
Excerpts From A Set Of Technical Leadership Patterns

Mark Prince, Andy Schneider

BJSS, 1st Floor Coronet House, Queens Street, Leeds LS1 4PW UK
mark.prince@bjss.co.uk

andrew.schneider@bjss.co.uk

Abstract. The Technical Lead needs to have a thorough understanding of the quality of
the software and control over destabilising forces that can effect the delivery. Systems
are large, the Lead cannot know everything and there is tendency for lots of small
incremental changes to sum to large requirements. This paper presents set of three
patterns and their relationships (Code Surfing, Core Sampling and Take Care of the
Small Change). The patterns capture practices for helping Technical Leads manage
quality and scope in the face of finite management bandwidth and increasing complexity
and function. The patterns also discuss problems with over application and identify
related practices and patterns that may also be of use.

Introduction

Traditionally developers travel three paths to Technical Leadership:

Default appointment due to current incumbent moving

x� Being asked to take charge of a team (not necessarily knowing why there is an
opening)

x� Observing that leadership and/or organisation is needed within a team and
stepping up to the challenge. This often happens with more “natural” leaders.

It is very unlikely that the developer will be sent on a course and subsequently be given
a mentor to ensure their technical leadership skills flourish. This is a significant problem
because successful Team Leadership and Architecting require mastery of a diverse set
of skills. For example, a Team Leader will probably need to combine the roles of Team
Manager, Design Authority, Communicator and Mentor. He will need to organise the
team, manage the technical direction of the development, liase with the rest of the
organisation and look after the health and growth of his team. The journey from good
developer to good Team Leader can be a hard one given the lack of training and broad
selection of skills required.

This paper represents part of a larger effort to capture a set of patterns1 to fill the
knowledge gap that confronts the inexperienced and aspiring Team Leader and
Architect. As such the target audience for the pattern and proto-pattern work is IT
Software professionals that have had between 2 and 5 years industrial experience. Line
Managers, Programme Managers and Project Managers are not the target audience for
the patterns.

Henceforth, the Technical Lead will be referred to as “The Lead” in this paper.

1 Alongside other patterns work such as [1], [2], [3], [4] and [5].

Pattern Relationships

Figure 1 (below) shows the key relationships between the patterns described in this paper.

The patterns in this paper provide mechanisms for gathering and analysing information.
CODE SURFING captures one of the activities that successful Leads use to keep track of
the evolution of the development. This technique can help Leads target defect reduction
strategies so they are applied in a surgical manner. The paper then presents a related
pattern, CORE SAMPLING. CORE SAMPLING captures the habit some successful leads
have of pairing with a team member and having them walk through the code or design
currently being worked on. This informal habit provides a mechanism for understanding
the detail in isolated areas. Both CORE SAMPLING and CODE SURFING provide advanced
warning of problems such as quality issues and allow the Lead to determine whether
activities such as mentoring, inspections etc. would benefit the developer. These
patterns also work to provide early detection of micro-scope creep, a problem addressed
by TAKE CARE OF THE SMALL CHANGE.

Figure 1: Pattern Relationships

There are many ways of structuring leadership within a project. Some projects have a
Team Leader, responsible for planning and architecture; others separate these roles in
project specific ways. The allocation of responsibilities and authority is normally a
consequence of the size of the team, the skills of the team and the company’s internal
processes and culture. When considering these patterns it is useful to appreciate that the
Team Leader or Architect (as referred to in this paper) often plays some or all of two
roles:

x� Technical Leader - responsible for architecture, technical direction and the
quality of the technical deliverable.

x� Project Leader (Team Leaders and Architects often run teams, which means
they usually perform some project management) – responsible for project

Targets
Core

Sampling
Code

Surfing

Take Care
of the
Small

Change

Core
Sampling

Spot
Symptoms

Spot
Symptoms

Action or
Need

Treatments
Mentoring
Reviews

etc

Targets Targets

Pattern

Legend

Excerpts From A Set Of Technical Leadership Patterns

delivery, planning and control, and overall final quality (“ The Buck Stops
Here”).

The patterns presented in the paper describe choices and actions that are owned by one
or both of the above roles. The ownership is described in the table below.

CODE SURFING

It is essential to get a feel of the terrain in order to ensure development finds the
best way forward.

One of the challenges of Leadership is to understand enough about the code and design
base to manage the team, and by implication, its output.

CODE SURFING is a pattern for taking a breadth-first view over the code and design base
in order to identify any potential areas of worry. This is rather like taking an aeroplane
up and scanning for plumes of smoke in the forest. Once the broad view has identified
an area of concern, the Lead can investigate further (such as CORE SAMPLING or
reviews) and ensure corrective action is taken. This pattern should be used to guide the
Lead to target improvement mechanisms. Some of the key forces in how and when to
apply CODE SURFING are:

x� Code and Design Base Size - The design or development effort of the team will
reach a critical mass after which the Lead can’t understand it all or directly
control the quality.

x� Freedom - When a Lead delegates to the team and provides freedom, the team
benefits. A good team has freedom to make decisions, take risks and deliver.
However, a Lead stills needs to monitor quality and know when to provide a
GUIDING HAND[1].

x� Early Warnings - The longer a problem exists, the greater the cost of fixing it
[9].

