some way related, for example because they belong to the same layer in a layered architecture.
That makes the group of packages simpler to use for clients and underscores that they together
make up a bigger something.

Often clients are not interested in details about a failure; it is sufficient for them to just know
that an exception occurred. If clients need more detailed information about the kind of failure,
SMART EXCEPTION or EXCEPTION HIERARCHY can be used to give clients additional details
without giving up the single homogeneous exception.

The following source code illustrates the use of a single homogeneous exception for the
NameManager example of the problem section; all checked exceptions are wrapped in a sin-
gle FailedBusinessOperation (the definition for this checked exception is straightfor-
ward and was left out):

This example illustrates the general way to implement HOMOGENEOUS EXCEPTION in a
method. The body is enclosed in a try block which is followed by catch blocks for all
checked exceptions that can occur. All other exceptions are handled by throwing an instance
of the homogeneous exception. Of course the homogeneous exception can be thrown for other
reasons than an exception further down the call stack.

// Homogeneous Exception was applied: Now all methods
// throw a single checked exception which can contain
// the original exception
class NameManager {

public String readName () throws FailedBusinessOperation {
try {

....
}
catch (IOException exc) {

throw new FailedBusinessOperation (exc);
}

}

public void writeName (String name)
throws FailedBusinessOperation

{
try {

....
}
catch (SQLException exc) {

throw new FailedBusinessOperation (exc);
}

}

public boolean isValidName (String name)
throws FailedBusinessOperation

{
try {

....
}
catch (ClassNotFoundException exc) {

throw new FailedBusinessOperation (exc);
}

}
}

Exception handling in code using the NameManager now is much simpler, and the code is
easier to understand because the exception is at the same conceptual level as the rest of the
interface of NameManager.

Wrapping all checked exceptions of an interface in a single, homogeneous exception has sev-
eral benefits. First of all, there is only a single exceptions which clients need to address.

The interface is also more homogeneous as a whole because the exception is at the same con-
ceptual level as the method calls; calls to the methods and exception handling in client code fit
together and make sense together.

Using a single homogeneous exception also encapsulates implementation details: If the imple-
mentation of a method is changed so that an additional checked exception can occur inside the
implementation, this additional exception is simply also wrapped in the homogeneous excep-
tion, and the method interface remains unchanged.

These benefits however come at a price which is typical of encapsulation in general. Encapsu-
lation makes the interface simpler to use and more robust against implementation changes, but
the interface becomes less transparent. Clients have less insight and control over what is actu-
ally happening inside the method.

If an interface is very mature and well designed, this is often not a problem - it is for example
not necessary to understand the implementation details of the java.io package in order to
use it. But if the interface is less mature, encapsulation can come in the way of development,
forcing at least an ongoing refactoring of the interface.

Therefore applying this pattern poses an additional responsibility on the specification of inter-
faces, especially if they are published in some way so that they become difficult or impossible
to change.

SMART EXCEPTION

If clients need details in order to handle an exception which is caused by a CHECKED SERVER

PROBLEM and there is a fixed number of different cases that need to be handled differently,
create an ENUMERATION CLASS (53) for these cases and give the exception a field of the enum
type.

Problem
Clients catch and handle exceptions based on the exception class; the parameter of the catch
clause specifies an exception class, and it catches only those exceptions which are assignable
to this exception class. This allows client code to handle exceptions selectively. Exceptions
with different classes can be handled in different places, using different handlers.

// Code using NameManager. The homogeneous exception makes
// the usage simpler and clearer
NameManager nameMgr = new NameManager ();
try {

if (nameMgr.isValidName (name)) {
nameMgr.writeName (name);

}
}
catch (FailedBusinessOperation exc) {

....
}

But sometimes a client handling an exception needs additional information to handle the
exception.

For example, a login may be denied for several reasons - the id/password combination may be
wrong, the authentication server may be down, or the user account may be temporarily dis-
abled. And if login failure is propagated using an exception, a client handling the exception
would need to handle these cases differently.

In this case, the following forces apply. All different failure modes are always caught and han-
dled in the same place. There is no situation in which only a subset of the cases needs to be
handled and other cases need to be propagated further up the call stack.

All different failure modes also originate in roughly the same place. The complete list of cases
is under the control of the same part of the system, and it is not necessary that different sub-
systems can add new cases independently.

And client code handling the exception actually performs different operations based on the
different cases. So there is conditional logic basing decisions on the differences between the
states, and a simple message string in the exception is insufficient.

Solution
Create an ENUMERATION CLASS (53) with the different cases, and make the exception “smart”
by giving it the enum class as a field. This allows client code to handle the exception differ-
ently based on the value of this field.

