
Hope, Belief and Wizardry
Three different perspectives on project management

Markus Völter

voelter@acm.org
Version 2.1, December 16, 2002

Copyright 2002 Markus Völter. Permission is hereby granted to copy and

distribute this paper for the purposes of the EuroPLoP '2002 conference.

Introduction
Normally, I’m not too much into project management. However, over the last
couple of years, I have come across several projects that use hope, belief and
wizardry as their primary management tools. You will probably not have heard
about these specific projects – and you probably never will. They have gone out
of existence, maybe because of too successful management techniques.
However, if you’re a consultant or a developer, I’m sure you have experienced
your own hope/belief/wizardry project and you could probably tell the same
story as I do here.

This paper is mostly a product of personal frustration. I simply had to write
down these things. I did not include “three known uses”, as you might guess,
because the cited projects and their staff might feel offended. However, for me
there is no doubt that these things here are really patterns. I have seen many
instances, and you have probably also come across some. The pattern form
used in the paper consists of a narrative, a kind of story, interleaved with short
pattern thumbnails that capture the essence.

So, why the title Hope, Belief and Wizardry? Quite simple, these are the three
perspectives how the different parties see the project:

• The customer often does not really understand how management and the
developers try to make the project a success. The customer is typically
full of hope that the project will eventually succeed.

• Project management is usually very convinced of what they do. They
have a firm belief that they will successfully steer the ship through the
stormy seas, finishing on time and in budget.

• And the developers would consider it wizardry, if all that really worked
out in the end.

Of course I know that nobody would actually set out to run a project in the
described way. However, strangely enough, I’ve been on several such projects
as a technical consultant. And yes, we all know how to run project more
efficiently, there are many methodologies, processes and practices described
that help here and try a more people-oriented approach to project management.
But still: Many projects today are still managed “the old way” and maybe this
paper can help to show how absurd all this is, maybe by sometimes
exaggerating a little bit ?

Disclaimer: Of course, you should not really take these patterns as good advice,
as they are cynic and ironic. It is up to you, the reader, to spot the irony and
judge how successful the patterns can be used in muggle software development
projects. And of course, the observations described in the patterns are not new,
or even described for the first time. Many are closely related to agile processes:
using agile processes is a good way to omit stumbling into a
hope/belief/wizardry situation.

Overview over the patterns
The overview is presented in the form of diagrams showing the patterns and
their relationships. The patterns are organized into several subsections, each of
them has its own diagram. Patterns introduced in a previous subsection are
rendered in gray.

When starting a project, you will start with project planning. During the
course of the project, controlling becomes a more and more important aspect.
They following patterns apply to this domain:

PLUG AND PLAY PROGRAMMER

improves

PROJECT OFFICE

uses

STATUS REPORT

CLUELESS PROJECT OFFICE

ca
n

re
qu

ire

ARITHMETIC PROJECT PLANNING

helps w
ith

MS PROJECT PLAN

does

 implemented with

BUY CHEAPER RESOURCES

requires

SELF-MOTIVATED

PEER REVIEWS

expects

IMPERATIVE STYLE

GUIDE

wan
ts

QA RULES

doesn't

believe in

defines

During the project, you will have to deal with requirements, architecture and
design aspects. We also have some patterns there:

supplemented by

HALF-XP

uses

thinks

enhances

PRO-FORMA REQUIREMENTS

DOCUMENT

START BIG

MAGIC DOCUMENT

instance of

PROJECT OFFICE

wants

ON-THE-FLY

ARCHITECTURE

prescribes

POWERPOINT
ARCHITECTUREdescribes

understands only
ARCHITECTURAL

DOCUMENT

instance of

REFACTOR LATER

requires

requires

believes
believes in

INVERTED POWERPOINT

ARCHITECTURE

 supplements

THE PLAN
COUNTS

The development team also deserves proper attention and management – we
offer some help in these patterns:

PLUG AND PLAY

PROGRAMMER

LARGE-SCALE

MEETINGS

DEVELOPER

DATASHEET

PROJECT OFFICE

describes

TELEPATHY

communicate by

beliefs

like
s

be
liev

es
in

Last but not least, methods and tools are an important aspect of each project
and must be given their necessary attention.

PROJECT OFFICE

PROCESS BY

THE BOOK

likes

TRUST THE TOOLS

AND METHODS

DEPARTMENT

requires to

prescribes

MS PROJECT PLAN

fulfills

USE UML

happy to

Setting the stage: The projects
The projects I’m about to tell you have happened in completely different
domains. Some where rather typical e-commerce projects, others are from the
financial domain, and some have happened in industrial environments. While
this is rather diverse, all the projects have a set of common characteristics: they
were rather large software development projects ranging from 10 to 150
developers plus a (more or less) corresponding number of managers and
administration people. And in all the cases, in addition to just fulfilling the
requirements of the project at hand, the architecture developed as part of the
project should be reused in future projects, it was going to be kind of standard
architecture for the respective enterprise.

