
Pattern Language for Specification of Communication
Protocols

Juha Pärssinen, Markku Turunen

1 Abstract

This paper presents the pattern language for specification of communication protocols. The
pattern language contains four levels which are used to specify communication protocol and its
messages. These four levels of this pattern language are: high-level protocol specification, pro-
tocol structure specification, message specification, and detailed message specification. Sev-
eral existing patterns, e.g. the Layers, are used together with new ones to specify protocol
structure. Patterns for communication protocol messages are most important part of this pat-
tern language, and also most important part of any communication protocol specification.

2 Introduction

This pattern language concentrates on specification of communication protocols. Specification
and implementation of communication protocols are two different sides of a coin. Specifica-
tion of communication protocol explains meaning of communication messages sent between
protocols and tells practically nothing about system structure. Implementation explains static
and dynamic structure of protocol system and its layers, but messages are merely referred as
events or payloads.

The authors of this language have participated during recent years several in projects in the
area of protocol engineering, including protocol implementation projects, protocol specifica-
tion and development method research projects, and protocol structure and message design and
implementation tool development projects. They have also written other pattern languages
which also concentrate to communication protocols [2][3]. These languages have took lots of
influence from [1][6][7][9], and they are under slow, but continuous, development.

The pattern language presented in this paper contains four levels. This paper explains first
briefly patterns related to high-level protocol specification, and then patterns related to proto-
col structure. After this protocol message related patterns are presented. These patterns are the
most important part of this pattern language. Last and most detailed level of patterns is used to
support message specification.

Road maps of these patterns are shown before each section. In these road maps and in the
body text of this paper all patterns explained in detail in this paper are marked using bold ital-
ics. Patterns explained elsewhere are marked using italics. All road maps are collected to
Figure 15, which is included as an appendix at the end of this paper.

In this paper we use as a running example a simple high-level protocol called TeleChess.
This protocol is used to play chess remotely. This protocol is used also as an example in proto-
col engineering courses held by the authors in the Helsinki University of Technology.

3 Pattern Language

3.1 Patterns for High-Level Protocol Specification

Pattern language presented in this paper proposes a solution to problem raised by contradiction
between needs to communicate and means to communicate. These two concepts and contradic-
tion between them are discussed in next sections. Contradiction and related high-level patterns
are presented in Figure 1. In this figure there are three patterns. Two of them, Community of
Nodes and Conversation between Nodes, are patterns from [3]. Transmission Media has cur-
rently “patlet” status. These patterns and their context are explained next briefly.

3.1.1 Needs to Communicate

Communication is one of the basic needs in human society. This can be seen how communicat-
ing related systems, like cellular system and internet, have been successful during the last de-
cade. If we take a high level view on communication, then we can see that in communication
there are two or more parties, here called as nodes. To facilitate communication between two
nodes there has to be a communication channel, or connection, between them, as shown in
Figure 2. In the modern society there are also other kind of communication types than just be-
tween humans. For example, there are communication between humans and different kind of
automatic services, and communication between autonomous systems without human interfer-
ence. All these nodes are part of Community of Nodes, pattern from [3].

A typical communication session might have the following sequence. First, one node initiates
communication with other, or it responds to the initiation of communication from other. Sec-
ond, during the communication session there are messages transmitted between parties, as
shown in Figure 3. During message exchange different problems need to be solved e.g. there
can be a variety of errors that need to be handled. Finally communication session is finished.

Fig. 1. Contradiction between needs and means in communication. In this figure there are pat-
terns from [3]. This figure presents highest-level road map to patterns in this and related lan-
guages.

Community of Nodes

Needs to communicate
Means to communicate

Transmission Media a.k.a.
Paper and PencilConversation between

Nodes a.k.a. Forget the
Bloody Bits!

Contradiction

Fig. 2. Two nodes and connection between them.

Node
Connection

However, there are variations about this basic scheme. For example in message-based commu-
nication there is no explicit connection establishment and disconnection phases.

To make meaningful communication possible rules for communication, a communication
protocol, between nodes are needed. These rules define what are the messages which nodes
can send to each other and what is the meaning and format of each message, what kind of mes-
sage exchange forms a meaningful dialog between the nodes and what kind of functionality is
implied to happen in the nodes due to the message exchange. Messages are part of Conversa-
tion between Nodes, pattern from [3]. These rules of messages are main and most important
part of communication protocol standards.