Some of the handling logic and the different behavior can be moved into the enum class,
improving testability and making the actual handling code simpler.

For the example of the failed login, the enum class would look something like the following:

Some of the logic of handling, namely the information if an immediate retry of the login has
any chance of success, is contained in the enum class.

The constructor is private, so the only instances of the class are those declared as public
static final fields in the class itself. This provides a complete list of instances in one sin-

gle place and makes these instances accessible by name2.

// Enum Class with possible reasons for a failed login
public class LoginFailedReason {

// contains information if an immediate retry makes sense
private final boolean _mayRetry;

private LoginFailedReason (boolean mayRetry) {
_mayRetry = mayRetry;

}

public boolean mayRetry () {
return _mayRetry;

}

// complete list of all instances of this class
public static final LoginFailedReason INVALID_PASSWORD =

new LoginFailedReason (true);
public static final LoginFailedReason SERVER_DOWN =

new LoginFailedReason (true);
public static final LoginFailedReason USER_DISABLED =

new LoginFailedReason (false);
}

The exception class itself holds a field with the reason the exception was thrown:

The constructor of LoginFailedException takes a LoginFailedReason as a parameter,
so whenever such an exception is created and thrown, a reason must be given.

This reason can then be queried by client code handling the exception, and decisions can be
based on this reason.

The conditional logic in the exception handling code is comparatively easy to read and under-
stand because all instances of the enum class have descriptive names. The logic which was
moved into the LoginFailedReason class also helps to keep the exception handling code
clean.

The only liability that a Smart Exception incurs is the effort of creating - and later maintaining
and understanding - the additional enum class. This overhead must be weighed against the
benefit of simpler exception handling code and code which is clearer and structured better.

2. In order to make this implementation serializable, a readResolve method must be added, otherwise
object identity will not be guaranteed. For details, see the description of Enum Class.

public class LoginFailedException extends Exception {
private final LoginFailedReason _reason;

/** Constructor takes a reason as a parameter to ensure
* that handling clients can later base decisions on
* this reason.*/

public LoginFailedException (LoginFailedReason reason) {
_reason = reason;

}

public LoginFailedReason getReason () {
return _reason;

}
}

// client code handling a failed login
try {

.... // try the actual login
}
catch (LoginFailedException exc) {

// all login failures are handled in the same catch block

if (exc.getReason() == LoginFailedReason.SERVER_DOWN) {
// different reasons can be handled differently in
// a way which makes the conditional logic easy to read
....

}
....

// LoginFailedReason contains logic which now simplifies
// handling
if (exc.getReason().mayRetry()) {

....
}
else {

....
}

}

EXCEPTION HIERARCHY

If only a HOMOGENEOUS EXCEPTION is declared to be thrown but clients need to handle some
cases specifically, create an inheritance hierarchy of subclasses of the homogeneous exception
and throw subclasses. This allows clients to treat all exceptions homogeneously as instances of
a single exception class but also gives clients the option to treat specific exceptions in a dis-
tinct way.

Problem
One key benefit of using HOMOGENEOUS EXCEPTION is that clients are not forced to deal with
details of which exception is thrown when, they need to address only a single type of excep-
tion and can ignore all further details. That is a big benefit which most clients will want to
enjoy most of the time.

But there are situations in which a class or even a method can fail in different ways which at
least some clients need to handle differently. For example a read operation from a file can fail
either because the end of the file was reached or because of a more general I/O problem. For
some clients the end of the file is not a failure but rather the sign that they are finished, so they
need to differentiate between the two cases.

So on the one hand, some clients want to treat all exceptions indiscriminately. For such clients
it is important that as far as they are concerned, the single homogeneous exception is the only
exception which is thrown.

But other clients need to handle only some of the possible failures and let others propagate up
the call stack. For example, code reading from a file might want to handle the case that the end
of the file was reached but let failure due to a general I/O problem propagate up the call stack.
In such a situation, SMART EXCEPTION is not a natural fit although it supports clients in exe-
cuting different code based on the details of the exception.

Knowledge about different ways in which methods can fail are often spread across many
classes and potentially many developers or even teams, especially if a single homogeneous
exception is used for several packages in a big system. If all the special failure cases were
coded into a single class, this class would easily become harder and harder to change and
extend because every change would affect many different parts of the system. In such a situa-
tion, SMART EXCEPTION is not a good solution either.

On the other hand, some clients handle different failure modes differently, so a field with a
message string containing the details is not sufficient.

Solution
Create an inheritance hierarchy of exceptions with the HOMOGENEOUS EXCEPTION as a com-
mon superclass. This allows all methods to declare just the homogeneous exception, and disin-
terested clients can choose to treat all exceptions uniformly.