The Patterns

Patterns for project planning and controlling

The project is important. Because of this, we have a couple of
administration people assigned to support the project. They are not
really part of the development team, they are located in a so-called
project office. These people are very experienced. You can tell that
from the fact that they are rather old, and that they come from big
companies with big, well-known names (or, they are really young,
qualified with MBAs, eager for promotion within their organisation,
and therefore they must be good). Their job is to control the project
and provide management and planning support. Because they are
not part of the development team per se, they can successfully work
on their own and look at the project from a different angle. And they
are not annoyed by day-to-day development work! This allows them
to work very efficiently.

P R O J E C T O F F I C E

Context: You are running a rather big development project.

Problem: How do you make sure the project is controlled an planned properly?

Solution: Provide a project office staffed by people who are not part of the development
team. This allows them to see the project from their own point of view. Management
can be assured of their experience and competence by ensuring that they come from
a big-name company. The pattern can be implemented most efficiently by actually
using a CLUELESS PROJECT OFFICE.

The primary job of the project office is to control the development
team. This job is simplified because they are not part of the team and
consider themselves somewhat superior… anyway. You might argue
that such a separate, remote project office is no good, because they
cannot work effectively with the project team. This is far from true!
Being on the team would not help them, because these people should
not have a clue about software development or the requirements the
software should implement. Such knowledge would even limit their
ability to view the project from a different, rather formal angle. They
should not be distracted by the day-to-day technical details of how
this project is run or the business it should support. They should just
control, on an abstract level, that everything goes as planned.

C L U E L E S S P R O J E C T O F F I C E

Context: You have a PROJECT OFFICE in place that controls your project and makes sure
it stays on track.

Problem: How do you ensure they can work efficiently and are not too much bothered by
the details and day-to-day problems of the project team?

Solution: Make sure the people in the PROJECT OFFICE don’t know anything about
software development, or even the requirements the project is about to fulfill. Make
sure the PROJECT OFFICE does their work on an abstract level. This allows them to
work more efficiently, and it ensures the “different angle” mentioned in the PROJECT

OFFICE pattern.

So, the question arises, what these people actually do? What are their
tools and how do they communicate with the development team? In
most projects this is rather hard to determine, but you will see that
there are well-known and proven solutions to all these problems.

Their main tool is the MS PROJECT PLAN. This plan provides a
concise, comprehensive and complete overview about all aspects of
the project. At least about all those aspects that are ultimately
important. It intentionally ignores these low-down details of those
who work in the development team. It is the ideal abstract tool for
people who cannot care about the details, because they have to
control the big picture and the overall success of the endeavour.

M S P R O J E C T P L A N

Context: You already have a CLUELESS PROJECT OFFICE in place.

Problem: The PROJECT OFFICE has to keep track of all the important activities, people,
resources, milestones, etc. This has to be fairly abstract, though, because they
cannot afford to be distracted by what they perceive to be inappropriate concrete
detail

Solution: Use a colorful MS PROJECT PLAN to provide the overview. This vehicle is ideal
for that purpose because it is easy to use for the PROJECT OFFICE staff, it provides a
nice, management-compatible way to graph things, and it is abstract enough to ignore
all the gory details of everyday life in the project.

You might say that important details might get lost in such a high-
level view, or worse, that some of the requirements might not be
fulfilled or that the development team will not be able to work with
these MS PROJECT PLANS. But note here that the development team, of
course, will never see these plans anyway. Developers are only
hunted down by the PROJECT OFFICE, being told that they are behind
the plan – but they will never actually see it. So how, you might ask,
do those people in the PROJECT OFFICE get the information they need
to build this MS PROJECT PLAN? One possibility that’s regularly used
is that they just make it up by themselves. To make sure that the MS
PROJECT PLAN contains at least information that it logical in itself,
they can do some simple arithmetics, based on the available amount
of time till project deadline, the available resources and the available
money.

A R I T H M E T I C P R O J E C T P L A N N I N G

Context: You already have a CLUELESS PROJECT OFFICE in place using a MS PROJECT

PLAN as their primary planning tool.

Problem: You, the CLUELESS PROJECT OFFICE, have to fill content into the MS PROJECT

PLAN. You want to do so without much interference with the development team. You
need a way how the plan can be populated by only talking to management (or to
nobody at all). And the plan must look consistent as a result.