Pattern/Aspect Technical
Leadership

Project
Leadership

CORE SAMPLING Primary

CODE SURFING Primary

TAKE CARE OF THE
SMALL CHANGE

Shared Shared

x� Empowerment - The Lead needs to allow the team members to take ownership
of the quality themselves. Failure to do this will lead to either:

o micro-management2, where the Lead manages every aspect of the
delivery or

o a significantly increased risk of quality problems during the latter stages
of the project, where the Lead fails to delegate responsibility yet does not
fill the quality assurance role.

x� Team Experience Level – for a team mainly comprised of inexperienced
members, a feedback mechanism like this can consume too much of the Lead’s
time. In this situation, it may be more productive to devote more time to
mentoring. If mentoring consumes too much time, it may be appropriate to
RAISE THE YELLOW FLAG3 and request another senior technical resource be
drafted into the team.

x� Trust - The Lead needs to transfer from faith to trust in the team. Rather than
the team relying on the Lead for guidance and control, the Lead can rely on the
team for delivery. To make that leap the Lead needs to track the quality of the
team deliverables.

x� Mentoring - To grow and empower the team, mentoring (amongst other
techniques) needs to be applied. However, it may not be clear where to best
target mentoring time.

x� Bandwidth - The Lead can only dedicate a finite amount of time to maintaining
the quality of the code and design base.

x� Churn – A Lead can be confident in the strengths and weaknesses of a stable
team. However, if the Lead has frequently to change teams or there are a lot of
changes in the team, the Lead will need to understand what is going on.

x� People – some developers are sensitive to criticism and this may be an issue
when corrective action is applied.

x� Requirements – the Lead needs to ensure requirements are being satisfied

Therefore:

Go CODE SURFING. It gives an understanding of what is happening and is an
unobtrusive way of ensuring the broader quality picture is understood. This
pattern is not an alternative to inspection techniques but aims to give insight to
where more detailed inspections may be applied.

Allocate an amount of time and go trawling through the recent check-ins and look for
problems – you are looking at the overall shape of things, rather than delving into the
detail. Going through check-ins rather than work in progress is more representative of
the quality of the artefacts being produced. Check-in based surfing also allows you to
assess who is checking in frequently, and possibly who isn’t checking in at all. The
Lead does not have to be an expert in the specific algorithms or technologies since the
goal is to look for warning patterns that exist at a macro level.

2 See CORE SAMPLING for a brief discussion on the perils of micro-management.
3 See Proto-Patletts

Excerpts From A Set Of Technical Leadership Patterns

When surfing look for warning signs that indicate something may need addressing.
Suggested points of interest are:

x� Are standards being complied with?

x� Are the team members repeatedly making the same mistakes?

x� Are appropriate language specific idioms being used?

x� Are there Bad Smells[27]? If so, have the developer refactor with the normal
patterns.

x� Are there any anti-patterns (such as CODE FOR CRUFTS4 or GOLD PLATING[7])?

x� Does there seem to be a significant amount of development activity in one area
of code that should be closed off? If so, is there cause for worry? For example,
five different developers have all changed the same 20 lines of code in the same
method over a two-week period; there may be broader issues that need to be
addressed.

x� Can the work be related back to a requirement? Are significant requirements
apparently not implemented? The converse is also true – the team may have
discovered work that needs to be done that isn’ t captured as a requirement. If so,
make it so, but pay heed to TAKE CARE OF THE SMALL CHANGE.

x� Are there broader based issues emerging that aren’ t the fault of individuals, but
will require intervention to ensure the team is pulling in the same direction? An
example would be the lead using his holistic view to spot obvious duplications.

Once an issue has been identified, the first step is to investigate further. Investigative
techniques can range from a quick chat, through CORE SAMPLING and pair programming
to more formal inspections. Whilst CODE SURFING helps spot problems early, its
primary use is to take the broad view. Defects can be spotted during CODE SURFING, but
it is more likely that defects will be found after further investigation has taken place.

Application Techniques

x� Make sure everyone knows that you surf the code. Do not be apologetic but do
be sensitive. You are not trying to make a point or be a pedant. It is your role to
ensure the team fulfils its goals.

x� When you’ re CODE SURFING and sitting with the team, be careful of the
impression you project with your body language.

x� Avoid making your team dependent on you by providing answers to all the
questions [26]. If there is an opportunity to mentor, don’ t approach the team
member and say “ you should do it like this” , take a softer and definitely positive
approach; “ I see what you’ re trying to achieve here, and it’ s good for these
reasons. Did you know you can do this…” List the reasons to show you have

4 See Proto-Patlets section.

understood the team member’ s work and are trying to help them improve, rather
than shoot from the hip. Alternatively, simply showing them an example of what
you’ d like can also work effectively. An advantage of the latter is that you can
empower the team member by saying “ take a look at that and let me know what
you think” . This puts control back into the developers’ hands.