However it allows every operation to provide optional additional information about the cause
of failure by throwing one or several subclasses of the homogeneous exception. In the exam-
ple of the read operation from a file, this might mean throwing an instance of IOException
itself for general I/O problems but creating a subclass EOFException of IOException for
the case that the end of the file was reached.

This additional information is purely optional - the method declares to throw only IOExcep-
tion, so clients can entirely ignore the inheritance hierarchy if they choose to - but it is possi-

ble for a client to catch just one special case and let the rest propagate up the call stack. The
following sample code shows this for a method reading from a DataInputStream.

It is possible for a class or package to provide a new subclass of the homogeneous exception
which is specific for this class of package. That makes it possible to add special failure modes
which can be handled separately to the single homogeneous exception in a decentralized fash-
ion; in order to add a new subclass, it is not necessary to make any change whatsoever to exist-
ing classes, and the new exception can be located in the same package that throws it so that not
even a different package is affected.

If a method declares to throw just a homogeneous exception but also throws a subclass to
express a special kind of failure, it is a good idea to document this behavior. A good way to do
that is to use several @exception tags in the javadoc comment of the method, one for each
possible class that is thrown. That ensures that the information is available in the generated
HTML documentation in a standardized place.

This shows the main liability of an EXCEPTION HIERARCHY, though: It does not allow the com-
piler to perform static checking. Javadoc comments can get outdated just as all kind of com-
ments can, and the method interface itself does not express that a subclass is thrown for a
special case. That is the price one must pay for having a homogeneous exception which allows
clients to ignore the differentiation if they choose to.

TUNNELING EXCEPTION

If a method signature can not declare checked exceptions - for example in a callback in a
framework - but the implementation needs to throw checked exceptions because of a
CHECKED SERVER PROBLEM, then create a subclass of RuntimeException which can hold a
reference to another exception and throw instances of this unchecked exception.

// This method reads doubles from a DataInputStream until
// the end of the file is reached. Only the subclass
// EOFException of IOException is caught and handled, all
// other IOExceptions are propagated.
// The read methods of DataInputStream have IOException as
// a homogeneous exception, and this method shows how special
// failures can be handled selectively
public Collection readDoubles (DataInputStream dis)

throws IOException
{

final Collection result = new ArrayList ();

try {
while (true) {

// this loop is terminated by an EOFException
result.add (new Double (dis.readDouble ()));

}
}
// EOFException is a subclass of IOException. Only this
// subclass is caught, all other IOExceptions are
// propagated up the call stack
catch (EOFException exc) {

// do nothing: it is just the end of the file
}

return result;
}

Problem
Libraries are intended for use in a variety of contexts and therefore their interfaces need to be
generic; the same is true for infrastructure code that is widely used throughout an application.

This causes a problem if the library classes3 are subclassed and methods are overridden and
the subclass can fail in a way that would usually warrant throwing a checked exception.

The overriding method can not throw a checked exception because the subclass method can
not declare to throw more exceptions than declared in the superclass as shown in the following
code sample.

This situation often occurs in callbacks where an interface or an abstract class is implemented
and passed to a library method in order to be “executed” there. If a checked exception occurs
in the overriding method, it can not be handled locally in a meaningful way.

But the checked exception which is thrown in a callback can not be simply propagated
“through” the library to surrounding code either, and since the method signature is part of
library code it can not be extended to declare to throw specific checked exceptions.

Solution
Create a class TunnelingException as a subclass of RuntimeException which can hold
a checked exception; if an exception occurs, create an instance of TunnelingException
around it and throw it instead. Since it is an unchecked exception, it can “tunnel” through the

limited method signature in the superclass or even surrounding library code4.

Surrounding client code can then catch the TunnelingException, extract the contained
original exception, and handle or throw that. If in a specific situation client code can be sure
that no exception is tunneled out, the corresponding catch block can of course be left out.

3. or interfaces. Both classes and interfaces impose the limitation that an overriding method in an inher-
iting class may not throw more checked exceptions than originally declared, and for the scope of this
pattern, “class” and class specific terminology is used to include interfaces as well unless otherwise
stated.

// DOES NOT COMPILE because the run method in Runnable does
// not declare any exceptions so neither must the overriding
//method
class SpecificRunnable implements Runnable {

public void run () throws IOException {
.... // code that performs IO

}
}

4. The name is borrowed from quantum mechanics where the tunnel effect denotes the phenomenon
that particles can under certain circumstances move through walls which would be impenetrable to
them according to classical physics.

The class TunnelingException can be declared as part of the library and for all callbacks.
The following code shows a typical implementation.

