
   

A pattern language for software quality 
assurance with limited resources –  

strategy patterns 
 

Armin Scherz, Wolfgang Zuser, Thomas Grechenig 
Research Industrial Software Engineering 

Vienna University of Technology 
{firstname.lastname}@rise.tuwien.ac.at 

 

Introduction 
A working software quality assurance is one of the key success factors for 
every software project. In many projects restrictions like limited resources 
do not allow a QA-department or specialized QA workers on their own. In 
such projects excellent software engineers do the QA job together with 
their daily project work. They are concerned about the necessity of QA 
and are able to do good QA within projects.  
This pattern language presents a set of patterns, which can be applied to 
any IT project which is not able (because of given limitations) to spend 
many resources on QA or which does not want to so in order to save 
resources. The patterns are divided into strategy patterns, which can be 
applied to some general issues in QA, on the one hand and action 
patterns, which are directly applicable in the daily routine of IT workers, 
on the other hand. These patterns can supply a minimal set of QA 
activities. Together with excellent software engineers they are sufficient to 
produce high quality software. 
The audience of this pattern language are project managers, who are 
concerned about the quality of their products and are willing to have 
quality assurance mechanisms applied to their project but do not have 
enough resources to have specialized QA people doing this job.



 

   

Roadmap

 
Fig. 1 Roadmap to a pattern language for software quality assurance in 
small and medium enterprises 

Strategy patterns 
These patterns describe the strategic background for software quality 
assurance in SMEs and represent main QA ideas. Strategy patterns are 
generalized enough to be used in other contexts as well. 
The “Strategy patterns” are: 

• Pareto Principle: A pattern for good distribution of available 
resources. 

• Bottom-Up QA: Start your QA activities at each single developer. 
• Don’t hurry, be happy: Concentration on the early phases of 

software development should help you to achieve high quality 
software. 

• User Involvement: A pattern about tight user involvement for an 
optimum of information exchange. 

Snowman User Involvment 

Don´t hurry, be 
happy 

Bottom-Up QA 

Pareto Principle 

Evolution 

Separation of 
Concern 

Tool Support 

Templates 

Configuration 
Management 

Anchor QA in 
Project 

Define Quality 
Goals 

Prototyping 

Family Matters 

Pair Testing 

Post Mortem 
Analysis 

Task Bundles 

Foundation 
Patterns 

Action Patterns 

Derived action 
pattern 
Influences from other 
foundation pattern 



 

   

• Evolution: Build your QA system step by step. 
• Separation of Concern: A pattern about how to distribute many 

concerns on few people. 

Action patterns (not part of this submission) 
The “Action patterns” describe applicable qa methods for small and 
medium software projects. They are derived from the “Stategic patterns” 
but have a much more practical scope. 
The set of “Action patterns” is a tool box for engineers who want to do QA 
in small projects. They can select those patterns which are interesting for 
their own project and adopt them to their special needs. 
The “Action patterns” are: 

• Snowball effect: An approach for knowledge transfer in small teams. 
• Tool Support: Manual operations are not effective. 
• Templates: Helps saving effort and increases quality. 
• Configuration Management: Even a few people need some help at 

integration of different modules and versions. 
• Anchor QA in Project: Make sure that QA is understood and suported 

by every team member and the customer. 
• Define Quality Goals: Just in case you want to achieve quality it is a 

good idea to have quality goals. 
• Prototyping: A software development method useful for many 

purposes (e.g. user involvement). 
• Small Reviews: This pattern describes one way of what and how to 

review in small software teams. 
• Pair Testing: This pattern describes a test strategy small software 

projects. 
• Task Bundles: How to organize tasks in projects with few people 

effectively. 
• Post Mortem Analysis: How to preserve experience in small 

companies. 