x� Time box CODE SURFING. Initially apply the CODE SURFING regularly. When
you start to become comfortable, you will be able to apply this less often to
maintain the same comfort levels.

x� Unless you see a pressing problem that requires immediate investigation,
complete your surfing before addressing any investigative activity required. It
enhances your leadership if you can spot the big picture issues rather than
continuously drilling down into the detail with team members. They should be
perfectly capable of dealing with detail issues using normal peer techniques
(such as pair programming [22] or informal peer reviews).

x� Keep it going – you may reach the stage where you’ re applying CODE SURFING
on an ad-hoc basis, but that move should be a conscious decision. As the team
settles down into a steady rhythm it will become clear what areas of the code are
generally problematic and who needs more mentoring. This may result in less
need for CODE SURFING on a regular basis. However, if a completely new
developer arrives or significant different functionality is required then CODE
SURFING may need to be more regular for a while. CODE SURFING should ebb
and flow to match the needs of the project.

x� Apply when the team is under deadline pressure and the temptation is greater to
slip the quality. Prioritise any application of corrective action and apply it very
delicately because everyone in the team will be under stress. This is a good
opportunity for you to show you can rise above the stress and Lead effectively.

x� You are not a perfectionist. Just because you’ d do things differently may not be
sufficient reason to have a team member change their work.

x� When CODE SURFING indicates that you need to investigate further, apply any
corrective action informally; go over and chat with the member in question.
CORE SAMPLING describes several informal techniques for approaching team
members.

x� Remember, this is very much a people issue and needs to be handled carefully.
As the Lead, you need to be aware of how different people respond. Choose
techniques that work with each individual. Sometimes advice can meet
resistance. This can be for many reasons. Weinberg [26] has excellent coverage
of how to handle this in the section “ What to do when they resist” .

x� CODE SURFING does not lend itself to pairing (except in a mentoring role – see
below). Pairing CODE SURFING has a number of problems:

o Potential problems are discovered in a joint forum. If the issue is
sensitive then it is harder to tackle in private.

o CODE SURFING should be a time-boxed, concentrated process. Pairing
involves communication, which may extend CODE SURFING into a
mentoring session. If CODE SURFING is to be the forum for mentoring it
should be a conscious decision and appropriate time should be planned
in.

Excerpts From A Set Of Technical Leadership Patterns

o CODE SURFING is a combination of browsing and reading – this is not
normally a paired activity and the authors have no information to suggest
that CODE SURFING would benefit from pairing.

Over Application

A badly run code inspection or insensitive mentoring can result in an atmosphere that is
defensive rather than constructive. CODE SURFING as a quality assurance mechanism
carries the same risks. Mistakes to avoid are:

x� Assuming the developer is in error. In the majority of cases there is a good
reason why things are the way they are. It is important therefore to assume this
and use an appropriate mechanism (mentoring, CORE SAMPLING, reviews).

x� Pointing out problems in code to people sitting next to you. Issues should be
taken up with the developer in question.

x� Using CODE SURFING as a control mechanism. CODE SURFING is an early
warning system, a way of targeting positive mechanisms such as mentoring.
Performing CODE SURFING and then haranguing a team member will result in the
entire process being seen in a negative light.

x� Acting on impulse.

x� Exploring detail with CODE SURFING. If the Lead becomes embroiled in micro-
issues then the surfing will take too long and it will be perceived as having little
value. The Lead does not win respect by constantly pulling the team member up
on every small detail.

x� Using CODE SURFING primarily as a defect detection mechanism. Inspections are
a far better mechanism for defect detection than time spent CODE SURFING.

x� Using CODE SURFING as a threat, i.e. “ I’ ll be surfing your code later…”

Over application may also consume more time than you have available. This pattern
should be considered a tool for the Lead rather than the sole activity required to lead the
team.

Related Practices

Practices such as the Lead Pair-Programming [22] provide a detailed view of what is
happening within the team. However, the Lead normally does not have time to pair with
each member of the team. CODE SURFING helps by providing a “ big picture” view of the
terrain. From this the Lead can decide to go CORE SAMPLING, organise an inspection
(see Gilb [8] for a detailed review of inspections), pair with the developer in question
(for mentoring purposes) or use any other of a number of quality assurance mechanisms.

In many ways CODE SURFING can be seen as a specialisation of a code review, where
the objective is to discover general problem areas, (that exhibit themselves at the macro
level), rather than specific details.

Cross-referencing change requests against code changes will allow the Lead to view the
“ pulse” of code changes. This information allows the Lead to look for areas of the code
that are under greater flux than other areas. This type of information is a useful guide to
where to get best return on time invested in refactoring and reviewing.

Examples:

Detecting problems with responsibility allocations in classes.

