
Technical Support Patterns

Amir Raveh & Ofra Homsky
42 Bitzaron St.
Tel-Aviv 67894

Israel
Email: tngt@netvision.net.il, amirr@netvision.net.il

Copyright Ofra Homsky & Amir Raveh © 2003

"Hardware: those parts of the system you can kick.

Software: those parts of the system you can merely curse" (anon).

Introduction

We have all been in this scenario - a computer, a device, a system or software that does
not perform as expected.

The impacts of such malfunction range from minor discomfort and frustration all the
way through loss of life work, or even loss of life and limb [1].

The reasons for software problems vary widely - they range from programming errors
and hardware failures, through deviations in behavior of the environment from the one
assumed during its design.

This is further complicated by human nature - sometimes the problem is in the user's
perception of how this software is supposed to work. Most software systems do not
provide an adequate conceptual model for the user to understand their inner
functionality, so the customers using the software make their own assumptions about
such models.
Blame is another factor that further complicates problem resolution – we are quite used
to people attributing human mistakes to “computer errors”. The opposite also occurs –
when people encounter a problem in using software they may engage in self-blaming
(“I really don’t understand computers, I must have done something wrong”). [2][3].

And it is at this point that we all meet the phase of software development that is least
discussed - the maintenance phase.

If we have a support contract, we use it hoping to obtain a fix or at least an explanation
for malfunctions. In other cases call on technicians or use online forums such as
newsgroups to obtain assistance.

On the other side of the line there is a support person, who meets the customer at one of
the worst moments in life – the machine has stopped working, a system is now leaking,
they just lost a few hours worth of work, a collection of love letters, or have a blue
screen on a life supporting system saying there is a General Protection Failure at some
obscure hexadecimal address.

The customer is angry, aggravated and anxious, sometimes pressed for time and
definitely wants it all solved, fixed, corrected and restored immediately.

The support person now begins a process of problem resolution. S/he needs to go
through the steps in a systematic order, despite the pressure from the customer for
expeditious solution.

The skills called for are many: a combination of crisis containment worker, detective,
in-depth professional knowledge of the system or software in question and its
environment.

We all read some horror stories from both sides of the fence. The existence of a vast
quantity of Internet folklore [4] and urban legends [5] are indications of how
widespread and troublesome the process of problem resolution can be.

This pattern language tries to shed some light on the aspects involved in software
maintenance and troubleshooting. It is written for software designers, architects,
support engineers, systems engineers, technical documentation writers, marketing
people and managers.

Start A: ”Hello
!"

EndB : What's
Wrong?

C : Fix It! D : Verify
It!

E
:Closing
the Loop

Knowledge
Base Marketing TrainingProduct

Design
Quality

Assurance Documentation

Lab
Notebook

What IS the
Problem?

Typed
Diagnostics

What Did
You Do

Before That?

Restate the
“Obvious”

Reproduce
the Problem

Hunt the
Lion in the

Desert

The
Collective

Mind

Peepholes &
Testpoints

Remove &
Restore

Documented
Assumption

Read The
Fine Manual

Band-Aid

Fresh
Perspective

Watch the
Mill Grind

There Lay
Dragons

Review
Checklists

Watchdogs
& Sentinels

Figure 1 – Problem Resolution Process and Patterns Mapping*

The problem resolution process model is based on the one presented by Limoncelli [6].
Text in Courier font is quoted from Limoncelli’s process description, text in regular
font was added by the authors.

* Patterns shown in shaded boxes are cross referenced from other works.

• Phase A: The Greeting (``Hello'')

•Step 1: The Greeting
The customer is greeted by a person or a problem collection mechanism,
and reports the problem encountered. This might be done by phone,
email, Web page, walk-up helpdesk, dropping in the system
administrator’s office, using a custom application or by a report of
an automated monitoring system (such as network performance monitor).
It is from this point that the reported problem should be assigned an identifier (such as a
problem report number), and that all actions, hypotheses and interactions should be
recorded in a ‘Lab Notebook’ [12] – i.e. a call log, customer request file. This
recording is aimed at providing a clear understanding of what was the initial complaint
about, and recording all the steps that were carried out until the problem was closed.

• Phase B: Problem Identification (``What's wrong?”)

•Step 2: Problem Classification
A support person or system (such as the dreaded IVR menu system)
classify the problem and assign its resolution to a support person
with the presumed skill set for working on its resolution. This can be
facilitated by preparing error messages and on-board diagnostics easy to use and
understand by the customer, providing clear information about failures, some of which
are described in ‘Typed Diagnostics’ [7]

•Step 3: Problem Statement
The customer states the problem with as full details as possible and
this information is recorded. This person is often the same person as
the classifier. The skill required by the recorder in this phase is the ability to listen
and ask the right questions to draw out the needed information from the user. The
recorder extracts the problem statement and records it. This is facilitated by using
‘What IS the Problem’, ‘What Did You Do Before That?’ and ‘Re-State the
"Obvious"’ patterns.

•Step 4: Problem Verification
The support person tries to ‘Reproduce the Problem’. If the problem
cannot be reproduced, often the problem being reported is not being
properly communicated and one must return to Step 3 (Problem
Statement). If the problem is intermittent, then this process becomes more
complicated but hopefully not impossible.

•Step 5: Problem Isolation
We suggest adding this step to the Limoncelli process model, before proceeding
to Solution Proposals.