Solution: Use simple arithmetics to fill in the MS PROJECT PLAN. You know when the
project should be finished, and you know, how much money is available for it. Thus,
in a first step, calculate how many resources you can afford:
 numberOfResources = availableMoney / averagePricePerResource
In the next step, you can then determine who does what, and when. Based on the
requirements and the available time till the deadline, you can easily draw a nice-
looking MS PROJECT PLAN. If the result looks unrealistic, BUY CHEAPER RESOURCES. If
the PROJECT OFFICE staff needs information from the developers they should avoid
direct contact and instead use STATUS REPORTS.

This approach works well, because the PROJECT OFFICE don’t need to
get in touch with the people from the development team. And, in

fact, the plan looks really good, because it meets the deadline
precisely and does that even with the allotted money! Perfect.

In the course of the project, the MS PROJECT PLAN needs to be
updated! Fortunately enough, the approach described in ARITHMETIC
PROJECT PLANNING also works repeatedly during the project. An
experienced PROJECT OFFICE team can update the plan on their own,
still meeting deadlines and using only the available money. A
PROJECT OFFICE with less experience has a problem, though. They
need to know how much work has already been done. Getting this
information is not possible without some contact with the
development team. To avoid direct contact, however, and to allow
the CLUELESS PROJECT OFFICE staff to understand what the
development team tells them, use well-organized forms, or reports,
which the development team members have to fill in regularly. They
require the development team to abstract to a level that’s
understandable by the PROJECT OFFICE.

S T A T U S R E P O R T

Context: The PROJECT OFFICE needs to update their MS PROJECT PLAN during the
project using ARITHMETIC PROJECT PLANNING and does not have the experience to do
this without any contact to the developers.

Problem: To be able to update the plan, inexperienced PROJECT OFFICE staff need
information on the progress of the project from the development staff. This
information needs to be stated in a way that is understandable for the CLUELESS

PROJECT OFFICE.

Solution: Make each member of the development team fill in a status report form every
once in a while, for example every week, on Wednesday at 4pm. In this report, he is
required to state the progress he made, report problems, and describe what he’ll do
next. If a member fails to finish with what he planned, require him to explain why.
Ideally, add a “blame field” to the form where he can write down the name of the
colleague whose fault it is.

Using these STATUS REPORT forms, the PROJECT OFFICE can easily
track the progress of the project. In combination with ARITHMETIC
PROJECT PLANNING, this can result in an always-up-to-date MS
PROJECT PLAN. However, towards the end of a project, the PROJECT
OFFICE team might find out that more and more remaining work has
to be done in an increasingly shorter time frame until the fixed
deadline. They might be tempted to talk to the customer to find a
solution, such as reducing the scope of the project, reprioritizing
requirements use cases or even spending more money. However, as
it turned out over the last 20 years of software project management,
this usually doesn’t work. But, there is another solution: just replace
your resources by cheaper ones. Then you can buy even more, and

the project will proceed more quickly. Take a look at ARITHMETIC
PROJECT PLANNING if you don’t believe this.

B U Y C H E A P E R R E S O U R C E S

Context: You get to the end of the project and ARITHMETIC PROJECT PLANNING together
with STATUS REPORTS reveals that you probably won’t finish in time…

Problem: How do you still finish the project in time without reducing the scope or getting
more money and without having to discuss with management?

Solution: The solution is to use more, but cheaper resources. ARITHMETIC PROJECT

PLANNING reveals this as an effective way to increase development speed. The only
thing that might eventually suffer is quality – but that’s not something that shows up in
your MS PROJECT PLAN anyway.

BUYING CHEAPER RESOURCES to replace expensive ones is a rather
effective way to stay within the MS PROJECT PLAN and the budget.
Especially, towards the end of the project, this can be a real “life
saver”. Introducing new, cheaper resources into the project towards
the end is without risk. Good people can start work and be efficient
right from the start, so-called PLUG-AND-PLAY PROGRAMMERS.

P L U G - A N D - P L A Y P R O G R A M M E R

Context: You BUY CHEAPER RESOURCES to help you in the tight schedule towards the
end of the project.

Problem: How do you actually make sure that the new, cheap resource works efficiently
right from the start?

Solution: Make sure that you only buy cheap resources, you also need to make sure
that they are actually so-called plug-and-play programmers. Those are characterized
by the fact that they start to be productive in any project right from the start. They
don’t need time to familiarize themselves with code, tools and the project. Also, you
don’t need to coach them!

Using PLUG-AND-PLAY PROGRAMMERS has the additional benefit that
they don’t need to be coached. In the usually tight timeframe
towards the end of the project you don’t have resources to bring new
ones up to speed – after all, resource shortage is the reason to
actually BUY CHEAPER RESOURCES. If you’re not sure whether a
potential new resource actually is a PLUG-AND PLAY PROGRAMMER,
take a look at their respective DEVELOPER DATA SHEET.