The following source code illustrates how a checked exception can be tunneled through
framework code. It assumes that there is a CommandExecuter that takes an implementation
of Runnable as a parameter and calls the run method of it:

The implementation of Runnable wraps occurring exceptions in the TunnelingException
and throws it. Surrounding code can catch this and extract and handle the original exception.

Using TUNNELING EXCEPTION yields several benefits. First of all, it allows the overriding
class to notify clients of failure rather than silently ignoring it and faking success. This is of
course the key reason for using a tunneling exception in the first place.

The pattern even allows an object to pass all details about the failure to surrounding code, no
information is lost. The actual exception object that represents the failure is preserved and
made available to clients, including its message text and stack trace. That is true even if the

public class TunnelingException extends RuntimeException {
private final Exception _inner;

public TunnelingException (Exception inner) {
_inner = inner;

}

public Exception getInner () {
return inner;

}
}

// define the callback to be executed
Runnable cmd = new Runnable () {

public void run () {
....
// The IOException does not appear in the signature
// of the run method, so throw a TunnelingException
// instead
throw new TunnelingException (new IOException ());

}
};

try {
// the command is executed by a library class which is
// generic and therefore does not have a checked exception
// in the signature of the command it takes
CommandExecuter.execute (cmd);

}
catch (TunnelingException exc) {

// A TunnelingException means that a checked exception
// was thrown in the callback implementation

// We know that IOException is the only checked exception
// which was can be thrown in this callback, therefore the
// type cast is safe
IOException ioExc = (IOException) exc.getInner ();
.... // handle the IOException

}

exception did not originate in the overridden method itself but in another method which is
called from it.

All this is achieved without the necessity for the method signature to declare specific excep-
tions. And exception propagation is optional: calling code can catch and handle exceptions if
that is necessary, but other clients are not forced to do so in the absence of exceptions.

There are however some liabilities and limitations as well.

The main liability of the pattern is the loss of compile time checking which is a direct result of
the use of an unchecked exception. It is possible for a client to forget to handle a tunneling
exception, especially as code evolves.

This is usually an advantage because it does not force all clients to implement senseless empty
catch clauses - which would introduce potential for bugs of their own - but it does introduce
some potential for careless mistakes.

This sort of bug can only be caught at runtime, although thorough testing with JUnit can help
detect it. A SAFETY NET can at least ensure that an uncaught TunnelingException does not
go unnoticed at runtime.

The pattern also relies on at least some cooperation of library code through which the excep-
tion is supposed to tunnel insofar as there must not be any indiscriminate catch clauses for all
RuntimeExceptions. If the library is designed with the tunneling of exceptions in mind,
that is not a problem, but with third-party libraries there is no guarantee that it will work.

There is a variant of this pattern if the library operation which performs the callback can itself
fail with a CHECKED SERVER PROBLEM. In such a situation, exceptions can be tunneled in this
checked exception rather than an unchecked dedicated TunnelingException. Client code
must deal with the checked exception anyway so there is no additional handling overhead
involved, but the danger of forgetting to handle the tunneling exception is removed.

This approach is for example taken by the SAX standard for XML handling. The parse
method of org.xml.sax.XMLReader can throw the checked SAXException which can
optionally act as a wrapper of another exception. The callback interface ContentHandler
declares SAXException for its methods, allowing implementations to tunnel exceptions
through the XMLReader.

UNHANDLED EXCEPTION

If a method has a CHECKED SERVER PROBLEM and needs to throw a checked exception but
you would rather finish implementing the method first instead of immediately implementing
comprehensive handling code for the exception, do not implement an empty catch clause
even temporarily but rather wrap the exception in a generic unchecked UnhandledExcep-
tion.

Problem
Writing code which handles exceptions is both necessary and distracting.

If a method is called which can throw a checked exception, a corresponding catch clause
must be implemented somewhere or the compiler will reject the code. This is usually an
advantage since it helps prevent careless mistakes, but it has a tendency to distract the focus
from the train of thought the developer was following. If you are implementing new function-
ality, you often want to finish that before seriously switching your attention to handling the
exceptions.

But the compiler will reject the class until the exception is either declared in the throws
clause or caught.

If the exception is added to the throws clause of the method that may work for the class itself,
but it will usually make the compiler reject other methods which call this one; they suddenly
need to handle an additional exception. So propagating the exception in general requires sig-
nificant work in other classes.

Implementing code that handles the failure which caused the exception also often requires
thought, luring developers into making ad hoc implementations of catch blocks, sometimes
even empty, just so they can finish implementing the functionality they were working on.

Of course they make a resolution to come back later and clean the mess up, but the human
weakness of forgetting good resolutions means that this does not always happen. The result is
at best exception handling which is less than optimal, at worst some exceptions simply disap-
pear and make the system behave in subtly unexpected ways.