Running example

In the TeleChess protocol all nodes are chess applications. These players form Community of
Nodes. Messages between these nodes contain for example challenges to play, moves, and
checkmates and are part of Conversation between Nodes.

3.1.2 Means to Communicate

The nodes have connection between each other via some existing physical media. The physical
media between nodes offers only low-level communication service, moving bits from one
point to another. This can be achieved by using photons, radio frequencies, carrier pigeons or
other whatever available Transmission Media. Physical media can be considered as a real con-
nection, compared to connection between nodes which can be considered as a virtual connec-
tion.

However, nodes are interested only in very high-level aspects of communication, they want
to send message to another node and take no any interest in technical details. For this reason,
adaptation is needed between node and physical media. Also, if there are changes in physical
media, then the node doesn't want to know anything about them.

Fig. 3. Messages transferred between nodes.

Message

TeleChessApplication TeleChessApplication

1: move()
2: checkmate()

Fig. 4. Two TeleChess applications and message exchange between them.

Running example

TeleChess protocol uses one common email program to send messages between players, or
nodes. Email program uses other protocols to transmit messages between parties, e.g. TCP/IP
protocol stack, and these protocols uses some physical hardware to transmit bits, e.g. modem
line or ethernet.

3.2 Patterns for the Structure of Communication System

Patterns related to the structure of communication are shown in Figure 6. Elements of a Node,
Two Roles of Nodes, and Interfaces of an Entity pattern are explained in [3]. From Service to
Protocol pattern is presented in this paper. These patterns can be used after Community of
Nodes pattern is used.

Fig. 5. Bits transmitted between nodes via physical media, adaptation is used to fill gap be-
tween node and physical media.

Physical media

Adaptation

000110000111000101...

Virtual connection

Real connection

Fig. 6. Patterns related to the structure of communication system.

Interfaces of an Entity
a.k.a. Service Action

Point

From Service to Protocol

Elements of a Node a.k.a. Layers

Two Roles of Nodes a.k.a client/server

From Service To Protocol

Context

A communication system is specified using layered architecture and each layer, called typi-
cally as an entity, communicates with layer which is in the same level in architecture, but in
different instance of a system. These entities, called as peer entities, use a well-defined com-
munication protocol between them, e.g. (N) Service Protocol in Figure 7. Entities also offer
Service Access Points (SAP) to entities above them. In Figure 7 (N Service Entity) provides
services, as a SAP, to it’s user.

Problem

Entities in same level but in different instances of system don’t have direct connection to each
other, but they want to send messages to each other. Typical communication protocol specifica-
tion explains only messages sent between peer entities.

Solution

Communication messages are routed as shown in Figure 8. This route, when going from up to
down, looks little bit like a greek character ζ (zeta). Messages coming from service user are
sent to peer entity, but actually they are routed using the services of lower entity. This works
also to opposite direction: an entity receives messages from peer entity, without knowing that
they are actually coming from lower entity. One interesting point related to this pattern is that it
is used recursive when a stack of entities is designed: every entity offers service to higher en-
tity and uses services offered by lower entity.

Fig. 7. Service Layering in OSI [6]

(N) Service User (N) Service User

(N) Service Entity (N) Service Entity

(N - 1) Service Provide

(N)-Service Provider

(N)-Service Protocol
Specification

(N)-Service Acces Point

(N-1)-Service Acces Point

Running example

TeleChess protocol stack contains two entities, or layers. TeleChess entity offers services to
TeleChessUI, an user interface, and it is responsible e.g. starting a game, manage the state of
current game, and ending a game. TeleChess protocol specification defines set of messages
send and received between two instances of protocol, and how these messages should be react.
Specification don’t contain any information how messages are actually delivered to other
party. There are other protocol for this, called Mail, which offers a transmission service to
TeleChess layer. In Figure 9 messages there are shown message flows from TeleChessUI to
Mail and in opposite direction. TeleChessUI uses service offered by TeleChess entity. To send
message to its peer entity TeleChess entity uses services offered by Mail entity. Mail itself uses
other services, offered by lower entities, not shown here.