Now, as mentioned, quality might become an issue. But how can you
actually measure something as diffuse as quality? One possibility to
avoid the need for such measurements is to make sure from the
outset that code quality is rather good. You can easily ensure this by
using peer reviews. Peer reviews are conducted by the development
team, internally, and are used to ensure code quality. Because

developers take pride in what they do, they will execute these
reviews automatically, all the time, even under rigid time constraints
imposed by the PROJECT OFFICE and their ARITHMETIC PROJECT
PLANNING.

S E L F - M O T I V A T E D P E E R R E V I E W S

Context: You run your project using ARITHMETIC PROJECT PLANNING.

Problem: How do you ensure the quality of the code?

Solution: The code quality is ensured automatically by the developers. Because they
take pride in their work, they will conduct peer reviews with each other. This happens
even under the severe time constraints that result from ARITHMETIC PROJECT

PLANNING, and it works even with the recently BOUGHT CHEAPER RESOURCES.

As mentioned, these reviews go without straining the projects time
and resource budget because they are just done as part of the
everyday work of the developers. No consequences for the MS
PROJECT PLAN! All this self-motivated stuff on the developers side
might seem suspicious to the PROJECT OFFICE, though. They don’t
believe in motivated people... doing the right thing without pressure
and control. A controlling agency, called Quality Assurance, is
therefore necessary to ensure the quality of the developed artifacts.
The QA people are usually associated with the PROJECT OFFICE but
consists of (former) developers – they thus have a thorough
understanding of the project’s requirements, the used tools and they
are experienced in reviews and the like. Therefore, QA is always the
last, finally deciding instance in a project.

Q A R U L E S

Context: Your PROJECT OFFICE does not completely trust development team.

Problem: How do you ensure the quality in the face of mistrust? And how do you ensure
homogeneous quality and the obedience to standards all over the project?

Solution: Put a quality assurance team in place. It’s task is to ensure quality of the
development artifacts on an abstract level. They usually run reviews, interviews, etc.
and they are typically associated with the PROJECT OFFICE. They have deep insight
into the project and its constraints.

To to make reviews effective (by the QA or by peers) the developers
have to be able to understand each other’s code (this is even true for
PLUG-AND-PLAY PROGRAMMERS). Developers are usually a funny
bunch of people. Everybody uses their own weird style of arranging
the code. Specific problems arise in C-like languages with the
position of the opening brace (end of previous line, or beginning of
next line). Naming of variables is also a problem. Purists claim
(correctly) that variables can be as short as they like, as long as

distinct variables have unambiguous naming (for the compiler, that
is!). Others want variable names that have 70 characters in order to
convey their complete semantic meaning. But, good luck we have QA
people. For them, all this is no real problem. They just devise a style
guide for the developers to follow – which they do happily because
they are told to do so.

I M P E R A T I V E S T Y L E G U I D E

Context: You want to ensure code quality by using SELF-MOTIVATED PEER REVIEWS.

Problem: How do you make sure everybody can understand everybody else’s code?

Solution: Let the QA team define a style guide. The guide contains everything from code
layout to variable names to documentation requirements. Place this MAGIC DOCUMENT
somewhere into the intranet, the developers are happy to read it and follow it
promptly. Make sure that developers cannot easily change or adapt the document,
because QA RULES.

Patterns on requirements, architecture and design

Before you actually start coding in a project, you have to have some
preconditions met. That’s something everybody knows, of course.
For example, you need to fix your requirements. A document needs
to be signed by the customer that specifies every single bit of
functionality that has to be implemented in the project. However,
people found out that this is unrealistic, for several reasons: First, the
customers usually do not know, what they want. Consequently, they
are unable to write (or at least, sign) a requirements document.
Second, the requirements might change over the course of the
project, so a requirements document would change all the time
anyway. And third, if a document that contains all requirements
would be used as a basis for a vendor’s offer, the price would be too
high for purchasing to accept…

That’s why people proposed to use a more agile process, where you
have fixed time, resources and quality but where you are free to
adjust the scope – of course only after talking back to the customer.
This is no problem, because the customer is always available on the
project and can answer questions about what to implement first, and
what to postpone. So the best approach is obviously to combine the
two approaches to have the best of both worlds: no fixed
requirements, but you still want to make sure that the to-be-done
software does everything the customer requires (and a bit more) with
a fixed budget at a fixed deadline.

H A L F - X P

Context: You are not able to clearly define the requirements of the project from the
beginning.

Problem: How do you still make sure that the customer gets all he wants with a fixed
budget and a rigid deadline?

Solution: Use half of the XP methodology. Do not define the detailed requirements up
front, start developing immediately. The developers will refine the requirements as
they go by talking to the customer’s representative. It’s not necessary, though, that
the customer representative is available all the time on the project, because the
customer promised to be accessible whenever he’s needed. Because you have a
rough understanding on what the customer wants, it’s easy to finish with the project
on time and meet the customers requirements.