How can this dilemma be resolved?

Solution
Declare an unchecked UnhandledException that acts as a wrapper for an arbitrary excep-
tion.

The following listing shows a typical implementation of an UnhandledException; such an
implementation can be stored in a library and reused without change across systems.

The constructor takes a message string in addition to the Throwable which is being wrapped
so that every UnhandledException contains a short explanation.

The getMessage implementation prints both the message and the stacktrace of the original
Throwable so that all details about the cause are presented when either getMessage or
printStackTrace are called on the UnhandledException.

With this class readily available, when you want to postpone implementing handling of an
exception you wrap the exception in an UnhandledException and throw it instead. That is

import java.io.*;

/** intended for ad hoc handling of exceptions to help
* postpone implementing proper handling without the
* danger of it being forgotten.
*/

public class UnhandledException extends RuntimeException {
private final String _cause;

public UnhandledException (String message, Throwable cause) {
super (message);

// store the stacktrace of the cause in a string field
final StringWriter sw = new StringWriter ();
cause.printStackTrace (new PrintWriter (sw));
_cause = sw.toString();

}

public String getMessage () {
return "Unhandled Exception: " + super.getMessage () +

"\n " + _cause;
}

}

particularly useful for checked exceptions but can serve as a mnemonic in cases where
unchecked exceptions need to be handled as well.

That makes it possible to first finish a train of thought before giving full attention to exception
handling. It also significantly reduces the risk of forgetting to handle the exception at all
because any usage of UnhandledException serves as a reminder that the code is unfinished.
Such usages are easys to spot and identify both by humans, for example in a code review, and
by tools.

The following example shows how the UnhandledException can be used to postpone
addressing IOExceptions while writing file handling code.

Using an instance of UNHANDLED EXCEPTION has several benefits.

It makes the source code immediately compilable, and when an exception is actually thrown,
there is no danger of it silently disappearing - the UnhandledException is bound to be han-
dled somewhere further up the call stack. So the details of the failure are available for debug-
ging even while the final exception handling has not been implemented yet. To have control
over exception handling in such situations, a SAFETY NET is useful.

Usages of UnhandledExceptions are also easy to find both by humans and by tools. So
although the UnhandledException is an unchecked exception and therefore easy to forget -
which is why it was introduced in the first place - there is little danger that it will be forgotten
in the long run and accidentally left in release code.

To make sure that all usages of UnhandledException are replaced by meaningful exception
handling in due time, one can use simple “find in files” functionality to monitor its use in the
whole system.

There is however the danger that these possibilities are not used and the temporary solution
remains in the code. After all, there is no immediate pressure to remove it, and other things are
prioritized by management... It is important to keep this potential danger in mind; in a context
where such things tend to be the rule rather than the exception, it is better to avoid this pattern.

The other main liability of the pattern is that means writing some code which will be thrown
away for the final system. Often this is more than made up for by the benefit of being able to
address one problem at a time, but sometimes it is less effort to just immediately implement
the real handling code.

// intermediate stage of the program: UnhandledException
// is used to postpone handling IOExceptions but needs to
// be removed before the code is finished
try {

// file access can throw IOException
FileReader file = new FileReader ("config.ini");

.... // actually read and process the file
}
catch (IOException exc) {

// throws an unchecked exception instead of IOException
throw new UnhandledException ("reading config.ini", exc);

}

UNCHECKED CLIENT PROBLEM

Let a THROWING SERVER throw an instance of a subclass of RuntimeException for failures
that are directly or indirectly due to bad input data. This ensures that the failure will not go
unnoticed but does not force every client to explicitly handle the exception.

Problem
Many methods depend on client cooperation for their successful completion, either through
passing in parameters or initializing the object. As a result, they differentiate between “permit-
ted” states and parameter values and “forbidden” ones that prevent successful completion.

An example of such an assumption is the constructor of a Name class that takes a first and last
name as two strings, neither of which may be null or empty. If one or both parameters are
invalid, the constructor cannot perform its operation successfully.

The following code shows a client trying to create a Name instance, passing invalid parameters
to the constructor.

How should this sort of failure be treated? Obviously, it is not an option to silently fail and
fake success.

If a checked exception is thrown, that forces every client to explicitly handle it, adding effort
to the usage of the class. The benefit of making the mode of failure explicit which comes with
checked exceptions does not pull its full weight here because it is in the clients’ hands to avoid
the exceptions in the first place by keeping their side of the contract. If indeed this sort of fail-
ure occurs, it is more in the nature of a bug appearing at runtime than of a normal runtime fail-
ure.