Related Patterns

This pattern is used together with the Layers pattern [9] and Patterns for Generating a Layered
Architecture [5] when almost any communication protocol is specified. This pattern is typi-
cally implemented with Protocol Behavior pattern [2]. Implementation issues of those two pat-
terns can be found from [2].

Fig. 8. Message flows in From Service to Protocol pattern.

Physical media

Adaptation

000110000111000101...

Virtual connection

Real connection

Virtual connection

Virtual connection

Virtual connection

Fig. 9. Services offered by TeleChess and Mail protocols, and message flows in TeleChess
protocol.

TeleChess protocol
TeleChess TeleChess

TeleChess service access point

MailMail

Mail service access point
Mail protocol

TeleChessUITeleChessUI

Mail service access point

TeleChess service access point

3.3 Patterns for the Communication Message Specification

Patterns of this language for communication messages specification are shown in Figure 10.
There are four patterns: Message Exchange, Content of a Message for Humans, Content of a
Message for Machines, and Message Transfer Syntax. In this pattern language there are also
more detailed patterns which are used together with Message Transfer Syntax. Those patterns
are presented in section 3.3.1 "Supporting Patterns for Communication Message Specifica-
tion".

Message Exchange

Context

You have identified communicating entity, or layer, which communicate, and you are ready to
think about messages between peer entities. You might also have considered messages be-
tween entities with Conversation between Nodes pattern.

Problem

You want to provide an easily understandable view to messages between entities.

Forces

• Rules for message exchange between entities are needed to make co-operation possible.
These rules define what are the messages which entities can send each other, what is mean-
ing of each messages, and which are possible sequences of messages.

• When messages are specified, experts from several fields must communicate with each
other. Some might be expert on the behavioral part, knowing what information a message
must carry so that participants of a communication procedure can have a common under-
standing of a state, what is requested and what are expected actions. Others might be ex-
perts on technical areas, like on methods of message specification.

• It might tempting to start message encoding with bits and bytes because they are “concrete”
in a sense that when one sees a bit table one can have an impression that one understands
what a message contains.

Fig. 10. Patterns related to communication message specification.

Message Transfer Syntax a.k.a What send to the Line?

Message Exchange Content of a Message for Humans

Content of a Message for Machines

Solution

Define messages between entities, give them meaningful names, and show their sequences us-
ing e.g. UML Sequence Diagram.

Running Example

In TeleChess protocol one of the most important message is move. In Figure 11 there is shown
simple message exchange between two TeleChess entity. The names of messages are meaning-
ful: first one move a chessman, second one moves a chessman and checkmates.

Next Pattern

Now you have defined messages with their name and relations between them as message se-
quences. Next, you will define content of your messages. To define message content, you will
use Content of a Message for Humans pattern or Content of a Message for Machines pattern.

Content of a Message for Humans

A.k.a High-level Abstract Syntax

Context

You have specified messages and their relationships between entities, but not their content.

Problem

You want to provide a simple and easily understand view about messages for humans.

Forces

• The higher the level of protocol, the more complex the message structure is likely to be.
• Your specification should have enough information so that bit level representation can be

derived from your description.
• In addition to message information content there may be additional required message prop-

erties for messages, such as priority or optionality.
• The use of formal methods makes description less ambiguous, but people might be uncom-

fortable with them. From someone's point of view formalism hides the idea of concepts, be-

TeleChess TeleChess

move()

checkmate()

Fig. 11. TeleChess UML Sequence Diagram

cause notations might look too much like programming languages. From another's point of
view, a formal notation hides the bits, and thus removes control from their hands.

• It might tempting to start message encoding with bits and bytes because they are “concrete”
in a sense that when one sees a bit table one can have an impression that one understands
what a message contains.

• You have messages, which are complex, and you have selected those message definitions
that will be robust and future-proof. This can result complex message definitions where the
actual contents are hidden behind mechanisms of extensibility and other features.

Solution

Specify content of your messages using tables. A table for each message should contain at least
message name, specification of message parameters, specification valid value sets for parame-
ters, and specification of other logical parameter properties (e.g. multiplicity, optionally or
conditionally).