So, as we can see, it does not really make sense from a technical
perspective to fix the requirements upfront. HALF-XP still allows you
to run the project efficiently. Problem is, that there are those other
folks at the customer’s – those folks in the purchasing department.
They don’t know about fancy XP or agile methodologies. They want
to buy software the same way as they buy, say, twenty-five-thousand
screws. So they want a clearly defined lot, and a fixed price (fixed
meaning: fixed after they have bargained the initial price by at least
15%, no matter what the initial price was – that’s how purchasing
people earn their bonuses). So, formally, you have to sign a
requirements document anyway. You’ll probably never look at it
again after it is signed, but you have to sign one. And its content is
probably not really useful…

P R O - F O R M A R E Q U I R E M E N T S D O C U M E N T

Context: You use HALF-XP but the customer’s purchasing department still wants a
formal requirements document.

Problem: How do you state formal requirements if you don’t know them?

Solution: Write a pro-forma requirements document. It includes everything, but
described in very general and weak terms. This document can be signed easily.
Nobody will ever look at it again, and everybody knows, that the real requirements will
be defined on the fly using HALF-XP. The purchasing department is happy, though.

So, everybody is happy: The purchasing department is happy,
because they have requirements and can purchase software using the
same approach as for screws or sacks of cement. The “real” customer
is happy, because a vendor has been found (with a happy purchasing
department), knowing that the real requirements will be worked out
on the fly (and they will contain everything they ever wanted). And
the vendor is also happy: He has got a contract and the real
requirements will be worked out on the fly (and they will contain

only the bare minimum that’s absolutely necessary). The legal
departments will fight out differences.

Now comes the PROJECT OFFICE, however. They don’t know of
anything but the PRO-FORMA REQUIREMENTS DOCUMENT. And they
need to create their MS PROJECT PLAN. They will be happy to use the
PRO-FORMA REQUIREMENTS DOCUMENT as a basis for their ARITHMETIC
PROJECT PLANNING…

Now, after long last, you actually start coding. The customer is
looking forward to the first live results of the project. He wants to see
something for his money: code. Ideally, running code. And even
better: useful running code! So you have to start working to convince
the customer he has chosen the right vendor. To get something done
quickly, you should work with as many people as possible.

S T A R T B I G

Context: You have just won the contract and want to provide useful code to the
customer as quickly as possible.

Problem: How do you get something done as quickly as possible?

Solution: Start big. BUY as many CHEAP RESOURCES as you can get right from the
beginning. The beginning is where the hard work has to be done: frameworks, base
libraries and other “strategic” code. You cannot have enough people to work on that
critical phase in the project.

So you have a wealth of resources working on your most important
problems. Quickly you will have something to show your customer.
Looks nice. However, to prevent the project from drifting into chaos,
you need an architecture and some structure. As an experienced
project manager, you know that, of course, and that’s why you set up
an architecture team. This team consists of your most skilled
resources. However, architecture is not something the customer can
see. And it’s not part of the MS PROJECT PLAN, anyway. So, to
convince the customer of you, you have to implement “user features”
and create an architecture on the fly.

O N - T H E - F L Y A R C H I T E C T U R E

Context: You have STARTED BIG and you need to provide an architecture for the system.

Problem: How do you define and implement an architecture while the project is in its
initial phase and the MS PROJECT PLAN does not explicitly allow time for the
architecture?

Solution: Implement the architecture and the basic libraries in parallel with the first user
features. Your best resources will define the architecture and talk to the rest of the
team about what they should implement, and how. It is not necessary to define the
architecture (or at least, an outline) up front because you can REFACTOR LATER. Note

that this pattern works especially well for mission- or safety-critical enterprise
projects.

However, sometimes your customer has so-called technical managers
– people who have been developers or techies in their earlier lives,
and who have advanced their career into management. Usually, they
don’t have any clue about current software technologies, but they
think they are experienced ex-techies and want to be consulted for
technical decisions. Thus, you have to make sure they like the system
architecture, or what they think the architecture should be.
Therefore, provide simple a overview chart, with at most 7 boxes1
and some connecting lines. Make sure these boxes contains terms
they understand and that enough technology buzzwords are
mentioned. It is crucial that the lines have no defined semantics
because this will limit your freedom in implementing the actual
system.2

P O W E R P O I N T A R C H I T E C T U R E

Context: Your customer has some kind of technical managers.

Problem: The customer requires to present them with the architecture. The audience
has some technical background but is by no means up-to-date or competent with
current technologies – however they usually know management-compatible
buzzwords.

Solution: Create a small Powerpoint presentation that shows the system as a collection
of at most seven boxes connected by (ideally unannotated) lines. Make sure the
presentation is colorful, contains some well-known terms from the business and
mentions all the current buzzwords.