Sometimes the problem statement and its reproduction are not enough to properly
identify where the problem is. The support person tries to determine exactly what is
broken down – what is the minimal sub-system that is affected by the problem, which
input triggers it, where is the “earliest” in the chain of events that the problem manifests
itself.

‘Hunt the Lion in the Desert’, ‘Reproduce the Problem’, ‘The Collective Mind’,
‘Peepholes & Testpoints [8]’ and ‘Remove & Restore’ patterns are helpful in this
step.

• Phase C: Planning and Execution (``Fix it'')

•Step 6: Solution Proposals
The possible solutions are enumerated. This role is performed by a
``Subject
Matter Expert''. Depending on the problem, this list may be large or
small. For some problems the solution may be obvious and there is only
a single proposed solution. Other times there are many possible
solutions. Often verifying the problem in the previous step helps
finding possible solutions. Solutions can be sought out by using ‘Remove &
Restore’, ‘The Collective Mind’, ‘RTFM – Read The Fine Manual’ and ‘Documented
Assumptions’

•Step 7: Solution Selection
Once the possible solutions are enumerated, one of them is selected to
be attempted first (or next, if we are looping through these steps).
The Subject Matter Expert also performs this role. Selecting the best
solution tends to be either extremely easy or extremely difficult. However, solutions
often cannot be done simultaneously so possible solutions must be prioritized, usually
with the help of the user. This may be simplified by using ‘Remove & Restore’.

•Step 8: Execution
This is where the solution is attempted. The skill, accuracy, and
speed at which this step is completed is dependent on the skill and
experience of the person
executing the solution.

Since the execution of this phase and the verification phase might be lengthy, it is worth
considering using a ‘Band-Aid’ to allow the customer to continue work or to reduce the
impact of the problem until the problem is fully resolved.

• Phase D: Verification (``Verify it'')

•Step 9: Craft verification
This is the step where the person that executed Step 7 (Execution)
verifies that the actions taken to fix the problem were successful. If
the process used to ‘Reproduce the Problem’ in Step 4 (Problem Verification) is not
recorded properly, or not repeated exactly, the verification will not properly happen.
There is potential that the problem still exists, but verification fails to demonstrate this,
or the problem may have gone away but the support person does not know this.

If the problem still exists, return to Step 5 (Solution Proposals) or
possibly an earlier step. Using ‘Fresh Perspective’, ‘RTFM – Read The Fine
Manual’ and ‘Watch the Mill Grind’ can help break out of this loop if it seems that all
attempts at solutions reach a dead end.

•Step 10: User Verification/Closing.

Now it is time for the customer to verify the problem has indeed been
resolved.

We would like to suggest an additional phase to Limoncelli’s model:

• Phase E: Closing the loop

Step 11: Analysis of the reported problem and its resolution process.
Going over the recordings of the reported problem throughout its entire resolution
process helps us warn of mistaken or dangerous actions, where ‘There Lay Dragons!’.
This can be done by the support person, by a colleague or by someone assigned for the
post-mortem analysis.
The problem might be categorized for statistical purposes, so trends in problem reports
can be analyzed.
Hindsight may also help find out how the problem can be identified and isolated faster
the next time it occurs.

Step 12: Return feedback
Feedback from software maintenance must continue into product design, development,
testing, marketing, training, documentation, Review Checklists, FAQs, support and
troubleshooting guides and knowledge bases – ‘The Collective Mind’. The feedback is
aimed at preventing the problem from recurring, reducing its severity or impacts,
resolving it faster and in looking at preventing similar problems from reaching the
customers [9].

Step 13: Design for maintainability
It is always easier to maintain software if the product is designed with making it easy to
provide support for it in advance. Patterns such as ‘Peepholes & Testpoints’ [8],
‘Documented Assumptions’, ‘All Resources are Finite’ [8] and ‘Watchdogs &
Sentinels’ [8] help make software more maintainable.

Name

What IS the Problem?

Context

A customer calls a support engineer trying to describe a problem. There is a wide gap
between a customer describing a problem and a support engineer trying to resolve it.
The gap starts at perspective and context and works its way down to the language used.

Problem

The customer presents a complaint but the support engineer may not be able to pinpoint
the difficulty.
This is aggravated because people do not usually describe a problem, but rather display
their analysis of it. Or even what they perceive as a solution.
A problem statement that is incorrect, incomplete or improperly communicated might
mislead the support engineer towards solving a wrong or unnecessary problem.

Forces

Both the customer and the support engineer have their own world models, cultural
background, environment and experience, which lead to a gap in problem perception.
The customer may lack knowledge to precisely describe the problem.
Customers tend to describe their analysis of a problem thus leading the support engineer
astray.
Support engineer triggers many paths of solutions by keywords and stops listening to
the customer’s words. Surplus of knowledge might lead the support engineer into
cognitive tunnel vision [3] – taking a wrong turn in a chain of assumptions about the
problem, and staying there...

...And the truth is out there, somewhere...

Solution

The support engineer will restate his/her understanding of the problem using the
simplest language possible. The customer is to comment and correct any discrepancy.
This process is iterated until no gaps are found.
The support engineer should focus on facts, such as actions and results.