But if neither covering failures with the veil of mercy nor making the innocent suffer with the
guilty is a desirable solution, how should such client-induced failures be treated?

Solution
Throw an instance of a subclass of RuntimeException if an operation fails due to incorrect
client behavior.

This ensures that the failure neither goes unnoticed nor forces immediate clients to explicitly
address the problem. Clients which find it more convenient to handle the exception than to
check the validity before the call can do so, but others are not forced to bother.

// How should the Name constructor react to invalid input
// which prevents it from completing successfully?
Name name = new Name (null, null);

In the following example, the constructor of the Name class throws an IllegalArgument-
Exception if one of the parameters is null or empty.

This ensures that invalid parameters are rejected but does not force clients to address potential
failure directly if they are confident it can not happen.

Although immediate client code should not be forced to handle such exceptions - after all, that
is the reason why they are unchecked - they must be handled somewhere, at least so that their
details are written to a log file to trigger a bug report and help fix the bug. A SAFETY NET pro-
vides confidence in ignoring RuntimeExceptions locally.

The package java.lang contains a wide variety of subclasses of RuntimeException, and
often it is sufficient to use one of them instead of creating a new one. Especially IllegalAr-
gumentException and IllegalStateException with an expressive message string are
often a good first choice.

If on the other hand handling code is to be enabled to handle different kinds of RuntimeEx-
ception differently, it is of course possible to provide specific subclasses of RuntimeEx-
ception and throw them. Since more technical problems are more or less covered by the
exceptions from java.lang, additional RuntimeException classes will typically be
domain specific.

But introducing specific subclasses of RuntimeException makes code throwing them
harder to read while the benefit is often more perceived than real - more often than not all
RuntimeExceptions are indiscriminately handled anyway.

EXCEPTION WRAPPING

If an exception is converted into a HOMOGENEOUS EXCEPTION, wrap the original exception
inside the new one so that all details about the original exception are preserved.

Problem
Catching one exception and throwing another instead, for example because HOMOGENEOUS

EXCEPTION is applied, hides implementation details - which is one reason why it is done. For

// The Name constructor throws an unchecked exception if it
// cannot complete successfully so that clients are notified
// but are not forced to explicitly address failure
class Name {

private final String _firstName;
private final String _lastName;

public Name (String first, String last) {
if (first == null || first.length() == 0)

throw new IllegalArgumentException ("first name");
if (last == null || last.length() == 0)

throw new IllegalArgumentException ("last name");

_firstName = first;
_lastName = last;

}

.... // implementation of accessors and logic
}

debugging purposes, however, these details about the root cause of the exception are desirable
because they help understand the problem.

The following example illustrates this. The executeOperation method performs a compli-
cated operation in the course of which a number of different exceptions can occur. These were

united into a single exception so that exception handling for clients of the method is easier5.

However, it discards all details about the root cause of the exception. And while these are not
necessary for handling the exception it makes debugging harder. The type, stacktrace and mes-
sage of the exception that is passed further up the call stack do not directly correspond to the
context in which the problem originated.

On the one hand there are forces working towards hiding the details of the original exception
so that the interface is stable even in the face of implementation changes and implementations
can be exchanged; on the other hand there is the need to make all details of the original excep-
tion available for debugging.

Solution
Allow an exception to optionally take a reference to the exception that caused it as a construc-
tor parameter. Override the getMessage method so that it yields the type, message and stack-
trace of the causing exception. This presents exception handling code a homogeneous view of
the exception but gives humans access to all details of the root cause of the exception.

Overriding the getMessage method has two big benefits. Firstly, the wrapped information is
logged almost automatically since the message string is printed by both the toString and the
printStackTrace methods of Throwable, so there is no additional effort to make the
information available.

Secondly, using the getMessage method in this way ensures that the information about the
root cause is kept even if the exception is wrapped several times. Every wrapping exception
includes the message string of the wrapped exception in its own message string, so no infor-
mation is lost.

The wrapping exception should keep no reference to the original exception but rather store its
details in a string. This allows serializing and deserializing of the exception across process
boundaries as is for example used by RMI.

It is possible that the JVM which is deserializing the exception does not have the class defini-
tion of the wrapped exception in its classpath so that a ClassNotFoundException is

// BAD CODE: the method throws only one exception which is
// at the semantic level of the operation, but all details
// about the root causes of the exceptions are lost.

void executeOperation () throws OperationFailedException {
try {

.... // complicated code which can throw a variety of
// exceptions

}
catch (Exception exc) {

throw new OperationFailedException ();
}

}

5. The definition of OperationFailedException was left out because it is arbitrary at this point.

thrown at runtime. This runtime dependency can be avoided by storing only a string represen-
tation of the causing exception rather than the exception itself.