Using this pattern is not without risk, though: There are those
technical managers who think (correctly) that you cannot represent a
system architecture using seven boxes and a couple of connecting,
unannotated lines. They want to see the full complexity including
every nitty gritty detail. Not that they understand it – but they want
to be exposed to “the real thing” and impress others with
complicated diagrams. Once you found out about this, you can easily
switch to using the INVERTED POWERPOINT ARCHITECTURE pattern:

1 It is generally accepted that people can remember up to 7 items easily.
2 As part of UML 2.0, several groups of people are working on enhancing the semantics of
UML and its metamodel to allow direct execution of UML models – some people call this
executable UML. We propose another direction for improvement called Executive UML: The
notation is reduced to only boxes and lines with no defined semantics at all to be suitable for
direct understanding by executives.

I N V E R T E D P O W E R P O I N T A R C H I T E C T U R E

Context: Your customer has some kind of technical managers.

Problem: The customer requires you to present them with the architecture. The
audience has some technical background but is by no means up-to-date or competent
with current technologies. However, they want to see the full-blown details of the
upcoming system, usually to impress colleagues with complex diagrams.

Solution: Create a large Powerpoint presentation that shows the system in as much
detail as possible, using diagrams with collections of at least seven boxes connected
by lines, annotated with well-sounding terms. Make sure the presentation is
complicated, lacks color, and contains important-looking abbreviations, some well-
known terms from the business and all the current technology buzzwords. And USE

UML!

It is well possible that the POWERPOINT ARCHITECTURE is the only
architecture specification you will ever create because no resources
are there to define a real system architecture. If you’re lucky,
however, you will eventually get the time to really document your
architecture. In some projects, such a document is even a deliverable,
which means that it has to be created and delivered3 to make the
project a formal success. This is good for the architect. He will have
time (based on the MS PROJECT PLAN) to design and document an
architecture. Once this is done, however, the document is usually
stored somewhere and never touched again. But you still expect that
every developer reads it, and follows the architecture automatically.

A R C H I T E C T U R A L D O C U M E N T

Context: You have to provide the system architecture as an explicit deliverable.

Problem: How do you make sure the architecture is really implemented and followed
allthrough the development process?

Solution: Write down the architecture in a ARCHITECTURAL DOCUMENT. Publish this
MAGIC DOCUMENT to every developer in the project. They will happily stick to it and
implement the architecture consistently. You don’t need to provide examples, execute
architectural reviews, or explain the architecture to the developers individually.

Because developers always discover, read and follow MAGIC

DOCUMENTS, the system will be clean and well structured, just as
described in the ARCHITECTURAL DOCUMENT. In case the MS PROJECT
PLAN does not give you the time to write an ARCHITECTURAL
DOCUMENT, using ON-THE-FLY ARCHITECTURE together with START
BIG might result in unstructured, even chaotic code in the beginning.
QA will not like that, and the developers won’t like that either.
During their SELF-MOTIVATED PEER REVIEWS they will find out about

3 At the beginning, of course, and then it must never be changed again!!

this chaos. They will want to fix, refactor these things. But to do that
they need time. But there’s no problem, because developers will get
that time later, certainly (if there is not time, BUY more and CHEAPER
RESOURCES).

R E F A C T O R L A T E R

Context: Your ON-THE-FLY ARCHITECTURE is late and you have to keep implementing
customer features.

Problem: How do you make sure the code does not drift into complete chaos, and the
architecture is really implemented?

Solution: Defer refactoring till later in the project, when the customer is convinced that
you are a good team. The customer will give you time and resources later, because
the customer is interested in good product (code) quality. If you implement many
features in the beginning, the MS PROJECT PLAN will reveal enough free time for
refactoring towards the end of the project.

Project management is all about balancing different interests. The
different parties involved define success is different ways.
Developers, for example, usually define success as “having had the
chance to play around with a lot of fancy new technologies”. The
vendor, usually, is happy when they earn a lot of money while
delivering as little as possible. For the customer, it’s the opposite
way: little money for a lot of delivery. To resolve this, the only
unbiased judge is the PROJECT OFFICE and it’s MS PROJECT PLAN.

T H E P L A N C O U N T S

Context: The project is nearing it’s end and you want to determine whether the project is
a success or not.

Problem: How do you define success? Every party in the project has a different
definition what makes a project successful for them. You have to find an
unambiguous way to define success.

Solution: Success is, when the MS PROJECT PLAN is fulfilled. When the CLUELESS

PROJECT OFFICE created the MS PROJECT PLAN, it took into account all important
issues and requirements. Obviously, when the plan is fulfilled, the project is a
success.