Known Uses 
The patterns of this pattern language are the result of the experience of 
the authors with quality assurance activities in industrial projects in 
several different companies. Following selected recent projects in three 
Austrian companies will be used for known uses in the following patterns: 

• KPF: The project „Crop compensation“(Kulturpflanzenausgleich - 
KPF) is a subproject of the INVEKOS projects (integrated 
administration and control system), which is a system for the 
electronic handling of the EU agricultural grant program for Austria 
(http://www.ama.at/portal.html). 

• WWS: The WWS project has to deal with a small specialized ERP 
system for a large Austrian commercial enterprise.  

• eBSS: This financial trading platform provided by the Austria's 
Export Credit Agency (OeKB) enables private customers to buy and 



 

   

sell short running obligations from the Austrian ministry of finance 
(http://www.bundesschatz.at). 

Pattern Form 
The patterns of this pattern language will have the following form: 
 
Name A short descriptive pattern name. 
Context Description of the context; derived 

from the example. 
Problem The underlying question. 
Forces What makes the problem a 

problem? 
Solution The basic idea of the solution. 
Consequences The resulting context after using 

the pattern. 
Known Uses Appearances of the pattern outside 

of this pattern language. 
Related Patterns Internal links to other patterns of 

the language. 
Further Reading External links to books or papers. 



 

   

Strategy Patterns 

1. Pareto Principle 
 

 

Fig. 2 Vilfredo Pareto (1848-1923) 

Context 
Some amount of available resources and people have to be assigned to 
the right tasks at the right point of time to achieve optimum projects 
progress. Some tasks have high influence on the project quality. Some 
other tasks have low influence in the project quality. 

Problem 
How do you distribute the available resources along the different 
tasks to get optimal results? 

Forces 
• Some tasks have little impact on the total quality and need a lot of 

resources. However the tasks are important for the project success and 
have to be done sometime. 

• Some tasks have great impact on the total quality, are easy to do and 
need only few resources. They are likely to be delayed to later points of 
time because anybody can do them anytime. They are no challenge. 
However a lot of troubles can be avoided doing them right away. 

• Limited ressources mean that not all tasks can be done. Which tasks 
should be chosen to lay focus on? 

Solution 
Apply the tasks with the highest rate of outcome vs. costs/time 
first  to achieve a great amount of the quality quickly. 
 
Typically only 20% of the Tasks contribute to 80% of results (see Fig. 3).  
Gegarding QA this means that 20% of tasks influence 80% of the quality 



 

   

of the output, while 80% of tasks only contribute to 20% of the results 
quality. 

 
Fig. 3: Pareto Principle 

Consequences 
Applying the Pareto Principle will have following effects:  
• Few resources (20%) are used for achieving most (80%) of the result. 

Depending on the project priorities the remaining resources selectively 
can be used for other tasks (more quality, more functionality …). 

• Finding the tasks with high influence in your projects helps you to set 
the right priorities during the project not only for quality assurance, but 
also for other important activities (e.g. project planning , risk 
management). 

• If you get in trouble and you are not able to finish 100% of all quality 
requirements within time or budget, applying the Pareto Principle you 
will have at least more than 80% (not caring about the case that the 
troubles will happen in the first fifth of the project and will not let you 
do anything more until your budget is gone or time is over). In many 
cases except safety critical systems or highly available systems this 
may be enough to satisfy the customer (especially compared to many 
cases where no attention is paid to quality requirements at all). 

 

Known Uses 
• Pareto Analysis is a statistical method to identify the “vital few” 20% 

of  input. For details of this technique see [KALI94]. 
• Steve McConnel uses the Pareto Principle to describe some 

characteristics of error distribution: 20% of the code contains 80% of 
the errors, 20% of the errors cause 80% of the costs. 

• Barry Boehm uses the 80:20-rule for one his top 10 industrial software 
metrics in [BOEH87]. 

• In the eBSS project we decided to limit the tests to 20% of all classes 
which cover 80% of the critical functionality for the first test run. The 
result was representative enough for evaluating the overall systems 
quality. 

• In the WWS project test priorities were defined for test planning and 
execution. 