Resulting Context

Having pinpointed the actual malfunction, the support engineer can now turn to the
process of problem resolution using patterns such as ‘Lion in the Desert’, ‘Remove &
Restore’, ‘RTFM’ and ‘Peepholes & Testpoints [8]’ patterns.
Still, there are times the support engineer has to rely on the customer for executing the
resolutions process. Re-State the "Obvious" pattern refers to this part of the work.

Known Uses

• A customer calling Help Desk saying “I lost the printer on my computer”. Further
investigation reveals that the problem is inability to print from one of the software
installed on the computer, requiring installing a patch to that program and not
reinstalling the printer driver as it appeared at first.

• Customer: "My computer crashed!"
Tech Support: "It crashed?"
Customer: "Yeah, it won't let me play my game."
Tech Support: "All right, hit Control-Alt-Delete to reboot."
Customer: "No, it didn't crash - it crashed."
Tech Support: "Huh?"
Customer: "I crashed my game. That's what I said before. I crashed my spaceship
and now it doesn't work."
Tech Support: "Click on 'File,' then 'New Game.'"
Customer: [pause] "Wow! How'd you learn how to do that?"

http://www.geocities.com/Wellesley/5337/

Name

Re-State the "Obvious"

Context

After the technical support engineer pinpointed the problem, s/he now has another
problem: s/he is trying to help an off site customer requesting assistance in resolving a
problem. The support engineer is not at the location of the customer so they both rely
on verbal communication to describe a technical problem.

Problem

When talking of a known subject people tend to assume knowledge or ignore automatic
steps and these may introduce gaps in communication with the customer or even be the
very mistake the customer made.
When communicating with the customer, the support engineer may make assumptions
about what the customer is describing, and the customer may have assumptions based
on what the support engineer talks about. Techno-speak might aggravate the problem,
as people who do not understand it, might feel at discomfort to say they do not
understand what a “Scuzzy Terminator” is nor what it looks like, when told to check if
it is in its place.
And there is always the risk that the support engineer may go to solution before making
sure basics are as they should be.

Forces

- The support engineer is not at the location of the customer so they both rely on verbal
communication to describe a technical problem.
- Both the customer and the support engineer have their own world models, cultural
background, environment and experience, which lead them to a gap in understanding.
- Support knows by heart location of tools and procedures.
- Customer may have different level of knowledge and experience.
- Support tends to expedite well familiar actions and skip important steps.
- The customer may need time to search for tools.
- Support may go to solution before making sure basics are as they should be.
- While speaking of known objects there is a tendency to assume the performance of
automatic behavior that may be unknown to the customer.

Solution

Re-State what is "Obvious" to you so you can compare it to what the customer
perceives: The support engineer will restate his/her understanding of the situation
starting from basics such as wires or files used through spelling of commands to the
description of an output. Restating is done using the simplest terms possible –
preferably using no jargon, acronyms or technical terms, as much as possible. For
example the SCSI terminator might also be described as “that shiny piece of plastic

with a green light on it, which should be firmly connected to the socket labeled ‘SCSI’
on panel number three”.
The customer is to comment and correct any discrepancy.
This process is iterated until no gaps are found.
Re-stating the obvious may be required in every communication with customers.

Resulting Context

By Re-Stating the "obvious" we try to establish a bridge across two (or more)
perspectives, so we can get in a more effective way to a clear statement of situation.
Having a clear understanding of what needs to be done and what each of the parties sees
and does will help guide the customer through the required steps.

Known Uses

• Customer: "My printer isn't printing!"
Tech: "Is your printer turned on?"
Customer: "Ummm... oh. [click]"
http://www.ecis.com/~weasel/support/techsup.html,

• Support engineer in the computers industry will describe the shape of a certain
window; its colors and layout, until the customer confirms s/he is looking at the
same window containing the same function keys.

• A support engineer verifying, “you have typed the letters xyz before the command”
that isn’t working for the customer.

Name

Reproduce the Problem

Context

The support engineer has obtained a statement of the problem from the customer.
From now on this problem statement will be the base for the work on resolving this
problem.

Problem

How can the support person avoid working on an incorrect, unnecessary or incomplete
problem statement?

Forces

- A malfunction may be environment or time dependent.
- Not all problems are known in advance, some may require creating a solution on the
fly.
- There are times that only a specific set of steps or events will bring out a problem.
- There could be an issue the designers or creators of the product overlooked.
- For some people it is easier to understand when they see rather then just hear the
symptoms.

Solution

Reproduce the problem: repeat the steps reported by the customer, so you receive the
same error message or erroneous result. It may be good to create a similar environment
to the one the customer has in order to achieve the same results. Alternately you may
ask the customer to recreate the problem, as you watch it.

Resulting Context

Reproducing the environment the customer has and following the steps taken by the
customer may reveal expected conditions not foreseen by the designers or reveal the
point of error. This will allow to either request a solution from the designers (a fix for a
bug) or showing the customer where the wrong step was and correcting or teaching the
customer the preferred actions.

Known Uses

• In high-tech industry a product-developing group will have a laboratory with the
product installed on different systems in order to replicate bugs or problems
reported.

• Remote maintenance software such as PC Anywhere™ and VNC™ allow a support
person to observe the problem experienced by the customer without flying all the
extra miles to the problem site.

Name

What Did You Do Before That?

“It worked just fine until yesterday. Today all of a sudden it’s malfunctioning.”

Context

After understanding what troubles the customer, establishing grounds for work together
if needed, and hopefully having seen the malfunction appear; the support engineer
wishes to collect clues to the possible reasons that caused the problem.