Running Example

TeleChess protocol message move is used as an example in Figure 12. TeleChess message
move contains chessman’s type, starting point and ending point. Starting point and ending
point are valid point in chessboard. Piece is enumerated type and contains all possible chess-
man types: pawn, rook, knight, bishop, queen and king. Starting point is defined optional, be-
cause in some cases a type of chessman is enough to define which chessman moves, e.g. queen
or last rook.

Next Pattern

Now you have specified messages and all of their properties excluding their bit presentation.
The specification of message bit presentation is considered in Message Transfer Syntax pat-
tern.

Fig. 12. Services offered by TeleChess and Mail protocols, and message flows in TeleChess
protocol.

Message: Move

parameter type presence multiplicity description

starting
point

ending
point

[A..H][1..8]

[A..H][1..8]

optional

mandatory

1

1

Chessman which will move.

Chessman destination.

piece mandatory 1[pawn, rook,
knight, bishop,
queen, king]

Type of chessman.

Content of a Message for Machines

A.k.a Low-level Abstract Syntax

Context

You have defined messages and their relationships between entities, but not their content.

Problem

You want to provide a view about messages for machines, or humans who prefers formal pre-
sentation of messages.

Forces

• The higher the level of protocol, the more complex the message structure is likely to be.
• Your specification should have enough information so that bit level representation can be

derived from your logical description.
• In addition to message information content there may be additional required message prop-

erties for messages, such as priority or optionality.
• It might tempting to start message encoding with bits and bytes because they are “concrete”

in a sense that when one sees a bit table one can have an impression that one understands
what a message contains.

• You have messages, which are complex, and you have selected those message definitions
that will be robust and future-proof. This can result complex message definitions where the
actual contents are hidden behind mechanisms of extensibility and other features.

• While an informal description aids in one's initial understanding of a messaging system, a
precise formalization must exist as a basis in a court of law to determine when exclude de-
vices claiming to be network compliant, when they are not.

Solution

Specify your messages using a formal notification, e.g. ASN.1 [11], without specifying any-
thing about message bit presentation, i.e. separate a concept, e.g. message name, and how it is
realized. Your formalism should support for all the needed concepts. If your notation does not
explicitly support a concept, then you have to specify how a concept is mapped to the notation.

When specifying the message's logical contents, at least the following must be specified:
message name, specification of message parameters, specification of valid value sets for pa-
rameters, and specification of other logical parameter properties (e.g. multiplicity, optionally
or conditionally).

Consider what other kind of message properties are needed. Consider how message might
evolve in the future and how to be prepared for it.

Running Example

TeleChess protocol message move is used as an example. It is specified below using ASN.1
[11]. This specification includes enumeration for chessmen and move protocol data unit (PDU)
specification.

Piece ::= ENUMERATED {
 pawn, rook, knight, bishop, queen, king
}
MovePDU ::= SEQUENCE {
 piece Piece,
 fromSquare Square OPTIONAL,
 toSquare Square,
}

Next Pattern

Now you have specified messages and all of their properties excluding their bit presentation.
The specification of message bit presentation is considered in Message Transfer Syntax pat-
tern.

Message Transfer Syntax

A.k.a. What to Send to the Line?

Context

You have specified a message abstract syntax using Content of a Message for Humans and/or
Content of a Message for Machines. This abstract specification defines a logical content of a
message that is sent between peer systems.

Problem

What send to the Line?

Fig. 13. Flows of messages specified using Context of a Message for Humans/Machines and
MessageTransfer Syntax patterns

Physical media

Adaptation

000110000111000101...

Real connection

Virtual connection

Virtual connection

Virtual connection

Message formatted as specified in

Message formatted as specified in Message Transfer Syntax

Content of a Message for Humans/Machines

Forces

A message logical content is specified, but its local bit presentation can vary in different sys-
tems depending on many implementation issues like integer presentation in underlying hard-
ware etc.
• A message can be presented in a local system in a string of bits or bytes, but it can also be

built as a complicated object tree.
• There is a need for a common transmission format so that a message can be encoded (serial-

ized) into a string of bits or bytes and then the encoded bits or bytes can be sent over a trans-
mission media.