 

   

Related Patterns 
• Don’t hurry, be happy: Early phases have the highest influence on 

the final product. That’s why one should concentrate on the early 
stages. 

• Templates: To avoid too much bureaucracy one should focus on the 
most important templates, which cover 80% of the routine work with 
20% of the input. 

• Configuration Management: For small software projects it’s enough 
to just do the central tasks of Configuration Management.  

• Define Quality Goals: The different quality goals have different 
importance. Concentrate on the most important quality factors. 

• Pair Testing: Find out which parts of the code are critical and 
concentrate on testing these parts. 

• Family Matters: Reviewing is expensive. That’s why only the most 
important documents can be reviewed. 

Further Reading 
[PARE97] Pareto V., The New Theories of Economics, Journal of Political 
Economy 
Volume 5, pp. 485-502, 1897 
[MCCO93] McConnell S.C., Code Complete, Microsoft Press, ISBN 1-
55615-484-4, 1993 
[JURA99] Juran J.M., Blanton G.A., The Quality Control Handbook 5th 
edn, New York, McGraw-Hill, ISBN: 007034003X, 1999. 
[KALI94] Kaliszewski I., Quantitative Pareto Analysis by Cone Separation 
Technique, Kluwer Academic Publishers, ISBN: 0792394925, 1994. 
[BOEH87] Boehm B., Industrial Software Metrics Top 10 List, IEEE 
Software, Volume 4, Number 5, pp.84-85, 1987 
 



 

   

2. Bottom-Up QA 

 
Fig. 4: Leafcutter ants at work without coordination from above. 

Context 
Testing and a lot of other QA-methods are best applicable if they are 
carried out by a separate QA-group (e.g. reviews, inspections, post 
mortem analysis). If a company lacks a separate QA-group it’s not 
possible to assign all the QA-work to the usual developers without 
changing the QA-measures. An additional problem is that QA-activities 
which require a lot of coordinating work are not suitable for a project 
where developers have to do the quality management by their own. 
 

Problem 
How can you have QA without an independent QA-department? 

Forces 
• Separate QA-departments (or a single person in charge of QA) are 

expensive and therefore should work at full capacity all the time. Small 
companies have not enough projects to fully load such departments (or 
even a single person).  

• External specialists can be engaged for doing the QA work. External 
specialists are very expensive. 

• QA activities need a lot of work. Small projects have a limited number 
of workers. 

• Quality control should be performed by an independent instance. In 
small companies there often is no such instance, if there is no QA 
department. 

• Quality assurance for every single system component causes a lot of 
effort. QA for only some components may cause lower quality. 



 

   

Solution 
Motivate every software engineer to use QA methods in the small 
to ensure that his/her individual work is of high quality.  
 
This approach results in better-quality components which compose a high-
quality system. A metaphor for this approach is the way ants are 
organized. They have no hierarchical structure which could coordinate the 
single workers. But the sum of the individual efforts is enough to solve the 
problems of the ant empire (see Fig. 4). 
If every developer uses quality assurance methods during his/her own 
work, the personal results get better. So there is not so much QA work left 
when the components are integrated. 

Consequences 
Doing QA bottom-up will have following consequences: 

• High quality of the different modules will reduce effort for qa during 
system integration. 

• You will not need an expensive QA department which is not loaded with 
work at its full capacity.  

• You will not need external specialists or only for few QA tasks which 
can not be done by your developers beside their project work. 

• The lack of a QA department does not allow an independent external 
control. Some degree of external control can be substituted by some 
concluding control by developers not participating in the project. 

• You will have at least some QA for each component in your system.  

Known Uses 
• Personal Software Process (PSP): PSP is a training program which 

enables software engineers to improve and verify their personal 
capabilities ([HUMP95]). 

• Wiegers’ SQA Team Member: Karl E. Wiegers suggests assigning the 
QA coordination to one team member. To assure the independence of 
QA, each group member is asked to play the SQA role on someone 
else’s project ([WIEG93]).   