CODE SURFING revealed a business domain class that contained only get and set
methods with little business logic. To resolve this, further investigation was needed. The
lead practised CORE SAMPLING. The opening gambit was to discuss the requirements at
the coffee area and then walk back to the developer’ s desk. Having opened a
conversation, a question could then be asked: “ I noticed that the domain object didn’ t
contain much business logic. What are its responsibilities?” This led to a discussion
about what elements invoked the domain object and where the functionality was. The
Lead followed with questions exploring the allocation of responsibilities. After a while
it became apparent that there was a misunderstanding in the use of J2EE session beans.
Once the Lead had explained, the code was refactored. The net result was mentoring,
and the developer learnt about encapsulation. Meanwhile, the Lead had shown genuine
interest and a willingness to share knowledge. It also led to the earlier discovery of
potentially significant problem that would have resulted in significant refactoring if it
had been left to the end of the iteration, or worse still, was discovered when
maintenance proved expensive.

Finding problems in inherited code.
A team was working on a COTS based project that involved code inherited from an
external supplier. CODE SURFING the inherited code revealed far greater complexity than
the problem being solved warranted. As a result of this broad impression the Lead
organised a code inspection. This inspection discovered nine bugs in seven lines of
code. Further detailed examination revealed the code base was months away from being
production ready and the Lead had the opportunity to raise the issue with his manager.
The end result was the inherited code was de-scoped from the first release. This gave
time for the development to be refactored and ready for production. Without this
discovery the system would have gone live and failed in days.

CORE SAMPLING

In any project of reasonable size the Lead cannot understand the entire
implementation in enough depth to feed appropriate feedback loops.

With the best team in the world, a Lead can give them a business case and play
Asteroids until the delivery occurs. However, with all the other teams in the world, the
Lead needs to apply a feedback loop. This feedback loop needs to positively reinforce a

Excerpts From A Set Of Technical Leadership Patterns

Team Member when expectations are being met and to allow for a GUIDING HAND[1] to
nudge the Team Member back on track when the expectations are not being met.

x� The Team Members need to positively reinforce the Lead when the Lead is
meeting expectations and express their expectations when the Lead is not
meeting them.

x� The Lead taps the feedback loop to grow his understanding of the technical
detail.

x� The Lead feeds back timely information to the other management roles within
the organisation.

A side effect of the established information flows is that information is gathered within
iterations and not just at the end. This is important because problems discovered early in
an iteration are fixed more easily than those found at the end.

Constructing and maintaining the feedback loop requires a forum for the gathering of
detailed information and the communication of expectations and ideas. However, in any
project of a reasonable complexity, the size of the code base precludes understanding all
of it. The code will need to be mined in order to get a detailed understanding of the
quality of the delivery – architecture, design and code. Gathering information on the
code base can be problematic because there are also non-technical forces in play.

 Some of the key forces are:

x� Productivity - The process must avoid interrupting developers when they are
“ in the zone” . DeMarco and Lister[15] describe the effect interruptions can have
during this time. They show that an interruption loses not only the raw developer
time, but also the time required for reimmersion. The nature of being “ in the
zone” is described well by Csikszentmihaly [14]. Therefore the Lead needs to
balance his need for information against any resulting short-term loss in
individual productivity.

x� Participation - The feedback loop requires the team to be involved. The
developer and Lead should feel that the act of participation is worthwhile.
However, the Lead should not be afraid to tactfully address issues identified
during the session.

x� Growth - The actions taken as a result of feedback should contribute to the
growth of the developer, team and the Lead.

x� Micromanagement - Executed badly, any review type mechanism can become
a tool for tyranny. Constant interruptions, micro-management and supervision
shows a lack of trust in the team and reduces opportunities for team growth. The
end result will be a disengaged and disenfranchised team. The quality will drop,
the delivery may run late or the project may even fail. A micro-managed team
has a short shelf life.

x� Bandwidth - Time spent gathering information must be in proportion to the
time spent on other aspects of the Lead’ s role. Each task must be kept in
balance, according to factors such as urgency and importance.

x� Detachment - “ Architect Also Implements” [6] is an important practice but a
Lead may not always have time to do this5. CORE SAMPLING complements
“ Architect Also Implements” and, in the case when the Lead does not have time
to implement, addresses the “ architect becomes detached” problem.

Therefore:

Take core samples and extrapolate.

The art of CORE SAMPLING is to pick a thread of development and follow it from top to
bottom with the developer. Gain impressions from a number of these investigations to
extrapolate and measure the health of the entire code base.

CORE SAMPLING is less expensive in time than a structured walkthrough or inspection
(see Related Practices below). However it should still be used in a manner that does not
consume unsustainable amounts of the Lead or team's time. If CORE SAMPLING is
happening once a day, it is too often (see Over Application below).

CORE SAMPLING is just another technique in a successful Leaders toolbox; it is not a
replacement for inspections, structured walkthroughs or testing. It is related to CODE
SURFING, in that the latter may result in the former. The following table outlines key
differences between the two:

Aspect CODE SURFING CORE SAMPLING
Time Lead: 30 minutes or an hour,

initially each day (or every
other day). Reduces over time
(as confidence and trust are
built) to maybe once per week.

Developer: None, i.e. the
developer is not involved in
CODE SURFING.

Lead: 30-90 minutes,
depending on issues raised, on
an ad-hoc basis.

Developer: Same time as lead.

Depth of
information.