• The available bandwidth might be small resulting need for short peer messages.
• A design trade-off exists between squeezed or robust encoding.
• Peer messages are sent over a transmission media and thus must be encoded (serialized) to

strings of bits or bytes. A receiver must be able to determine the type of a message that is
contained in a bit string.

Solution

Specify the message bit presentation, and how this bit presentation is mapped to the message
logical content and vice versa.

Resulting Context

The separation of logical message contents, Message Abstract Syntax, specified using Content
of a Message for Humans and/or Content of a Message for Machines and message transmis-
sion format, Message Transfer Syntax, makes it possible to refer to information in the mes-
sage parameters. The complexity of transfer syntax can be encapsulated and hidden from other
parts of a specification.

Running example

In TeleChess protocol one of the most important message is move. Messages are sent to line
using UTF-8 coding. An example of a move message from TeleChess is:

pawn:D4;

Next Pattern

Now that you have specified the bit presentation for messages and mapping how this bit pre-
sentation is related to the message logical content, the next issue is how to move a bit string to
a peer entity using a lower layer service. This is considered in Piggy-packing pattern.

3.3.1 Supporting Patterns for Communication Message Specification

These patters are used to support Message Transfer Syntax pattern.

Message Versioning

A.k.a. Prepare for Change

Context

Bugs are found in a protocol specification. New protocol features are introduced. This results
in an evolution of the protocol specification.

Problem

Modification of a protocol results in a need to extend or to modify message contents.

Forces

• Backwards-compatibility. (You do not want to update 10.000.000 cellular phones just be-
cause a new version of a protocol was just released...)

• Future-proofness. (Of course version 1.0 of a protocol does not have any bugs or need for
enhancement...).

• Compactness vs. robustness. Robustness may require auxiliary structure information in
messages like encapsulation and identifiers. If bandwidth is scarce then the cost of such ex-
tra information and structure may exceed achieved benefits.

Solution

Add version information to every messages. Make clear separation between mechanisms that
provide the version information and the actual data carried by the messages. Hide the mecha-
nisms from the view of specifiers that only need to access the information in the messages.

Variations

Obvious and straightforward way is to add message version identification to each message, but
if there are many versions of messages the implementation with many version could be com-
plicated. Another common way to versioning is to add to the message a tag to mark new or op-
tional section. Receiver can choose if optional section is considered at all.

Most flexible way is to add to each parameter of message a tag which informs if the param-
eter in concern is critical or not. Receiver can choose which way message containing unknown

Fig. 14. Support patterns for communication messages specification.

Message Versioning

Tail Extension

Piggy Packing

Message idenfication

Parameter Container

parameters is handled. Receiver can drop whole message or only unknown parameters, and
make decision based on criticalness of unknown parameters.

To make decision which of these ways to use consider which of the following features are
needed:
• addition of new message parameters;
• modification of existing message parameters;
• removal of existing message parameters;
• replacement of existing message parameters;
• need for skipping of unrecognized message parts;
• tree-like version branching, i.e. different protocol versions may evolve in parallel and pro-

duce sub-versions.

Running example

To add version number to our running example, message move definition is modified. All mes-
sages are sent to line using UTF-8 coding. An example of a move message from TeleChess is:
V1:pawn:D4;

Next Pattern

To extend messages you can use two different patterns: the Parameter Containers and the Tail
Extensions patterns.

Tail Extensions

Context

Protocol messages are evolving as shown in Message Versioning pattern. You don't have lot of
bandwidth for messages.

Problem

Protocol messages shall be extended but there is not a lot of bandwidth for message encoding.
The extension mechanism should be as light as possible producing a very small encoding.

Solution

Encode all new parameters and extensions to old parameters at the end of a message regardless
of their logical position in a message. A receiver that does not know the extensions is designed
to ignore the trailing bits.

Variations

One variation of Tail Extensions is used to replace existing message parameters. In this case
you must specify how a device handles old parameters.
• Old parameters are left as garbage. This means that there are two different parameter values

for one logical parameter and different protocol versions interpret messages differently.
• Old parameters can be removed. This means that there shall be a presence indication for ev-

ery parameter even if it is mandatory. If an old parameter is omitted then old protocol imple-
mentations do not receive a complete message from their point of view.