• Unit tests in XP enable collective code ownership: “Any developer can 
change any line of code to add functionality, fix bugs, or refactor.” Any 
developer is therefore in charge of the systems quality. Since each unit 
test is written by the programmer of the corresponding code under 
test, quality assurance starts at each programmer (and does not 
require further QA at all – believing to XP). 



 

   

Related Patterns 
• Snowman: To improve the individual abilities a training program is 

needed. 

• Anchor QA in Project: If all project members know about QA 
principles they understand the need for QA. This helps motivating 
the developers for QA. 

• Pair Testing: The test plan is affected by the absence of an 
independent QA department. 

• Family Matters: One basic idea of reviews is that external experts 
find more errors than team members, because they have a fresh 
few on the problems which are well known within the team. Also in 
small projects this effect should be exploited. 

Further Reading 
[DEMA87] DeMarco T.,  Lister T., Peopleware: Productive Projects and 
Teams. New York: Dorset House Publishing, ISBN: 0932633439, 1987. 
[HUMP95] Humphrey W. S., A Discipline for Software Engineering, 
Addison Wesley,  ISBN 0-201-54610-8, 1995. 
[WIEG93] Wiegers K. E., Implementing Software Engineering In a Small 
Software Group, Computer Language vol. 10, no. 6, June 1993. 
 
 



 

   

3. Don’t hurry, be happy; but don´t fall asleep 

Context 
A common problem in software development is to determine whether a 
software project has reached a status which allows the project team to 
enter the next project phase or not. This status depends on the quality of 
the development products and documents. Usually this decision isn’t easy 
and needs some project experience. If you proceed to the next stage too 
early, there are still a lot of errors left which cause more errors in the next 
stages. But if you proceed to slowly you loose time and the project gets 
more expensive. 

Problem 
On which phases during software development should you 
concentrate QA activities for achieving high software quality? 

Forces 
• Understanding and documenting the true requirements correctly in the 

first phases of the project needs some time. Not understanding the 
true requirements and saving some time in the beginning increases the 
risk of realizing wrong or misunderstood requirements causing time 
losses at the end of the project. 

• Time pressure leads to careless error detection activities. But 
undiscovered errors get into the next generation of documents and 
products. The do not disappear by some miracle. Additionally these 
errors cause new, even more significant, errors. 

• Early phases are characterized by documents and models. Developers 
do not like documents and models. They want to build their system. 
Users and customers do not like documents and models, they want to 
see their system working. QA activities need documents and models as 
reference for validation and verification activities. 

Solution 
Concentrate your software quality assurance on the early phases 
of software development.  
 
These phases have the biggest impact on the final quality of the software 
system because a concentration on early phases pays off in the following 
phases (Fig. 5, Fig. 6).  
 



 

   

 
 

Fig. 5: Impact of concentration on early project phases ([SCHU92]) 

 
Fig. 6 Defect costs ([MCCO98]) 

Consequences 
• Focus on the first phases causes the project to proceed slower in the 

beginning. Usually the project benefits from this delay and is finished 
faster than without concentration on the first phases. Even though 
customers change their mind about system requirements quite 
frequently (and therefore make some of your effort in the beginning at 
some later point of the project obsolete), these changes will not change 
the general vision of the system nor the most important requirements. 
Therefore 
o most of the effort in the beginning will pay off directly through the 

whole project and 
o some of the effort will pay of indirectly, because it is easier to 

discuss changes upon a well understood basis than upon no basis. 
• Error propagation will be reduced. 



 

   

• Focus of QA activities does not necessarily only mean to produce 
documents and models. Prototypes can be used for eliciting 
requirements very effectively. Documenting the requirements (e.g. by 
the QA department itself) based on prototypes can be used as first step 
for validating the requirements. 