Problem

The problem statement doesn’t provide all the information a support engineer may
need. There is value to the knowledge of the chain of events that lead to the appearance
of the problem. This can aid in re-producing the problem, and gaining an insight into
the causes for the problem can give valuable clues for the solution.

Forces

- Information about the chain of events leading to the appearance of the problem can
shed light on the reasons to the malfunction.
- The customer as the one closer to the system and the events may have valuable
information.
- The customer doesn’t want to appear as the one who caused the problem, especially if
s/he did something to it, either related or unrelated to the malfunction.
- The process of questioning may appear judgmental or patronizing if not conducted
carefully.

Solution

Ask the customer what were the last events that took place before the malfunction
first appeared. Compose your questions carefully not to reflect accusation, so the
customer will not get defensive and omit crucial information. The aim it to discover
changes done recently, either by the customer, other parties or processes. System Logs,
Recent Changes files, Package Installation Logs, system performance archives such as
‘sar’ in Unix, core dumps, Registry values, can all hold clues that may help asking
guiding questions such as: “Was this before or after patch X.Y.Z was loaded?”

Resulting Context

Sometimes the information gained about the events leading to the appearance of the
malfunction can give the support engineer important clues towards understanding of the
causes to the problem and possible solutions to it.

Known Uses

• A customer complained that his computer doesn’t work. A check revealed that the
operating system kept crashing. Careful questioning revealed that the customer

attempted to install new, incompatible software on the computer just before it
stopped working properly.

• Ofra recalls a customer complaining about a notebook PC that cannot be powered
up. Following careful questioning it was determined that the customer deleted
“unnecessary files” on his boot drive in order to free disk space...

• User: My computer won't work.
After much discussion on the phone. No reason obtained.
Tech: Did you do anything to it?
User: Well, it fell off my desk this morning? Could that be the reason?

http://www.geocities.com/Wellesley/5337/

Name

Hunt the Lion in a Desert
A desert is a very big space and it is difficult to find the lion, so how do you hunt the lion in a desert? You
draw a line splitting the desert space in two. The lion is either on one side of the line or the other. You cut
the half space on the side the lion is again in half. Again the lion will be only on one side of this line.
Thus relatively fast you get to a manageable space where it will be easy for you to find and hunt the lion.
[Note: No lions are harmed during application of this pattern.]

Context

After having asserted the malfunction, and hopefully attaining an understanding of the
situation the customer is facing, it’s time to start defining the problem in order to plan a
solution. The major preliminary issue at this time is where to look.

Problem

The support engineer is presented a general problem, whose domain is not immediately
identifiable. Several inputs and any module can cause the symptoms presented in the
suspected system.

Forces

- Initially the scope of problem solution can be very big.
- The presentation of the problem may not be clear.
- Finding where the problem occurs helps concentrate efforts in the correct area.

Solution

Ask questions that will help you target the area where the problem resides, by
drawing that imaginary line, and asking questions or inspecting the system to find on
which side of the line the problem is.
Ideally, you half the problem domain in each iteration, to optimize on the number of
iterations needed.
This can be facilitated if the system is designed with ‘Peepholes & Testpoints’ [8] in
it. Testpoints allow injecting known input into the system at each test point, and
observing the processed output in the next peephole, so the problem can be isolated
between the first point where the output appears to be corrupt and the last point the
input was known to be correct. ‘Documented Assumptions’ and ‘RTFM’ can help
knowing what inputs and outputs should be the proper ones for the system.
The problem is more difficult to isolate when its manifestation is time or environment
dependent.

Resulting Context

By confining problem to the smallest possible region of the system, the support
engineer minimizes the scope of the search for a solution.

Known Uses

• Support engineer will first try to assert through a series of questions whether the
problem belong to hardware or to software.

• A programmer will check through a hierarchy of tests to isolate the faulty code line.
• Compiler writers require that a minimal code segment that reproduces the bug will

accompany a bug report, using the fewest steps possible. The bug submitter is
therefore required to isolate the minimal subsystems required to reproduce the bug,
rather then submit entire modules of specific code.

Name

Remove & Restore
“… The IT group recommends restarting your computer and retrying the failed operation before
contacting the help desk. [From an Intranet Web page of a help desk team]”

Context

A technical support engineer is trying to fix a problem but it re-appears at the end of
every attempt.

Problem

The support engineer may have an idea where the problem resides but has trouble
isolating the core of a problem. Support engineer may also be facing an unstable
environment that makes it difficult to fix the stated problem.

Forces

- The engineer cannot always know all components of a system.
- Exact problem isolation and analysis is a lengthy process.
- The customer might not be able to provide details that can lead to problem recreation.
- There are times an unstable environment prevents the support engineer from seeing or
working on the problem.

Solution

Remove the suspected part and restore it. (In software terms: uninstall a program and
if the problem is not solved reinstall it). Repeat this until you either pinpoint the
problematic part or attain a stable situation from which to go on.

Resulting Context

By removing parts the support engineer may reach a stable, controlled environment.
This by itself may resolve the problem, or at least may separate which part is causing
the problem and isolate it.
This may also provide an opportunity to allow the customer to continue working while
the full solution to the problem may be preformed at a later time.

Known Uses

• Support engineer may uninstall a program and if the problem is not solved reinstall
it.