Running example

We use Tail Extensions as follows to add number of move to message. All messages are sent
to line using UTF-8 coding. An example of a move message from TeleChess is:
V2:pawn:A4:1;

Parameter Container

Context

Protocol messages are evolving and they have to extend, as shown in Message Versioning pat-
tern. In this case, bandwidth is not a problem.

Problem

Protocol messages shall be extended, there are no strict limitations of the use of bandwidth. A
receiver shall be able to identify and skip over unknown new parameters.

Solution

Provide a generic container structure, which can be used to encapsulate message parameters. It
shall at least contain identification and delimiting for a parameter value. It can also contain dif-
ferent kinds of parameter properties, e.g. if you use a container with Message Versioning, you
should add critical or uncritical tags to each container.

Running example

We use Parameter Containers as follows to add number of move to message. Message format
is changed to use XML. One example of move message from TeleChess is:

<message>
<parameter>version<value>3</value></parameter>
<parameter>move<value>1</value></parameter>
<parameter>piece<value>pawn</value></parameter>
<parameter>startPoint<value>D2</value></parameter>
<parameter>endPoint<value>D4</value></parameter>

</message>

Piggy-packing

A.k.a. Data message or Data Transparency

Context

There is a stack of protocol layers. Peer entities communicate with each other using virtual
connection. When a message is sent to a peer, it must be sent to a peer entity using lower layer
services via real connections.

Problem

You want to keep layers decoupled. The same lower layer could be used with several different
kinds of upper layers.

Solution

Provide a data message that is capable to carry encoded upper layer messages. An encoded up-
per layer message is seen as a payload and it is transparent from the lower layer point of view.

Running example

Example of the usage of Piggy-packing pattern to send message. In this example TeleChess
protocol message is send to other party using email.

Next Pattern

Now you have an encoded message and can send it to the peer entity, the question to consider
is how the peer entity identifies the nested upper layer message. This is considered in the Mes-
sage Identification pattern.

Message Identification

Context

A lower layer data message carries encoded messages as a byte string.

Problem

An upper layer has to identify what kind of message it has been received.

Forces

• New messages might be introduced in the future.
• How unique shall the identification of a protocol message be? Shall all the messages within

a protocol be distinct, or is it enough that only messages that go in one direction are distinct,
or are there several protocols that must co-operate in one network node and all the messages
shall be distinct.

to: markku.turunen@nokia.com
from: juha.parssinen@vtt.fi
subject: telechess-message

<message>
 <parameter>version<value>3</value></parameter>
 <parameter>move<value>1</value></parameter>
 <parameter>piece<value>pawn</value></parameter>
 <parameter>startPoint<value>D2</value></parameter>
 <parameter>endPoint<value>D4</value></parameter>
</message>

piggy-packed part

Solution

Provide a message identification field (or fields) that determine the kind of a message. Such
identification can be external to protocol messages or it can be included in the messages them-
selves.

Variations

In the case of external identification the lower layer data message contains an identifier field in
addition to the payload field. Furthermore, a table, which maps identifiers to messages, shall be
specified.

In the case of internal identification, the lower layer data message contains just the payload
field. It is the responsibility of upper layer messages to identify themselves. Usually there is an
auxiliary identifier field in a message. The field is used as a selector over a possible set of mes-
sages.

If messages need to be globally distinct then a known mechanism shall be used for the iden-
tifier fields. If the need for uniqueness is smaller, then a lighter means can be used (e.g. a
closed range of integer values).

Running example

Example the usage of Message Identification pattern to send message. In this example TeleCh-
ess protocol message is send to other party using email. This example uses both internal and
external identifications. External identification is used to identify that this message is meant to
TeleChess (subject: telechess-message) and internal identification is used to identify message
type inside TeleChess protocol itself (move).

4 Acknowledgements.

During the years many people have supported us and facilitated our work with protocol pat-
terns with comments, ideas, encouragements, and resources. Especially we like to thank our
shepherds who are helped us in this quest: Rick Dewar (EuroPLoP2002), Norm Kerth
(EuroPLoP2001), and Michael Stall (PLoP2000).

to: markku.turunen@nokia.com
from: juha.parssinen@vtt.fi
subject: telechess-message

<message>

 <parameter>version<value>3</value></parameter>
 <parameter>move<value>1</value></parameter>
 <parameter>piece<value>pawn</value></parameter>
 <parameter>startPoint<value>D2</value></parameter>
 <parameter>endPoint<value>D4</value></parameter>
</message>

 <id>move</id>

5 References

[1] J. Pärssinen, N. von Knorring, J. Heinonen, M. Turunen, UML for Protocol Engineering -
Extensions and Experience, Tools Europe 2000, 2000.