 
The smaller a software project the smaller is the benefit of a concentration 
on the beginning. That is why one should be careful not to proceed too 
slowly in small software projects. 
Paradigms like XP (eXtreme Programming) are aware of this problem. 
That’s why one XP paradigm is to start with implementation as soon as 
possible. At first sight this approach seems to conflict with the “Don´t 
hurry, be happy” pattern. In fact the “Don´t hurry, be happy”-attitude is 
kind of a counterpart to an early implementation start. The ideal schedule 
in small software projects is always a mixture of careful analysis to avoid 
development into the wrong direction on the one hand and courageous 
and effective progress (XP) on the other hand. 

Known Uses 
• IBM: „An unpublished IBM rule of thumb for the relative costs to 

identify software defects: during design, 0.5; prior coding, 1; during 
coding, 1.5; prior to test, 10; during test, 60; in field use, 
100“([HUMP95], p. 275). 

• Focus on Requirements ([WIEG93]). Carl E. Wiegers’ advice is to 
achieve high quality through excellent requirements.  

• Steve McConnell uses the pattern discussing the bad effects of 
defects not detected in early phases of software development 
[MCCO98]. 

• Barry Boehm´s cost of Change Curve applies this pattern [BOEH76]. 

Related Patterns 
• Users Ambassador: Requirements analysis is only possible if users 

are involved. 

• Pareto Principle: Early phases have the highest influence on the final 
product. That’s why, according “Pareto’s principle” one should 
concentrate on the early stages. 

• Anchor QA in Project: That’s one of the challenges in early project 
stages. 

• Define Quality Goals: The central task of QM during Analysis. 

• Prototyping: Provides early results for the customer and the 
developers. Prototypes are also a compromise between fast and slow 
advance in the project. 

• Family Matters: Reviews are a central tool to control quality in the 
beginning of a project. 



 

   

 

Further Reading 
[HUMP95] Humphrey W. S., A Discipline for Software Engineering, 
Addison Wesley,  ISBN 0-201-54610-8, 1995. 
[WIEG93] Wiegers K. E., Implementing Software Engineering In a Small 
Software Group, Computer Language vol. 10, no. 6, June 1993. 
[SCHU92] Schulmeyer G. G., McManus J. I., Handbook of Software 
Quality Assurance (Vnr Computer Library), 2nd edition ,Van Nostrand 
Reinhold; ISBN: 0442007965, July 1992. 
[MCCO98] McConnell St., Software Project: Survival Guide, Microsoft 
Press, 1998 
[BOEH76] Software Engineering, IEEE Transactions on Computers, Dec. 
1976  
  



 

   

4. User Involvement 

Context 
The requirements for the system have to be found. The correct realization 
of the requirements has to be validated continuously. 

Problem 
How to continuously and efficiently get information about how the 
system should work?  

Forces 
• Users know what their systems should work and look like. Therefore 

they should be asked for it. However they have problems explaining 
their expectations. Therefore too much asking for their expectations 
can cause costs without results (a german proverb says: “Asking too 
much will cause you to stray”). 

• Involving users causes costs (mainly due meetings). Not involving 
users may cause misunderstandings or information gaps. 

• Various review cycles are desirable for a good requirements analysis. 
However review cycles are expensive and take a long period of time.  

Solution 
Involve the users as much as you can. 
 
The customer and the users, if these roles are separated, should be 
involved into the software development process from the very start till the 
end of a software project.  

Consequences 
Involvement of the customer into software development process at the 
very beginning has a lot of positive results: 
• Interaction between users and developers is very important. The 

developers experience and skill are in charge of understanding the user 
quickly and bring their expectations into a good design and 
implementation. 

• Costs of user involvement will be low in comparison of the error costs 
and change request costs if users are not involved. 

• The more review cycles are applied the more details about your 
implementation will be clarified and the systems quality will increase. 
Talking about costs see above. 



 

   

Known Uses 
• User interface prototypes: To find out which user interface design is 

suitable for a user you can build user interface prototypes. These 
prototypes don’t implement the systems functionality. They just realize 
the sequence of the different user interfaces for the planned system 
tasks 

Related Patterns 
• Pareto Principle: For user involvement concentration on the rights 

things on the first place is essential from a motivational point of view. 

