
B6-1

A Catalog of Patterns for

Program Generation
Markus Voelter

voelter - ingenieurbüro für softwaretechnologie
Ziegelaecker 11, 89520 Heidenheim, Germany

voelter@acm.org, www.voelter.de

Version 2.0, Mar 14, 2004

Generation of source code is becoming a more and more impor-
tant tool for software engineering, especially in the context of
model driven development and OMG’s Model Driven Archi-
tecture (MDA). While it is possible in theory to „generate code“
just using printf, this approach is insufficient in all but the most
trivial cases. However, there are several alternatives. This paper
introduces a set of patterns that describe the most commonly
used source code generation techniques. That can be used for
model transformations, model-to-source generation or source
code transformation. It also contains large amount of examples
that show how different tools realize the patterns.

Introduction
Program generation is concerned with approaches, techniques and tools

for generating program source code which is subsequently compiled or in-
terpreted. In current software development practice, this approach becomes
more and more important for reasons outlined below.

This paper should be read by developers and tool developers. Developers
will understand the different means available to generate code, while tool
developers will understand how their to-be-developed tool could be struc-
tured.

There are several reasons why you would want to generate code (source
or binary):

• The desired system (or a member of a family) has to have a large degree
of variability and you cannot afford to use traditional, generic OO
code for performance reasons.

• Another reason can be the minimization of the size of the program
executable because the target device only has a limited amount of
memory.

• Especially in the embedded world, a generic approach might not be
usable because you want to statically analyze the code with regards to

Target
Audience

Why to use
code generation?

B6-2

resource consumption, concurrency, etc., Generated code can be
much more easily analyzed with regards to these issues compared to
generic frameworks. Avoidance of dynamic memory allocation at
runtime, while still being flexible with regards to the objects used can
also be a reason why to use a code-generation based approach.

• You want to develop application logic at a higher level of abstraction
than the level provided by the programming language use, for example
because you want domain experts to "program". Code generation can
then be used to „reduce“ the abstraction level of a specification (or do-
main-specific language) by generating an „implementation.“ A typical
example is generating source code from (UML) models.

• You cannot express specific things with a programming language be-
cause its type system or language features does not allow it (e.g. you
want to use the notion of a class in a language that does not support
classes natively).

• You have a highly modular system, and you only want to include spe-
cific „aspects“ in your image. Normal modularization (i.e. the modu-
larization with the means provided by the programming language
such as classes or functions) is not possible because of crosscutting con-
cerns. Generator-based AOP tools such as AspectJ are typical exam-
ples.

• You want to detect design or implementation errors early, i.e. not at
runtime, but during the generation of the program code and/or the
subsequent compilation.

Alternatives to code generation include the use of powerful libraries or
frameworks, reflective facilities as well as interpreters. However, most of
these alternatives require more sophisticated runtime systems or have a
larger footprint, which makes them unusable in several scenarios. It is not
always trivial to decide if code generation should be used, and how. The ef-
fort of writing the generator can be quite significant, and if used wrong,
benefits like improved performance or reduced code size can easily be
turned to the opposite.

Software System Families

 Code generation is especially important in the context of product line
engineering1, because the work of developing domain-specific generators
usually does not pay-off for one-off products. Product Line Engineering
aims at developing families of software systems in a specific domain. A soft-
ware system family is defined as follows:

We consider a set of programs to constitute a family whenever
it is worthwhile to study programs from the set by first study-

1. Whenever we talk about code generation, especially in the context of product line
engineering, the generation of artifacts is not limited to program code: manuals,
configuration files, maintenance plans can also be generated. In the context of this
paper, we limit our scope to code generation, however.

B6-3

ing the common properties of the set and then determining the
special properties of the individual family members. [Parnas,
1976]

The biggest payoff of using code generation is typically achieved if the
generator can be reused in the context of a software system family. While
Parnas’ definition above is correct, it is also very general. Let’s therefore
look at some examples of software system families:

• A set of projects in the same domain can constitute a software system
family (banking, telecom switching, automotive diagnosis). You
might be able to generate recurring business logic from models.

• A set of artifacts based on the same infrastructure (such as EJB) in one
project can also be a family. Here, you might be able to generate all
the infrastructure-specific code around manually implemented busi-
ness logic.

• It can also be considered a family if you have some specific business
logic that you want to run on different platforms. You might be able
to generate platform-specific implementation code from the models
(this is the focus of MDA)

• And finally, a set of artifacts based on the same modelling paradigm,
such as state charts can constitute family. You might be able to gener-
ate the complete implementation based on the model and its pre-
defined mapping to lower-level implementations.