Broad but shallow information.
Provides information on key
problems – but information is
not detailed.

Detailed information on a small
section of the development.

Context As CODE SURFING is a lone
activity, much of the context
(i.e. why the design/code is the
way it is) is not captured. As a
result, what can seem like a
major problem may in fact be
the best solution given the
constraints. CODE SURFING

Working with the developer
builds a rich context within
which discussions of the form
“ why is it like this?” can take
place.

5 Not always practical on large projects or projects where other aspects of leadership mean time is not available for

coding.

Excerpts From A Set Of Technical Leadership Patterns

cannot (without further
investigation) validate a design
choice against the context.

Mentoring CODE SURFING may indicate
that mentoring is required but it
does not provide mentoring
itself.

CORE SAMPLING provides a
forum in which both the lead
and the developer can learn
from each other.

Direction action. CODE SURFING is likely to
result in further investigation,
but is less likely to result in a
direct change. This is because
of the nature of the activity –
there is a lack of context and
detailed information.

CORE SAMPLING can often
mutate into a brief pair
programming session. In this
way CORE SAMPLING is far
more likely to involve direct
action and feedback than CODE
SURFING.

When following a sample through with a developer, be careful to avoid forcing a
context switch on them. Make sure an appropriate time is picked to pair with the team
member in question. This time doesn’ t have to be booked. In fact, a degree of
spontaneity provides greater flexibility. It would be inappropriate to interrupt a team
member when they are absorbed in a problem or discussing an issue with someone else.
Instead, be aware of the environment and the ebb and flow of work. Look for signs that
the person you wish to work with is free, as you normally would before interrupting
someone. People tend to work better at particular times of the day so try and avoid
interrupting people during these periods. Look for relevant openings in the ongoing
conversation. For example, you may be discussing a technical issue over coffee. Once
the discussion has finished an opening gambit could be “ I was wondering how you’ ve
gone about structuring the blah, can you walk me through it?” The person may say “ no,
not at the moment, but I’ m free in an hour/ after 6” . This is fine – you have an agreed
time.

Remember the aim is to understand a slice through the code so that a view can be
formed of the current implementation. The activity needs to be treated as exploration,
where information is freely exchanged, techniques swapped and expectations confirmed
or reinforced. You may not to be an expert in the areas addressed by the core sample in
question6, but this does not stop you extracting value from this process since the aim is
to gain understanding and it is a shared learning experience. In fact, in many ways this
makes the task easier because you have fewer preconceptions and get to ask the
awkward naïve questions.

Once you have started to work through the sample with the team member, ask leading
questions in a humble fashion, e.g. "I don't understand that - how does that work?" and
dig into a small piece of detail. In addition, keep it informal, the idea is to create an
open environment for learning about the design or code.

6 For example, the core in question maybe implement a complex rendering algorithm.

Suggested conversation devices:

x� Ask the developer to provide an explanation of how he is addressing the problems
presented by the current requirements. Sometimes developers suffer from “ analysis
paralysis” or are “ GOLD PLATING [7]” the solution. A focussed discussion around
the existing requirement can spot this. A Lead often has the best holistic view of the
requirements. Discussing the implementation from a requirements perspective
allows information around the “ big picture” to flow within the pair. This is also the
opportunity to check the coverage of unit tests.

x� Ask the developer how his work integrates with another software element being
built. This approach can elicit interesting information on the coupling between
software elements. It is a good place to catch problems caused by people not talking
to each other enough and just assuming elements interface in a certain way. This is
also a good opportunity to bring the Lead’ s holistic view to the table. The Lead
knows what is going on across the team, and can therefore spot opportunities for
collaboration or pairing that the developer may not be aware of.

x� If possible, have the code executed in front of you – a good idea when GUI
development is being done. Single out an interesting feature and have the developer
walk through the code so you can gain an understanding of how it was done. This
may be a learning experience for the Lead. Use this technique to see if the code
complexity matches the requirement. This type of “ show and tell” often occurs at
the end of an iteration. However, finding a problem within an iteration is better than
finding one at the end.

x� If part of the solution has to be complex, have the developer talk through how he did
it – this allows the fragility to be assessed.

Discussing the code or design is a learning experience. You learn about the design or
code and the developer learns more about your expectations whilst swapping
information on requirements and good development practices. Remember, it is
important to ask open questions. The aim is to get the developer to open up and explore
his solution and its ramifications. Questions that can be answered with a simple yes or
no should be avoided as this can make the developer feel they are being grilled for
information. When discussing the code or design it is important to bear the following in
mind:

x� Distinguish between advice that must result in a change to the code or design and
advice that is meant for the longer term.

x� The team must be made to feel safe. Safe to describe problems, safe to challenge the
Lead, save to make decisions and take risks. Olsen & Stimmel [1] describe this in
the ENOUGH ROPE pattern. McCarthy and McCarthy also discuss the importance of
establishing safety in the section on Alignment Patterns in [2].

x� Be cognisant of the developers’ workload and prioritise any explicit changes
required.