• Don’t hurry, be happy: User involvement is most effective in the 
beginning of a project. 

• Anchor QA in Project: Also the user has to understand the need for 
QA. 

• Define Quality Goals: The customers view is decisive for the quality 
goals. 

• Prototyping: Is a tool for user involvement, because the prototypes 
can be presented to the user. 

• Testing in small Software Projects: Users can be involved during 
testing. 

• Reviews in small Software Projects: Users can be involved during 
reviews. 

• Post Mortem Analysis: Only the user can say if his needs are fulfilled 
by the system. 

Further Reading 
[WIEG93] Wiegers K. E., Implementing Software Engineering In a Small 
Software Group, Computer Language vol. 10, no. 6, June 1993. 
[JURA99] Juran J.M., Blanton G.A., The Quality Control Handbook 5th edn, 
New York, McGraw-Hill, ISBN: 007034003X, 1999. 



 

   

5. Evolution 

Context 
Imagine that you want to introduce Software Quality Assurance in a small 
Software development company. How should the QA plan be designed to 
pay attention to the special needs in the company? It’s very unlikely that 
a QA plan which works in another (larger) company is applicable in your 
company without major changes. So you have to develop your own QA 
approach. 
Software quality assurance is not an activity that is performed 
independent from software development itself. In fact QA has a lot of 
influence on the software development process. That’s why the chosen QA 
plan has to fit in the whole software development process used in a 
certain company. Otherwise QA activities become cumbersome and will 
not have the desired effect on the systems quality.  

Problem 
How do you find a suitable Software Quality Assurance system for 
your software company? 

Forces 
• Determining the right QA system will take some time causing costs. 
• Inappropriate QA systems cause high costs due the lack of quality in 

your projects. 
• An existing but not fitting QA system (from another company, from 

literature or derived from a standard) can be used straight away. A QA 
system from scratch perfectly fitting to your software engineering 
process will take a bunch of time (missing some projects meanwhile). 

• In complex fields like software development experience is very 
important. But Software Engineering is a young discipline. That’s why 
there is not much reusable knowledge available and you have to find 
your own solutions in a lot of areas.  

 

Solution 
Start with selected good fitting QA practices and improve and 
extend them from project to project. 
 
Take an existing QA approach, downscale it to your usual project size and 
select good fitting practices according to the existing software engineering 
process and work habits. Use an evolutionary process to continuously 
improve and extend the QA system from project to project.  
 



 

   

 
Fig. 7: Evolutionary Improvement of QA 

 

Fig. 7 illustrates that process.  The first step is to introduce QA in the 
software company. After that you have to define an initial set of quality 
assurance measures. These activities are performed during a project. 
After the project you will have learned a lot about the chosen measures. 
So you can modify them and get a new definition of QA measures. After 
some iteration the Quality assurance plan will be appropriate for the 
specific needs within the software company. 

Consequences 
Using and evolutionary approach towards the QA system will have the 
following consequences: 
• You avoid the costs of low quality even in the first iteration as you have 

a QA system right from the start. You also avoid the high costs of 
discussing the “optimal QA system” which you will never find. 

• You do not miss projects and have a QA system in place right away.  
• Experience with any QA system and evolutionary improvement is better 

than endlessly discussing about something you never implement and 
never test. Therefore it’s better to take the second best solution and 
improve it instead over never coming to an end of discussions.  

Known Uses 
• IEEE 730-2002: By using a model like the one just explained you can 

develop your own QA plan beginning with the standard IEEE 730-2002. 
Standard IEEE 730-2002 takes this possibility into account by providing 
a history-field for former quality assurance plan versions ([IEEE97]). 

• Deming circle: The Deming circle is an evolutionary approach which 
uses “plan-do-act-check” iterations. ([DEMI86]). 