As a sidenote, if you look more closely at the MS PROJECT PLAN,
IMPERATIVE STYLE GUIDE, PRO-FORMA REQUIREMENTS DOCUMENT, ON-
THE-FLY ARCHITECTURE and MS PROJECT PLAN you can see a common
(meta-)pattern emerge from all those patterns which is called MAGIC
DOCUMENT:

M A G I C D O C U M E N T

Context: You have something that everybody needs to know or adhere to.

Problem: How do you make sure that these things are known to everybody, and are
actually followed?

Solution: Write these things into a document. Pass this document to everybody. The
MAGIC DOCUMENT will make sure by itself that it is implemented, discussed, followed,
or whatever else should happen with the content. Once it’s written and published, you
don’t need care about it anymore.

You can even generalize this one step further, resulting in the Publish
and Forget philosophy, which says that all you have to do is publish
something, and then forget about it. The rest – discussions,
implementation, etc. – will happen automatically.

The development team

Unfortunately, software development has not yet been completely
industrialized. To create software, you need people. To hide that, and
to make managing these people somewhat less of a “personal” thing,
these people are usually called resources in a project, just as rooms,
computers, money and the like. A resource is characterized by the set
of skills that it provides. For examples, a computer has 256 megs of
RAM and a 20 gigabyte hard disk. A developer resource can program
Java, or draw fancy little pictures with Rose. And just as there is a
datasheet for a computer that specifies its performance data, there is
a datasheet for developer resources. It is called a CV and lists all the
skills of the resource. So in order to acquire the resources for filling-
in the MS PROJECT PLAN, the only thing you need to do is select
appropriate resources based on their datasheet.

D E V E L O P E R D A T A S H E E T (A K A C V , P R O F I L E)

Context: You need to acquire developers for your project, primarily to fill in the MS
PROJECT PLAN.

Problem: How do you make sure you find “compatible” resources providing exactly
those skills you actually need for the project?

Solution: Base your selection on the developer datasheet, also known as CV or profile.
This document describes all the skills the developer has, as well as his experiences.
The content of these CVs is always true and can be trusted, because they are usually
not specified by the developer himself, instead these things are stated by his
employer. The CV does not contain any personal or social skills, but these are not
necessary for developer resources anyway. Their technical skill is what counts.

Using the DEVELOPER DATASHEET pattern will save you a lot of time
because you don’t need to interview all those potential resources
personally. After all, it’s not a project manager’s job to fiddle around
with people – as the job title project manager implies, he has to deal
with the project! Note that good DEVELOPER DATASHEETS also contain

information about the social skills of a developer, allowing you to
judge if he fits the team. Such social information is usually given by
terms such as good team worker, communicative or by a list of social-
skills-trainings the person has had.

Once the project has started, the developers have to talk to each other
to make the project become a success. They have to exchange their
thoughts on the system, on problems, and so on. This is especially
important in larger projects, where it’s impossible that everybody sits
in one room. Good luck that the crew of USS Enterprise have found
out about a specifically efficient means to communicate: telepathy.
Information is directly transferred from brain to brain, without the
semantics-filtering detour of spoken language. And it has even more
advantages. It works from one room to another, and even if the
project is distributed over several buildings, locations or continents,
telepathy works.

T E L E P A T H Y

Context: You have your resources available and the project is running.

Problem: How do you enable efficient communication among developers in the face of
distributed development sites?

Solution: Use telepathy as the basis for the communication among the developers. It
works over long geographic distances and transports thoughts directly without having
them to wrap with semantics-filtering language. In projects where there are several
languages spoken by the developers, this is especially an advantage, because
translation is not required.

Using TELEPATHY also has the advantage that you don’t need an
expensive and complex support infrastructure, such as computers or
telephones. It works by building a spontaneous peer-to-peer system
using the developers as network nodes. However, there are people in
the project who cannot effectively communicate that way: typical
examples are management, the PROJECT OFFICE, and also some less
experienced developers. They insist on using the more traditional
means of communication, such as …. Meetings!

Because people sit in close proximity to each other, they don’t need
telepathy to communicate, they can use the spoken word. Usually,
these meetings are arranged by the CLUELESS PROJECT OFFICE. Because
they typically don’t know who is responsible for what, they will
usually invite more or less everybody to join the meeting. But
because meetings are rare events it’s a good idea to make sure that
all relevant people are there.

L A R G E - S C A L E M E E T I N G S

Context: You want to share information to many people – discussion seems necessary.

Problem: How do you make sure that in meetings, all the relevant people are actually
really there?

Solution: Invite everyone who seems even remotely concerned with what is discussed
in the meeting. People, especially developers, like meetings because it’s there where
the biggest progress is usually made. Those who have nothing to contribute can still
serve as a consumer of the cookies and the coffee that’s usually served.

Successful projects can be distinguished by the number of effective
meetings they use. Another motivation for LARGE-SCALE MEETINGS is
that they are a power trip for the PROJECT OFFICE: it shows the team
how big they are, and how many resources are under their control. It
is also likely to impress the customer if they know LARGE-SCALE
MEETINGS take place.