• Removing a hardware module and reseating it in its position is used in many
hardware troubleshooting schemes.

• A variant to this pattern is interchanging components or interfaces for crosschecking
to find out where the fault lies. Such as a friend encountering a problem in
connecting a digital camera to a FireWire interface on a PC. The problem was
isolated by trying to connect the same camera to another PC with a FireWire

interface that is known to work, and testing the original PC with a digital video
camera that was know to work using FireWire.

Name

Band-Aid
“My computer does not work, and I have a plane to catch in three hours!”

Context

There are times a technical support engineer may judge it better to allow the customer
to continue work rather then fixing the problem. Either the implementation of the
solution requires down time the customer can ill-afford or the solution is elusive and
will require more time and tests to be found.

Problem

The support engineer needs time, either to find the exact problem or to implement a
complex solution that will take time. The customer however cannot spare the time.

Forces

- The customer wants the problem resolved ASAP.
- The customer has pressures and needs that do not intertwine with those of the support
engineer.
- Full problem analysis and resolution may take a long time.
- There are times, such as monthly closing of accounting books and problem domains,
such as call processing in a telecommunication system, that ability to continue work is
more important then fixing the problem.
- Support engineer need to see the wider scope rather then concentrate on the narrow
problem presented.

Solution

Implement Band-Aid solutions, short term or partial solutions that will reduce the
severity of the problem or prevent the problem from recurring by bypassing it.
Remove or discard data that triggers expensive or severe failures, or help the customer
to solve a resulting pressing secondary problem. This way you allow the customer to
continue work on those parts of the system that are at higher priority.

Resulting Context

By this you buy time either for yourself to perform more tests in order to locate the
exact problem and matching solution, or for your customer to pass his/her critical
emergency and then will be available for implementation of your solution.
During the time gained, the support engineer can re-apply ‘Hunt the Lion in the
Desert’ pattern, or try for a ‘Fresh Perspective’ or ‘RTFM’ patterns.

Known Uses

• When a file system fills up repeatedly, the support engineer can write a cron job or a
script to periodically delete un-required files.

• If a certain data section triggers a problem, the support engineer can change this
section of data to prevent the problem from recurring.

• A Car garage that has no spare part, may implement a fix only to enable the
customer to get to the nearest big garage where they can replace the malfunctioning
part.

Name

Fresh Perspective
“Do you have a moment to look into this problem?!”

Context

A technical support engineer feels s/he got “stuck” – not only without a solution but
also with no ideas for further avenues of investigation of the problem.

Problem

The support engineer has exhausted his or her ideas and experience for identifying the
problem or of finding a solution to a problem.
Support engineer may even get too frustrated with a problem or the customer to be able
to productively search for a solution.

Forces

- There is a limit to personal knowledge and flexibility of thinking, by human nature
[3].
- A support engineer can get fixed on a certain perception of a situation and be unable to
change direction [3].
- A support engineer may have focused on the wrong area of problem definition or
solution.
- A support engineer may have misunderstood or been misled by part of the interaction
with the customer.
- A different support engineer may focus on different aspects.
- A different support engineer may have different amount of technical knowledge.
- A different support engineer may ask different questions thus defining a different area
to search for solution.
- Frustration can cause a person to lose focus in problem solution.
- Assigning another support engineer to work on the problem takes time and taxes the
customer's patience.

Solution

Refer the problem to a colleague, a parallel professional, who will start solving from
the beginning thus gaining a fresh perspective and unbiased analysis.

Resulting Context

By having another support engineer solving a problem from the beginning, one gains a
fresh perspective and unbiased analysis of the problem and maybe a new direction
towards a solution. On the other hand, the customer may feel aggravated by being asked
the same questions, again, by the new support engineer. Explanation of the reasons for
what appears to be starting from scratch to the customer may help reduce this negative
impact.

Known Uses

• Having spent the better part of a morning trying to solve a hardware problem,
support engineer turned the problem to a colleague (stating the original problem).
The colleague re-asked the customer questions regarding the malfunction, thus
discovering an action taken by the customer that started the problem. From there the
road to solution was clear.

• A new support engineer in a team will turn a problem to a more experienced
colleague on the team.

• The ‘Cardboard Consultant’ [12] pattern.

Name

Watch the Mill Grind
“1545 Relay #70 Panel F (moth) in relay. First actual case of bug being found”
Naval Surface Warfare Center log entry, September 9, 1947 [10]

Context

The support engineer has tried many tests, asked questions, brought in a colleague and
even sat long hours reading the manuals. Still something eludes him/her and there is no
solution in sight

Problem

The support engineer has exhausted all personal knowledge and experience, outside
human resources, and manuals, has tried to reproduce the problem or had the customer
show when the problem appear. Still the support engineer stands at a dead end without
an insight into the cause of the problem…

Forces

- People get accustomed to the system they work with and either ignore deviations or
remember only major deviations from the routine [2][3].
- Customer may neglect to notice part or parts of the workflow that may indicate a
problem [2][3].
- The customer has formed a conceptual model [2] of how the system is supposed to be
working internally. The assumptions he makes in this model might not correlate to how
the system really works.
- The support engineer usually knows the system from documentation, and may have a
lot less time in the field with the system.
- There are times that outside forces or an unforeseen sequence of events influence the
system causing malfunctions. These influences might be time dependent or triggered by
environmental conditions.
- It may take an outsider view, one that isn’t involved in the process, to see a deviation
or misbehavior.