x� Avoid judgemental statements. They will result in defensive behaviour. Instead
explore the ramifications of any problem. Lead the developer to work out what the
problem is.

x� Do not criticise. Problems will probably be due to lack of developer knowledge in a
particular area or external influences such as you not executing parts of your job
well enough. However, if there is a real problem do not be afraid to address it; but

Excerpts From A Set Of Technical Leadership Patterns

address it in a private meeting room, after you have had time to formulate your
views and consider all aspects of the problem.

x� Avoid commenting on the minutiae. Whether the developer puts spaces between
method names and brackets is irrelevant7.

x� Practise effective listening. Playback your understanding: “ so, what you mean
is….” . This way you can be sure you accurately understand what you are hearing.
See [17] for more information on effective listening.

x� Give advice freely. Gabriel [25] discusses how important this is. Dikel et al [13]
touch on this issue in the RECIPROCITY pattern. They explain how a “ fair and
proactive exchange of value” can assist in building co-operative relationships.
Whilst Dikel et al are concerned with cross team relationships, the same applies
within the team.

x� Use terms such as “ I feel that this isn’ t right” rather than “ this isn’ t right” . No one
can argue about your feelings, and it avoids statements sounding accusatory.

x� The developer will have been through a discovery process to bring the code (or
design) to it’ s current point. Therefore, understand the history before drawing any
conclusions about the development.

x� Respond positively to good practices. The point is to reinforce what is needed.

x� Weinberg [26] points out that simply providing solutions to problems makes the
receiver more dependent. Instead, work to improve the developers’ problem solving
skills. One technique is to lead the developer into a discussion about the
ramifications of the decisions that have been taken. Questions such as “ what would
happen in this case?” can open avenues of exploration and learning that would not
exist if the developer was just told “ do it like this” .

x� When problems are noted, consider what systemic solutions can be applied within
the team. Try to react strategically as well as tactically. Feeding these remedies into
the Lead related activities is an important part of the process.

Successfully applied, CORE SAMPLING will enable the lead to manage the team more
effectively by:

x� Providing a guiding hand early in the project to ensure the team is operating
within acceptable parameters

x� Spotting problems early. One example is scope creep. If micro-changes in scope
are occurring then apply TAKE CARE OF THE SMALL CHANGE.

x� Providing pointers to areas of code and design that will benefit most from more
formal reviews.

x� Providing opportunities for mentoring, training or the provision of a greater
challenge.

7 If it really is important then use a pretty printer that is triggered on check-in.

x� Providing opportunities to spot synergies between team members that the
members may not have spotted.

x� Mentoring the team, and providing encouragement when a team member has
done a good thing.

x� Spotting a struggling team member. This can be fixed with mentoring, training,
relieving their anxiety, migration to a different role or, if all else fails, removal
of the person from the team. See ROTTEN FRUIT [1].

x� Increasing the Lead’ s impression of the code base, even though it may be so
large that overall comprehension is difficult.

x� Ensuring regular interaction on a detailed technical basis with the team. This
helps the team to gel and helps goals to be aligned.

x� Allowing the health of the code base to be extrapolated in cases where a broad
view is difficult due to its size.

Over application of CORE SAMPLING

Like all review mechanisms, CORE SAMPLING can be over-applied. The Lead’ s role is to
assist in the delivery of the software development, within certain explicit and implicit
constraints. CORE SAMPLING is an enabler, not a goal in itself. Over application will
result in:

x� The team members not feeling trusted because they are constantly being
questioned on their design and implementation.

x� Productivity dropping due to constant interruptions.

x� The Lead spending all his or her time CORE SAMPLING rather than leading the
team.

x� The Lead being so far into the detail that they are so close that they cannot “ see
the wood for the trees” .

Related Practices

Peters [16] advocated “ Management by Walking Around” (MBWA) as a means of
addressing the problem that management are often remote from the detail and out of
touch with their people and customers. Peters described a number of practices, such as
reserving time to walk around the office talking to the team. Leads who practice CORE
SAMPLING are acknowledging the benefits of such an approach. However, they are
blending this with aspects of informal Code Walkthroughs and Pair Programming [22].
The informal walkthroughs are not as structured as those described in Yourdon’ s work
[10], but they do provide the information needed to form a view as to whether the code
needs additional investigation or remedial work. Pair Programming provides some of
the benefits of CORE SAMPLING but a Lead often does not have enough time for serious
Pair Programming with all members of the team.

Excerpts From A Set Of Technical Leadership Patterns

TAKE CARE OF THE SMALL CHANGE

Minor scope changes can cause the development schedule to slip undetected, but
rejecting change stifles product development.

The following is taken from a recent project:

The users decide they want some minor internationalisation of the static HTML. This
can be done trivially, using Apache content negotiation. The project team agrees; it’ s so
simple, it's not worth putting in the plan. The following week the users decide they need
to index their preferences by name. This is also easy. Just add a column in the
preferences table with the name (key) of the preference set. The estimates do not need to
be re-visited since the solution is so simple. The users then decide they need to change
the colour of the browser background. This just requires a developer to change the style
for the background. It will take no more than a minute. However, this could cause a
context switch if it is requested immediately. None of the above changes constitute a
significant departure from the plan. However, the sum of these changes is not
negligible. Each change results in a micro-slip. Slowly changes accrue to become
concerning. If the requirements are not actively managed then the project will slip.
Testing compounds the problem. If minor changes are simply "done" (because they are
so small) then formal acceptance test plans may not get updated or formal acceptance
testing may balloon as the minor changes impact the test definitions. Either way, it is
not just development that has been affected, but other parts of the lifecycle.