[2] J. Pärssinen, M. Turunen, Patterns for Protocol System Architecture, a pattern workshop
paper presented at PLoP2000, August 13-16, 2000, Allerton Park, Monticello, Illinois,
USA.

[3] J. Pärssinen, M. Turunen, Pattern Language for Architecture of Protocol Systems, a pattern
workshop paper presented at EuroPLoP2001, August 13-16, 2000, 4 - 8 July 2001, Irsee,
Germany.

[4] K. Wolf, C. Liu, New Clients with Old Servers: A Pattern Language for Client/server
Frameworks, Pattern Languages of Program Design 1, pp. 51-64, Addison-Wesley Long-
man, 1995.

[5] B. Rubel, Patterns for Generating a Layered Architecture, Pattern Languages of Program
Design 1, pp. 119-128, Addison-Wesley Longman, 1995.

[6] M. T. Rose, The Open Book, A Practical Perspective on OSI, Prentice-Hall, 1990.
[7] ITU-T, Information Technology - Open Systems Interconnection - Basic Reference Model:

The Basic Model, Recommendation X.200, ITU, 1994.
[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley, 1994.
[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software

Architecture: A System of Patterns, Wiley, 1996.
[10]S. Yacoub, H. Ammar, Finite State Machine Patterns, Pattern Languages of Program De-

sign 4, pp. 413-440, Addison-Wesley Longman, 2000.
[11]ITU-T, Abstract Syntax Notation One, X.680-X.693, ITU, 2002.

Juha Pärssinen can be reached at the VTT Information Technology, P.O.Box 1203, FIN-02044
VTT, Finland; juha.parssinen@vtt.fi

Markku Turunen can be reached at the Nokia Research Center, P.O.Box 407, FIN-00045
NOKIA GROUP; markku.turunen@nokia.com

Appendix A. Pattern Language Road Map

Fig. 15. Pattern Language road map

Interfaces of an Entity
a.k.a. Service Action

Point

Message Transfer Syntax a.k.a What send to the Line?

From Service to Protocol

Community of Nodes

Needs to communicate
Means to communicate

Elements of a Node a.k.a. Layers

Two Roles of Nodes a.k.a client/server

Transmission Media a.k.a.
Paper and PencilConversation between

Nodes a.k.a. Forget the
Bloody Bits!

Contradiction

Message Versioning

Tail Extension

Piggy Packing

Message idenfication

Parameter Container

Message Exchange Content of a Message for Humans

Content of a Message for Machines

	Pattern Language for Specification of Communication Protocols
	1 Abstract
	2 Introduction
	3 Pattern Language
	3.1 Patterns for High-Level Protocol Specification
	Running example
	Running example

	3.2 Patterns for the Structure of Communication System
	From Service To Protocol
	Context
	Problem
	Solution
	Running example
	Related Patterns

	3.3 Patterns for the Communication Message Specification
	Message Exchange
	Context
	Problem
	Forces
	Solution
	Running Example
	Next Pattern

	Content of a Message for Humans
	Context
	Problem
	Forces
	Solution
	Running Example
	Next Pattern

	Content of a Message for Machines
	Context
	Problem
	Forces
	Solution
	Running Example
	Next Pattern

	Message Transfer Syntax
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Running example
	Next Pattern

	Message Versioning
	Context
	Problem
	Forces
	Solution
	Variations
	Running example
	Next Pattern

	Tail Extensions
	Context
	Problem
	Solution
	Variations
	Running example

	Parameter Container
	Context
	Problem
	Solution
	Running example

	Piggy-packing
	Context
	Problem
	Solution
	Running example
	Next Pattern

	Message Identification
	Context
	Problem
	Forces
	Solution
	Variations
	Running example

	4 Acknowledgements.
	5 References