Solution

Watch the Mill Grind for a flaw: watch the activity of the malfunctioning system and
the activity of the people working on it. Follow the actions and results and look for any
deviation from the expected behavior of parts, actions or results. Look for additions or
detachments, incidents or activities that the customer has added or created in the
specific environment.

Resulting Context

Having sat and watched the activity hopefully gave the support engineer an opportunity
to catch a flaw, a deviation overlooked by the customer and even other engineers.

It may even be a deviation judged to be acceptable that will turn out to be the cause of
the problem.

Known Uses

• The term “debug” originated with the Harvard Mark II project at the US Naval
Surface Warfare Center on 1947 – when apparently random errors showed up in
calculations, manual inspection of the hardware for a failed electronic valve or relay
revealed that a bug (an actual moth) caused a malfunction. Following that event,
each time an error was detected, people asked if the computer was recently de-
bugged [10].

• Amir recalls being on a team called to a customer who bought an automated
packaging system that was malfunctioning. He and his colleagues spent a couple of
days trying to find the reason for the malfunction to no avail, so much that part of
the team decided to go back to the manufacturing company to change the design of
the packaging system. Amir says he decided to stay behind, found a sitting location
that gave him view of the entire process of packaging (involving several automated
machines), and recorded step by step the procedures. This allowed him, after some
time, to notice a tiny deviation on the expected process that indeed revealed upon
inspection a second sensor that was added on site, and triggered by vibration, it
disturbed the proper flow cycle by starting a new cycle before the previous ended.

• James Harriot, a veterinarian [11] recalls a case of calves that were displaying
symptoms that could only be explained by poisoning, but no harmful substance was
discovered. After all avenues of testing, questioning and searching for a cause were
exhausted, and even calling a colleague for a Fresh Perspective did not help, the
colleagues resorted to watching the process of feeding from the start (early hours
and all). This revealed a piece of scabbing from the horns that were smeared with a
toxic chemical (Antimon) that fell off the horns into the bucket of milk the calf was
drinking from.

• Amir recalls an industrial automation project in an orange packing plant that
reported a problem in an oblique manner. The customer mentioned while renewing
a maintenance contract that the system is “great, but takes time to warm up during
the winter”. Observation of the system in field eventually led to discovery of an out
of spec photocell that was triggered by a ray of sun through a skylight from 06:00 to
06:30. Replacing the photocell to a different type allowed the plant to start working
earlier.

Name

The Collective Mind
“Better go and check this one on the newsgroups”

Context

The support engineer is seeking a solution to a problem, after obtaining the problem
statement from the customer. The support engineer has gone through phases B and C, to
no avail – the problem is still unresolved.

Problem

No support person can encounter all the potential problems lurking in a system,
software, hardware and environment.
Also, how can a support person know what assumptions were used by the people who
designed and developed the product?

Forces

- Some malfunctions are rare or happen under unique set of events.
- It is impossible for a single support person to have encountered all the possible
problems a system can have.
- As there are many professionals working on similar systems, it is likely at least one of
them has met the particular problem and solved it.

Solution

Turn to the collective mind – use troubleshooting diagrams, FAQs, troubleshooting
guides, Usenet groups, forums, knowledge bases and solution reservoirs on the Web.
Most likely someone ran into this problem before you, and uploaded a solution, to share
with colleagues across the world.
Beware of cases where ‘There Lay Dragons!’ - it is safer to get independent
verification of the proposed solution, by checking for proposed solutions in more then
one site, even if the problem description matches the problem exactly.
The better your problem isolation is, the better your chances are of finding a matching
solution.

Resulting Context

Hopefully, you found one or more proposals for solutions to the problem. Now you can
turn to evaluating the possible solutions before selecting one of them.
In other cases, you might not find an exact solution, but still have more leads and
directions to explore, following the search of the collective mind.

Known Uses

• Usenet FAQs ftp://rtfm.mit.edu/
• Microsoft Support web site http://support.microsoft.com/
• http://is-it-true.org/nt/nt2000/hottips.shtml

• The original collective mind - http://www.wikipedia.org/wiki/Borg

Name

RTFM – Read The Fine Manual
“…And there it was, on page 8 of the User’s Manual”

Context

The support engineer still cannot resolve the problem. Even ‘Brainstorming’ or
‘Shouting’ [12] to fellow engineers doesn’t help, turning to a colleague for a ‘Fresh
Perspective’ also proved inefficient. There’s no avoiding it any more, it’s time to hit the
books...

Problem

The support engineer has exhausted all personal knowledge and outside human
resources but still stands at a dead end without solution to the problem.

Forces

- No person encounters all possible potential problems of their profession.
- Not all systems need all the features a product can provide, and each system tests the
product differently then other systems.
- The technical support engineer may feel going to the manual is a personal offense,
indicating personal lack of ability of knowledge.

Solution

Read The Fine Manual. When all other resources do not help, take the big manual
supplied by the producer of the software and try to find leads and ideas for tests that
may lead you to identifying the problem of the solution.
Reading the manual support engineer may learn about requirements, assumptions or
constraints unknown before, revealing leads into the problem.

Resulting Context

By Reading The Manual support engineer may have found new leads into the problem,
optimistically resolving it or at least leading to more tests that will lead to new possible
solutions.