Jones [19] indicates that the average project experiences a 25% change in requirements
over its lifetime. Jones also shows that many projects that fail to manage changing
requirements are more likely to suffer from increased schedule compression. One
reaction is to refuse all changes. However, resisting all change results in an inflexible
development that is not likely to satisfy the customer. In addition, using a requirements
document to enforce a particular set of requirements, against the users wishes, can lead
to development moving elsewhere – as discussed by Yourdon in [20].

Therefore:

Take care of small change. Make sure all small changes in requirements are
analysed and managed.

Users can and will change their requirements. However small, these changes should be
fed back into the plan (story cards, MS Project, Excel, the medium is not important) as
scope needs to be controlled. Time boxing a project is acceptable, but if the resulting
project no longer provides the required business value then the development was
pointless. Welcome change, but treat with caution. Apply the “ Must, Should, Could,
Would” rules [12] to the change requests. Be sure to follow through on the impacts by
asking questions such as:

x� Does this change affect testing?

x� Does this change affect any data migration activity?

x� Does this change affect any non-functional requirements?

x� Does this change affect deployment?

x� Does this affect a support team (such as Operations)?

Allocate ‘Should’ or ‘Could’ requirements as late in the plan as possible, preferably in
the spare iteration8. ‘Would’ requirements will not get done in this project, use them as
input to the next. If not allocated to the spare iteration then ensure that space is made in
the target iteration by moving content from the target iteration.

Irrespective of where requirements are located, any change must result in a change to
the plan or stories. If the plan or stories are not changed then the result will be
unmanaged requirements and therefore:

x� Possible variance against the plan.

x� As the project slips, unimportant changes can push out important functionality
from a later iteration.

x� Incomplete implementation (as changes are forgotten).

x� Dissatisfied management. Scope problems are not communicated to
management in a timely fashion.

x� Schedule compression as additional functionality is squeezed into the project
timeline.

x� Lower quality due to function pushing out quality assurance activities.

Ensure the prioritisation is performed with the users, domain experts or whoever is the
source of the requirements. Communicate the cost of minor changes carefully, so that
all understand the impacts. This is important because often user representatives do not
understand the lifecycle wide implications of certain changes. This in turn allows a
feedback loop to be established with the user representatives. The representatives will
become aware of the need for prioritisation and, with guidance, will learn how to apply
prioritisation before the changes are passed on to the project team. A combination of
feedback and joint prioritisation keeps the representatives engaged, presents the issue of
scope control as a problem to be jointly solved and allows expectations to be managed.
Failure to establish this type of collaborative working will result in a “ them and us”
situation, and the user representatives becoming disenfranchised.

Related Practices

Other complementary practices are:

x� De-scoping – the practice of dropping functionality to meet deadlines.
McCarthy[23] describes the successful application of de-scoping in Microsoft.

x� Change boards – for formal control of changing requirements. Jones [19] has
shown their effectiveness.

8 Some iterative developments plan in a spare iteration. One approach is to give Marketing the spare iteration for late

breaking requirements. Once they’ ve used the iteration they are done. Spare iterations work best when it is
understood by all that the time in the spare iteration can be “ drawn down” if items in other iterations take longer
than expected.

Excerpts From A Set Of Technical Leadership Patterns

x� Short release cycles – to elicit greater customer input. Many iterative
developments such as Scrum[21], RUP[6] and XP[22] use this model.

x� Prototyping (and JAD) provide a mechanism for specifying functionality more
accurately by involving the users in more collaborative ways. Again, Jones[19]
shows these techniques significantly reduce the likelihood of requirements churn
later in the project.

Summary

This paper has presented three patterns. These patterns provide mechanisms for
detecting problems ahead of time and providing support for establishing feedback loops
between the Lead and developers and the Lead and the source of requirements change.
Woven through the patterns are some key themes:

x� Understanding enough9 detail so that the Lead can manage the team by planning
ahead rather than reacting is a key skill.

x� The team needs freedom (ENOUGH ROPE[1]), but the Lead always needs to
ensure that this freedom does not jeopardise delivery, nor place developers in a
situation where they become out of their depth. There always needs to be a
safety net: understanding the detail of the project and pre-empting problems is
part of that safety net.

x� Everything the Lead says and does, including the body language used, has an
effect on the team. The Lead needs to be cognisant of this, empathise with the
team and ensure that interactions are positive and productive.

x� The Lead must not shy away from Quality Assurance activities. Ensuring the
output of the team is of an appropriate quality is key to providing a safety net
and therefore enables both a successful delivery and an empowered and effective
team10.

x� Use the correct information gathering tools for the job in hand. Ensure there is a
mix of “ broad view” tools such as CODE SURFING and “ detail” tools such as code
inspections. Target “ detail” tools and mentoring using information from the
“ broad view” .

x� Communication between the Lead and the team is a two way street. Ensure that
expectations are communicated clearly and feedback loops are in place to allow
the team to respond.