Methods and Tools

While you have to deal with people in a project, the more important
aspects are tools and methodologies. People are merely needed to
operate the tools and play the roles defined in the methodologies – to
date, no way has been discovered to run projects without people.
However, watch out for the tools you use! Good luck, in most larger
organizations, there is a dedicated department that that deals with
tools and methodologies. They are staffed with people that have
lived through (and survived) many real-life projects and are happy
to let you benefit from their practical, real-world experience. Usually,
they do this rather indirectly, by prescribing technologies, tools,
processes, document templates and clothing style using MAGIC
DOCUMENTS.

T R U S T T H E T O O L S & M E T H O D S D E P A R T M E N T

Context: You want to run your project efficiently and in line with company standards.

Problem: How do you make sure you use the best tools available, the best technologies,
and the most efficient processes that have been proved throughout many projects?

Solution: Trust the Tools & Methods department. They are staffed with highly practical,
experienced and skilled people and are happy to help you pragmatically with your
project’s considerations.

It is not appropriate to have a toolsmith on the project. The reason is
that this toolsmith might be tempted to select tools and methods that
are focused on the specific needs of one project instead of focusing
on company standards and broader strategic or business
considerations

Standards! Standards! When running a project, you should make
sure that you use as many standards as possible (except, perhaps, in
the situations where two standards actually contradict each other – if
you find out about it!). This is not just true for the tools and
methodologies mentioned above. It’s also true for reference
architectures, languages, processes, etc. It’s usually a bad idea to
adapt standards to your specific project’s needs – the full power of
standards will not come to you! Adherence to standards is more
important than pragmatic decisions helping the project. Ask the QA
people, they will confirm that! There are many examples for
successful use of standards, I will focus on one very popular one, USE
UML4.

U S E U M L

Context: You want to represent something graphically.

Problem: You don’t know which notation to use for your graphical representation, but
you know that you should adhere to standards.

Solution: Use UML. Thank god, UML is extensible and can therefore be adapted to
represent whatever concept you require. Because you use a standard, it’s easy for
readers to understand what you want to convey.

USING UML can be very efficient in situations such as the INVERTED

POWERPOINT ARCHITECTURE, because it makes the presentation look
even more impressive.

Last but not least, if you don’t have these tools & methodologies
people available, there fortunately is some help available because
there are several authors who have written down many of these
aspects in the form of development processes and methodologies. If
you are unexperienced and don’t know how to successfully use
HALF-XP, follow a PROCESS BY THE BOOK, implementing all techniques
and artifacts proposed. There is a temptation to omit optional
features prescribed in the book, but this temptation should be
resisted as you are trying to get the most value out of the method,
and omitting anything will only dilute that.

P R O C E S S B Y T H E B O O K

Context: You need to run a project and you don’t have a TOOLS AND METHODOLOGIES

DEPARTMENT TO TRUST.

Problem: How do you know which process to use, which practices to implement and
which artifacts to produce?

4 Related ones are USE XML, USE EJB, USE WEBSERVICES, …

Solution: Take a book on one of the more heavy-weight processes and follow every
single instruction outlines in the book. Implement all artifacts and practices exactly as
described there.

Now go and start your project! You’re well prepared!

Acknowledgements
First, I’d like to thank all those people who participated in all those projects
from which I “mined” these patterns. You’ve done a great job!

Then I’d like to thank Kevlin Henney, who played the shepherd at EuroPLoP
2002. He contributed many useful comments, and also spawned the idea for the
PLUG-AND-PLAY PROGRAMMER pattern. Being a native speaker, he also helped to
polish language issues to make it even more ironic and cynic.

Also, I’d like to thank EuroPLoP 2002’s writer’s workshop D for their useful
comments, suggestions and discussions, as well as for their very positive and
encouraging feedback.

I also would like to thank Jutta Eckstein, who gave me good advice on how to
formulate some things in order to make sure that those people who were on
these project don’t feel offended of what I wrote. Manuela Nagel gave me some
good comments from the perspective of a not-so-cynic person, and Torsten
Holmer hinted at the term Publish and Forget.

References
[AC97] Cockburn, Surviving OO Projects, Addison-Wesley 1997

[AC01] Alistair Cockburn; Agile Software Development;
 Addison-Wesley 2001

[AC02] Alistair Cockburn; Some Article I need to find out details about;
 Look at http://www.aanpo.org/articles/articles/ACcitj0102.pdf

[FB95] Brooks, The Mythical Man Month, 1995

[KH02] Kevlin Henney; The Imperial Clothing Crisis;
http://www.curbralan.com

[OS01] Olson, Stimmel, The Manager Pool, Addison-Wesley 2001