Known Uses

• Online manuals – man in Unix™, Help (F1) in Windows™.
• Command line help convention in Unix™ commands

(“obscure_two_to_five_letter_command –h”).

Name

There Lay Dragons!
“…Next time, I will make it a habit to use pwd before typing rm –rf…”

Context

The support engineer is trying to resolve a problem. Browsing through the wealth of
information stored in the collection of resolved problems (see ‘Lab Notebooks’ [12])
presents a wealth of information about problems. Searching through them using tools
ranging from ‘grep’ to Artificial Intelligence yields a few resolved problems that seem
similar. But…

Problem

How can you be sure the steps taken yield the most expedient way to resolve a
problem?

Forces

- No single person encounters all possible potential problems of their profession.
- Using previous experience can cut short the time to problem resolution.
- Using previous experience might also mean repeating the mistakes made along the
way by the person who handled that problem.
- The support person is trying to bring the problem to closure in the fastest way, and
might not have all the time in the world to read through tons of text.

Solution

Once a problem is resolved, go through its ‘Lab Notebook’ [12], and add comments on
the steps taken and their validity. Make sure that all the unnecessary, unwise, useless
and dangerous actions taken are marked as Dragon County.
If any special measures are needed to reduce risk (i.e. fresh backups, safety goggles),
these measures should be listed as well.
This way you save your colleagues (and yourself) the embarrassment of making the
same needless mistake twice, just by not reading through the entire recording.

Resulting Context

By clearly marking such mistakes upon closure of the problem, you make it easier for
people not to make the same mistakes again.

Known Uses

• A support engineer has used by mistake a command that completely erased all the
schemas in a database. Another support engineer, a few months later, handled a
problem, which showed the same symptoms. Having read through the first few
paragraphs of the call log, she executed the same command, only to read two
paragraphs below “Regrettably, I should NOT have done so…”. Following the

second incident, both call logs were modified to include warnings immediately
following the action taken, in bold text.

Name

Documented Assumptions
“Minimal system requirements – Pentium II”

Context

Design and development of software is an intellectual process that includes making
many assumptions. Assumptions are constantly made about topics such as the operating
environment, customer training and knowledge, input external to the developed system,
values of parameters allowed in APIs. But…

Problem

The people who designed and developed the product had to use a series of assumptions
and common agreements. These assumptions may create constrictions that influence the
way the product works. In some cases the problem is caused by the real system
environment departing from these assumptions.

Forces

- Knowing the assumptions made may expose which of the assumptions is inconsistent
with the conditions that trigger the problem in the reported system.
- Documenting assumptions post-factum is a lengthy process, and usually ineffective.
- Documenting all assumptions is time consuming and requires personal discipline.

Solution

Document all assumptions made during the entire development process, as they are
made. Make this documentation available to support people.
Special focus is required for assumptions about input parameters, availability of
resources (see ‘ALL Resources Are Finite’ [8]) and error behavior such as assertions,
error/exit codes and exceptions.

Resulting Context

By browsing through the assumptions, a support person can try to compare them with
the operating conditions in the reported system. Once a deviation from an assumed
condition is found, it should be checked against the possibility that this deviation might
be the cause of the problem. Overuse of documentation may lead to "trapdoor"
documentation – where no one bothers updating documentation, because there is so
much of it, and updating both source code & documentation is considered too much of a
burden. In-lining documentation as comments into source code, and using tools such
JavaDoc & C-Doc facilitate keeping a single location for updates.

Known Uses

• Checking for deviations from the dreaded “system requirements” – such as
supported operating system version, minimal memory requirements, disk space,

operating temperature, voltage, current and other environmental factors are usually
placed at the top of troubleshooting guides for support engineers. This helps prevent
looking for more complex problems, when the problem might be the lack of
electricity in the office, wrong voltage or frequency, an incompatible or untested
operating system version or an input that no one expected.

• Assertions and exceptions help catching cases where assumptions are violated, in
some coding methodologies.

• Minimum Requirements displayed on the boxes of PC based games. The following
is from the box of Lucas Arts™ “The curse of Monkey Island”:

Computer: 100% Windows 95 DirectX-compatible computer required.
Graphics Card: PCI graphics card required.
CPU: Pentium 90 or faster required.
Memory: 16MB RAM required.
CD-ROM: Quad-speed or faster CD-ROM drive required.
Sound Card: 100% Windows 95-compatible 16-bit sound card required.
DirectX: Microsoft™ DirectX 5 is included on this CD and must e installed
prior to playing the game.
Note: Your system may require the “latest” Windows 95 drivers for your
particular hardware.
Installation: Requires at least 1.2MB free hard drive space. An additional
20MB recommended for multiple save games.

Name

Review Checklist
“Everybody thought somebody would do it,
But eventually, nobody did what anybody could have done” [Anon.]

Context

A problem has been successfully resolved. Its root causes were investigated and
analyzed.

Problem

Design groups encounter many problems during product development and deployment.
Many times the means to prevent these problems or reduce their impact are forgotten by
the time we get again to the review phase. Moreover, the organization aspires to
standardize the questions checked during the review.
At the review itself, team members tend to forget the criteria, ambiguities and past
lessons – because time has passed.
Preventive practices and culture gained by experience tend to be lost when teams
change their staffing.