The following source code shows a typical definition of a wrapping exception.

A method which throws this exception can now pass an exception which causes the Opera-
tionFailedException to the constructor of the new exception so that all details are pre-
served for debugging.

JDK 1.4 introduces direct support for this pattern. The class Throwable and many of its sub-
classes (including Exception, RuntimeException and Error) have constructors that take
a causing exception as an argument. The data of this stored exception is used for both get-
Message and printStackTrace.

There is one major difference between the implementation in the JDK and the one suggested
here: The class Throwable stores a reference to the actual causing object. That gives han-
dling code access to this object but can lead to problems if exceptions are serialized and dese-
rialized in different address spaces.

// Implementation of OperationFailedException which takes
// a causing exception as a parameter
import java.io.*;

class OperationFailedException extends Exception {
private final String _cause;

public OperationFailedException () {
_cause = "";

}

public OperationFailedException (Throwable cause) {
// store the stacktrace of the cause in a string field
final StringWriter sw = new StringWriter ();
cause.printStackTrace (new PrintWriter (sw));
_cause = sw.toString();

}

public String getMessage () {
return "Operation failed:\n " + _cause;

}
}

// executeOperation revisited: All details about the
// root cause are contained in the thrown exception

void executeOperation () throws OperationFailedException {
try {

.... // complicated code which can throw a variety of
// exceptions

}
catch (Exception exc) {

// the causing exception is now passed on to the new one
throw new OperationFailedException (exc);

}
}

This feature is called “chained exception” in the JDK documentation, but that name is mis-
leading because SUN uses the same term for a slightly different concept in the description of

java.sql.SQLException6.

Wrapping the causing exception in this way has the benefit of presenting client code with a
cleanly encapsulated view of the called class, effectively hiding all implementation details. It
also makes all details about the root cause of the exception available for debugging, even if
several such conversions take place between the throwing and the handling.

But there are some minor liabilities as well because the messages of the exceptions can

become quite long, especially if the root exception is wrapped several times7.

Firstly, if the exceptions are logged to a file, the information about the wrapping significantly
increases disk consumption, potentially causing trouble during development when many
exceptions occur in a short time.

Secondly, the long combined stacktraces of the exceptions can make log files hard to navigate.

SAFETY NET

Install a default handler for Throwables that accidentally are not handled regularly. This
rounds off the EXPRESSIVE EXCEPTION INTERFACE of an entire system by making explicit how
unexpected exceptions are treated, for example forgotten instances of TUNNELING EXCEPTION

and UNHANDLED EXCEPTION.

Problem
No matter how much attention is paid to exception handling during the development of a sys-
tem, there can always be places where it is forgotten. For checked exceptions the compiler
makes sure that this does not happen, but RuntimeExceptions can slip through - including
those introduced by TUNNELING EXCEPTION and UNHANDLED EXCEPTION. The same is true of
Errors.

The default behavior of the JVM is to print the stack trace of an otherwise unhandled excep-

tion8 to System.err and end the thread9 which is better than crashing the system or aborting
the application with a core dump but nonetheless is not very helpful for real-world applica-
tions.

Exceptions that are simply ignored potentially result in corrupted internal structures, leaving
the system in an undefined state - especially since an application thread is terminated by the
JVM.

6. java.sql.SQLException also supports linking several exceptions, but there the idea is to propagate the
original exception and append other exceptions that occurred later, whereas here the idea is to hide
the original exception and propagate a wrapper around it.

7. The memory overhead introduced by EXCEPTION WRAPPING are usually not an issue because the
memory is used only temporarily. An upper limit for the amount of memory taken up is <Cumulative
size of wrapped exceptions>*<Max. number of concurrent tasks> which even for very large systems
is only in the order of a couple of MB.

8. For the rest of this pattern, “exception” is used to denote all throwables to make the text easier to
read.

9. Many frameworks provide some default handling, alleviating some of these consequences. Swing
and RMI for example ensure that no thread is accidentally terminated, and many application servers
additionally log the exception.

There is also the problem that an exception just written to System.err easily goes unnoticed,
creating the impression that an operation terminated normally without however performing its
designated task. This can lead developers on a wild-goose chase for bugs that are actually in a
different part of the system.

How can you make sure that unhandled exceptions do not go unnoticed and trigger a default
handler?

Solution
Install a default handler as a safety net which is called for all exceptions that have slipped
through the application’s regular handling mechanisms.

The system should be built in such a way that there is no known way an exception could pos-
sibly reach the safety net; all expected exceptions should be handled regularly.

This introduces a distinction between expected and unexpected exceptions.