• The evolutionary introduction of quality assurance activities in 
the OeKB was an implicit requirement for QA in the eBSS project. 



 

   

Related Patterns 
• Tool Support: The set of tools which can be used in a project can also 

be changed in an evolutionary way. 

• Templates: The set of supporting templates behaves in the same way 
as the set of tools. 

• Anchor QA in Project: During a QM Kick-off  the changes in the QA 
plan can be discussed. 

• Post Mortem Analysis: The foundation for evolutionary improvement 
is the knowledge about mistakes and successes. 

Further Reading 
[DEMI86] Deming W.E., Out of the Crisis, MIT Center for Advanced 
Engineering Study, Cambrige, ISBN: 0262541157, 1986. 
[IEEE97] IEEE Software Engineering Standards Collection, 1997 Edition. 
Los Alamitos, Calif.: IEEE Computer Society Press, ISBN: 0738115630, 
1997. 
 



 

   

6. Separation of Concerns 

Context 
Elaborated process models consist of many diverse concerns (e.g. tasks, 
roles, organizational units …) which affect many diverse roles within the 
project. In small projects the concerns have to be bundled to few persons. 
This is especially true if some roles do not exists in small projects (e.g. 
quality assurance). 

Problem 
How do you group many concerns for execution by few persons? 

Forces 
• Many concerns have to be assigned to few persons. That’s why every 

person has to be in charge for many concerns. But for one single 
person it is hard to think about many different concerns in parallel. 

• Too many separated concerns cause much overhead (due 
communication, organizational load …) and need a lot of resources. Too 
few separated concerns result in huge bundles, which overload a single 
people.  

Solution 
Form bundles of concerns around critical concerns, which can be 
executed by single persons a one point of time. 
 
Find the critical concerns (cannot be moved anyway, other concern 
depend on them) first and put them as center of bundles. Add to the 
center concerns, which are not critical and can be moved. Try to put 
concerns around the center, which are similar to the center concern. Fig. 8 
shows an example for a possible clustering of concerns into bundles. 

 
Fig. 8: Example for Clustering of Conerns into Bundles 

 

In the graph every edge represents a task and every node represents a 
milestone (e.g.: project start, project end, finishing of a document…). If 



 

   

an edge starts at a certain node, the task can only start after the 
milestone. If an edge ends in a certain node, the milestone can only be 
reached as a result of the task. The red path is the critical path (a delay 
on this path also delays the entire project), consisting of the critical tasks. 
Each of these critical tasks is the center task of one task bundle. The other 
tasks are distributed among the different bundles according to their causal 
relationship with the center task and to the size of the bundles. 

Consequences 
• The concern bundles should minimize parallel concerns in one place 

(due the textual correspondence of all concerns in a bundle).  
• Overhead can be reduced by the concern bundles. Anyhow the 

expected work load of each bundle must consider the existing projects 
work load of the developer who will be in charge for execution of the 
concern bundle. 

Known Uses 
• Ancient (?) regimes used the pattern for administration of their 

empires. 
• “The technique of mastering complexity has been known since 

ancient times: ‘divide et impera’ (divide and rule).” (E. Dijkstra) 

Related Patterns 
• Bottom-Up QA: The design of the bundles influences how independent 

the work of the engineers is from the work of others. 
• Don’t hurry, be happy: The important tasks in the beginning of a 

project can be bundled together. 
• Dear Customer: Tasks which require interaction with the customer 

can be bundled together.  
• Configuration Management: can be one separate bundle. 
• Define Quality Goals and Post Mortem Analysis should be in one 

bundle because the defined goals are tested in the end.  
• Task Bundles: A derived action pattern of this pattern where the 

concern of interest is tasks in a project. 
• Divide and Conquer: part of Organizational Pattern by Jim Coplien 

[COPL95].  

Further Reading 
[COPL95] http://www1.bell-
labs.com/user/cope/Patterns/Process/section33.html 

 