9 The Leads needs enough detail, not too little (everything looks great from 20,000ft) and not too much (the Lead will

be swamped with information and the team will be being micro-managed). See HOVER SHOES[1] for a
complementary description of the trade the Lead has to make between detail and perspective.

10 As the safety net allows delegation and freedom within the team.

Leads who utilise the above practices along with the other broad range of techniques
and skills required will be more able to maintain the quality of the technical deliverable,
build a COMMUNITY OF TRUST [28] across the team and henceforth more likely to be
successful.

Proto-Patlets

This section provides thumbnails for proto-patterns described elsewhere in the paper.

TRANSPARENT PROJECT – Use techniques such as Big Visible Charts [24], clear and
timely status reporting and unambiguous metrics to ensure that all stake holders can
obtain the information needed to understand the project status.

RAISE THE YELLOW FLAG – When you know there’ s a problem, raise the flag to let
everyone know – from the Motor Racing protocol to warn drivers that there is a
problem ahead even though they can’ t see it yet.

CODE FOR CRUFTS – Repeatedly grooming a piece of code that is already fit for
purpose. Crufts is a British National Dog Show.

DON’ T SPARE THE DELEGATION – Ensuring that as many appropriate tasks as possible
are delegated to the team. Failure to do this results in an overloaded Lead and an under
utilised team.

References

[1] Olsen, Don Sherwood & Stimmel Carol L.. The Manager Pool (Patterns for
Radical Leadership), Addison Wesley 2001.

[2] McCarthy, Jim & McCarthy, Michele. Software For Your Head, Addison Wesley
2002.

[3] Marquardt. Diagnoses from Software Organizations, EuroPLOP 2002.
[3] Alistair Cockburn et al. Risk Management Catalog,

http://members.aol.com/acockburn/riskcata/risktoc.htm
[4] Coplien, James. A Generative Development-Process Pattern Language. Pattern

Languages of Program Design, Addison Wesley.
[5] Coplien, James & Harrison, Neil. Organizational Patterns,

http://www.easycomp.org/cgi-bin/OrgPatterns
[6] Ivar, Jacobson, Booch, Grady and Rumbaugh, James. The Unified Software

Development Process, Addison Wesley 1999.
[7] URL. http://c2.com/cgi/wiki?GOLDPLATING
[8] Gilb, Tom & Graham, Dorothy. Software Inspection, Addison-Wesley 1993.
[9] Boehm, Barry W & Papaccio, Philip N. Understanding and Controlling Software

Costs, IEEE Transactions on Software Engineering, October 1998.
[10] Yourdon, Edward. Structured Walkthroughs, Yourdon Press 1989.
[11] Fagan, Michael . Design and code inspections to reduce errors in program

development, IBM Systems Journal, Vol. 15, No. 3 1976.
[12] DSDM Consortium, MoSCoW Rules,

http://www.dsdm.org/en/about/moscow.asp
[13] Dikel, David M., Kane, David & Wilson, James R. Software Architecture

(Organizational Principles and Patterns), Prentice Hall 2001.
[14] Csikszentmihaly, Mihaly. Finding Flow : The Psychology of Engagement With

Everyday Life.

Excerpts From A Set Of Technical Leadership Patterns

[15] DeMarco, Tom & Lister, Timothy. Peopleware, Dorset House 1987.
[16] Peters, Thomas, , Waterman, Robert H. In Search of Excellence: Lessons from

America’s Best-Run Companies, Warner Books 1988.
[17] Foster, 101 Ways To Generate Great Ideas, 2001.
[18] Whitehead, Richard. Leading A Software Development Team, Addison-Wesley

2001.
[19] Jones, Capers. Assessment and Control of Software Risks, Yourdon Press 1994.
[20] Yourdon, Edward, Decline & Fall of the American Programmer, Yourdon Press

1992.
[21] Schwaber, Ken & Beedle, Mike. Agile Software Development with Scrum,

Prentice Hall 2001
[22] Beck, Kent. Extreme Programming Explained, Addison Wesley 2000
[23] McCarthy. Managing Software Milestones at Microsoft, American Programmer,

Feb 1995.
[24] http://c2.com/cgi/wiki?BigVisibleChart
[25] Gabriel, Richard P. Writers’ Workshops and the Work of Making Things,

Addison Wesley 2002
[26] Weinberg, Gerald M. The Secrets of Consulting (A guide to giving and getting

advice successfully), Dorset House
[27] Beck, Kent & Fowler, Martin. http://home.sprintmail.com/~wconrad/refactoring-

live/smells.html
[28] Coplien, J. A Pattern Language for Writer’s Workshops. http://www.bell-

labs.com/user/cope/Patterns/WritersWorkshops/ 1997