Expected exceptions are those which the developer thought of and which are therefore han-
dled in some way. For them, the system ensures that all necessary clean-up is performed, and
they leave the system in a well-defined state. These exceptions are typically handled based on
their type, and when a system is released to the customer, all exceptions should be in this cate-
gory.

Unexpected exceptions are all those that are not in the “expected” category. For them there is
by definition no well-defined and specific handling, so they potentially leave the system in an
undefined state. Those are the exceptions for which a default handler is necessary as a safety
net.

Due to the unspecific nature of these exceptions and the potential severity of their cause, the
safety net can and should not do much beyond logging the exception. In a critical server sys-
tem, triggering a message to the system administrators would be a typical action.

But how do you implement and register such a safety net?

If the creation of all threads is under direct control of the application, the best way is to create
a subclass of java.lang.ThreadGroup and override the uncaughtException method.

// This ThreadGroup acts as a default handler for exceptions
// which are not otherwise caught
class SafeThreadGroup extends ThreadGroup {

// every thread group needs a name
public SafeThreadGroup (String name) {

super (name);
}

public void uncaughtException (Thread t, Throwable e) {
if (! (e instanceof ThreadDeath)) {

.... // handling code goes here
}

}
}

Then all threads are created with an instance of this thread group.

This causes a call to uncaughtException whenever the run method of a thread throws an
exception.

Implementing a SAFETY NET using a customized ThreadGroup with an overridden
uncaughtException method provides full control over the actual handling of the exception.
There is however the severe limitation that this approach only works if the application has
direct control over the creation of all threads. Since this is not the case if frameworks like
Swing or RMI are used, most systems need an alternative.

As noted above, the default way that Java handles an exception is to print it to System.err,
and most frameworks leave this behavior unchanged so that another way of providing a
SAFETY NET is possible.

It is based on the assumption that all output to System.err means that something went terri-
bly wrong. If that is so, why not implement the SAFETY NET as an OutputStream and regis-
ter it as System.err?

// a single instance of SafeThreadGroup is enough for
// the purposes of the Safety Net
private final SafeThreadGroup globalThreadGroup =

new SafeThreadGroup ("global safe ThreadGroup");

....

// all threads are created with the instance
// of SafeThreadGroup
Thread thread = new Thread (globalThreadGroup,

new Runnable () {
public void run () {

.... // the thread implementation goes here.

// all exceptions thrown by this method trigger
// a call to uncaughtException in the thread group.

}
});

class SafetyNetOutputStream extends OutputStream {
public void write (byte b[]) throws IOException {

....// log the message and take additional action
}

public void write (byte b[], int off, int len) throws IOException {
....// log the message and take additional action

}

public void write (int b) throws IOException {
....// log the message and take additional action

}

.... // override flush() and close() as needed
}

Then System.err must be set to this class.

Whenever the printStackTrace method is called on an exception - or any other output to
System.err is done - one or several of the write methods of the SafetyNetOutput-
Stream are called, making sure that the output is logged and triggering any additional emer-
gency behavior.

The main advantage of this approach is that it works in the presence of many frameworks
where using a special ThreadGroup is not an option. This comes at a price, however:

• System.err is occupied. Each and every output to System.err is treated like an unex-
pected exception, triggering serious consequences.

• Failures are not atomic. A single unexpected exception may result in several calls to sev-
eral of the write methods of the SafetyNetOutputStream. That means that all handling
code is executed several times for a single unexpected exception unless that is heuristically
prevented, for example through a time-out.

• Information about the exception itself is not available. The exception which triggered the
handler is reduced to one - or several - sequences of bytes containing a string representa-
tion. Specific handling based on the exception type is not possible.

Despite these limitations, registering a safety net as System.err ensures that all exceptions
are at least logged and trigger additional handling.

Conclusion
Exceptions are a powerful tool, and like many powerful tools they can be used to disadvan-
tage. But if the pattern language presented in this paper is applied to organize exception use in
the large then exceptions will prove to be a natural and helpful part of the system, providing a
clean and potent way to propagate knowledge of failure of operations.

Acknowledgements
I would like to thank Frank Buschmann who shepherded this paper for his many suggestions
and questions; he helped to improve this paper a great deal. Further thanks for fruitful discus-
sions go to Pascal Costanza, Kevlin Henney and Jan Hermanns and the participants of the
Writers’ Workshop at EuroPloP 2002. Special thanks are due to Jan Leßner for coming up
with the stream-based implementation of SAFETY NET and helping design robust exception
handling into the first large Java system I ever worked on.

// An instance of SafetyNetOutputStream is registered as
// System.err so that all output to to System.err triggers
// a global failure handler
public static void main (String[] args) {

....

System.setErr (new PrintWriter (
new SafetyNetOutputStream ()));

....
}