Forces

- The impact of errors diminishes as time goes by. People tend to forget not only the
error, but also the means to prevent them from recurring or reduce their impacts.
- A chore without an owner might be ignored, forgotten or poorly performed.
- The Piranha Effect – during reviews, people tend to focus their attention on a small
area of the work item where a flaw was found. This prevents the participants from
exploring the entire work item for more flaws and for flaws of other categories.
- Too many criteria for review intimidate and go way over the abilities of most people
to perform them.
- Developers align their work towards meeting the standards required of them.

Solution

Throughout the project life cycle, set a person to maintain review checklists. This
person will get suggestions for additions to the review checklist for future reviews. This
might be done by means such as email, suggestions box, corridor talk or Wiki.
Whenever collective wisdom is enriched by investigating a new problem or by finding a
new bug or flaw – the means to prevent this problem from recurring should be added to
the review checklist.
Each item in the review checklist should include a recommendation, the reasoning
behind it and preferably an example or reference to the problem that triggered this item
in the checklist. This helps in maintaining the viability of the list over time.
The longer the checklist is - the fewer are the chances it will be used.
Tools may be used to reduce the amount of manual work done in preparation for the
review, and the frustration associated with it.

Resulting Context

By preserving collective wisdom and experience, people who set out to perform a task
can learn from other people’s mistakes (and from their own mistakes, given sufficient
time or denial).
Collecting and documenting this support standards and cultural climate that strive to
prevent errors rather then merely testing to detect them.
Keeping an eye on the checklist while preparing work items and during the review
helps preventing people from focusing most of their attention on a small number of
issues or limiting the scope of the review.

Known Uses

• Automated tools for detecting potential problems in code, such as lint, Purify™ or
compilation with a high level of warning provide means to reduce the amount of
manual work needed to detect problems.

• Amir Raveh has added the use of review checklists to the software development
process in teams and projects he led or participated in. Other projects and groups in
Motorola have adopted this practice.

• Coding guidelines, such as IBM [13], Elemtel [14], Sun Java coding style [15], C++
programming guidelines [16], and Usenix papers [17] present elaborate lists of rules
aimed at reducing errors.

Acknowledgements

This paper started out with a single pattern (‘Re-State the "Obvious"’), written by
Amir Raveh in a pattern writing workshop delivered by Jim Coplien and Christa
Schwanninger in Tel-Aviv, 1998. The pattern traveled to EuroPLoP 1999, where
Christa Schwanninger coached Amir into seeing how this single pattern leads to more
patterns, and these form a language.
The outline of the language kept growing as a draft in mind (and on the Palm), until
Ofra helped in pushing it from a vision into a full-blown set of interrelated patterns.
We would like to thank our customers and colleagues who have contributed from their
experience and efforts towards enriching us with their views and cultures.
We would like to thank our shepherd Neil B. Harrison for his efforts and suggestions
towards making this paper a better one.

References

1 Doing Hard Time, Bruce Powel Douglass, Addison Wesley, 1999, pp 98-99 for
software safety hazards such as Therac-25, Patriot missiles, Aegis tracking system and
other documented events.
2 The design of everyday things, Donald A. Norman, Addison Wesley, 1990, on the
topic of self-blaming when people encounter problems in computer-based systems.
3 Things that make us smart, Donald A. Norman, Addison Wesley, 1993, pp 131-138,
on human cognition, error and tunnel vision.
4 Customer support horror stories
Computer Stupidities, http://www.rinkworks.com/stupid/
IT Doom Dome, http://www.geocities.com/Wellesley/5337/
Tech's Support, http://www.ecis.com/~weasel/support/techsup.html
5 www.snopes.com -
Vanilla vapor lock (http://www.snopes.com/autos/techno/icecream.asp),
Word Imperfect (http://www.snopes.com/humor/business/wordperf.htm).
6 Deconstructing User Requests and the Nine Step Model, Thomas A. Limoncelli,
Usenix Association, Proceedings of LISA ’99: 13th Systems Administration
Conference.
7 Patterns for Logging Diagnostic Messages, Neil B. Harrison, PloP 1996.
8 Performance Pattern Language, Amir Raveh, Proceedings of EuroPLoP 2002,
Universitaetsverlag Konstanz.
9 Key Practices of the Capability Maturity Model SM ,Version 1.1, CMU/SEI-93-TR-
25, Software Engineering Institute, February 1993, pp L5-1 – Defect Prevention Key
Process Area.
10 Annals of the history of computing, Vol. 3 (July 1981), pp. 285-286
http://wombat.doc.ic.ac.uk/foldoc.foldoc.cgi?bug
11 All Things Wise And Wonderful, James Harriot, 1976.
12 Process Patterns for Personal Practice, Charles Weir & James Noble, Proceedings of
EuroPLoP 1999, Universitaetsverlag Konstanz.
13 IBM ICU Coding guidelines,
http://oss.software.ibm.com/icu/userguide/conventions.html
14 Elemtel C++ coding rules, http://www.chris-lott.org/resources/cstyle/Ellemtel-rules-
mm.html
15 Code Conventions for the Java™ Programming Language,
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
16 C++ Programming Guidelines, Plum, Thomas and Saks, Dan, Plum Hall, 1991
17 Can't Happen or /* NOTREACHED */ or Real Programs Dump Core, Ian Darwin
and Geoff Collyer, Dallas USENIX Conference, January 21 1985