Today, product line engineering is typically seen in the greater context
of generative programming. Let’s look at another definition:

Generative Programming is a software engineering paradigm
based on modeling software system families such that, given a
particular requirements specification, a highly customized and
optimized intermediate or end-product can be automatically
manufactured on demand from elementary, reusable implemen-
tation components by means of configuration knowledge. [Car-
necki & Eisenecker, 2000]

This definition mentions that „a highly customized and optimized [...]
product can be automatically manufactured“. This automatic manufactur-
ing of software products can be achieved with different means: object-ori-
entation and polymorphism, frameworks, reflection, and code generation1.
The decision as to which mechanism to use depends on the time when you
are able to decide about a specific feature. If you can decide before runtime,
you can use code generation to create a more efficient product, compared
to using runtime OO features.

1. I is important to note that generative programming does not imply, or even
require, source code generation; this is a common misconception. Often, howe-
ver, code generation is the only means to achieve the goals mentioned in the defi-
nition.

Software System
Family Examples

Generative
Programming

B6-4

If code generation is used, it can happen at different times in the devel-
opment process, it can happen at different levels of granularity, can be based
on different kinds of specifications what should be generated, and there can
be several reasons, why generation is used - see beginning of the introduc-
tion.

When, where and what to generate

To understand the following discussions, we have to define what we un-
derstand by a model and what we consider code. We consider a model to be an
artifact that has to be transformed to something more concrete to be exe-
cuted. Code, on the other side is something that can be compiled and exe-
cuted directly. This definition is important, since it says that UML models
are not considered code and a programming language interface is not con-
sidered a model. In the context of multi-step generations, there are many
model-to-model transformations and one final source code generation step.
The generated code is then compiled and executed. Another thing to men-
tion is that we do not require models to have a grahical notation. A model
is considered equivalent to a specification in a textual domain-specific lan-
guage (DSL). The grammar of the DSL thus resembles the metamodel of the
model.

Note that this definition of a model and code is somewhat arbitrary. The
compilation of Java byte code from Java source can also be seen as code gen-
eration, source code can be considered a (rather low-level) model, and it is
possible to directly interpret UML diagrams (see [Riehle, 2001]). However,
in current mainstream practice, there still is a distinction between models
and code in the way we defined it above.

The following illustration shows where code generation is applicable in
the application development lifecycle, the following paragraphs give some
additional explanation.

 Model Transformation generates new models from available models. Typi-
cally, these generated models are specialized (i.e. more concrete) with re-
gards to some property, for example, the implementation platform used as
is the case in MDA’s PIM to PSM transformations. Strictly speaking, this is
not code generation because the result is not code per se - it is another mod-

Model and
Code defined

Model
-or-
DSL

Source Code

Object Code/
Byte Code Running

Program

Model
Transformation

(Source) Code
Generation

Code
Transformation

Byte Code
Rewriting

Reflection, MOP,
Reification

Compilation

Interpretation

Model
Transformation

B6-5

el. However, it uses some of the same techniques as real code generation,
this is why this is included.

Source Code Generation describes the generation of executable code. This
usually involves some kind of de-abstraction or concretization of the mod-
el. The generated source usually requires compilation before it can be exe-
cuted. However, sometimes the generator creates byte code or machine
code directly.

Source Code Transformation denotes the creation from code based on other
code. This is typically used when different code artifacts are somehow
merged or modified.

Byte Code Rewriting is a technique that has been introduced in the context
of byte-code interpreters (or virtual machines), and has gained recent popu-
larity in the context of platforms such as Java and .NET. Here, the code that
has been created by compiling source is directly created or modified.

Last but not least, Reflection (and the related techniques of intercession, re-
ification, introspection) explains how a program can modify itself while
running. Examples for this can be found in Smalltalk or Lisp/CLOS. This
technique is not considered in this paper.

The following section contains the basic patterns for code generation
whereas later sections cover examples. The patterns denote specific tech-
niques that might be applicable to one or more of the phases in the above
diagrams.

In addition to the code generation techniques mentioned above, there
are several integrated metamodelling environments available (such as GME
[ISIS, web] or MetaEdit+ [Metacase, web]). These tools provide generic, in-
tegrated environments for building, validating and managing models based
on custom metamodels. They can also be used to generate source code from
these models. However, these tools are beyond the scope of this paper. The
same is true for UML tools that can generate code such as Rose, XDE or
Together/J. While all of these tools can generate source code (some even in
a customizable manner) they all use some of the techniques mentioned be-
low under the hood.

The Patterns
In this section, we list seven rather basic patterns for code generation.

Note that we do not provide extensive examples in the pattern text, subse-
quent sections describe examples for the patterns, the concrete technologi-
cal realizations. Let us first get a quick overview over the patterns that
follow.

Source Code
Generation

Source Code
Transformation

Byte Code
Rewriting

Reflection

Integrated (Meta-)
Modeling Environ-

ments

UML Modeling
Tools

B6-6

TEMPLATES + FILTERING describes the simplest way of generating code.
Code is generated by applying templates to textual model specifications (of-
ten XML/XMI), typically after filtering some parts of the specification. The
code to be generated is embedded in the templates.

TEMPLATES + METAMODEL is an extension of the TEMPLATES + FILTER-
ING pattern. Instead of applying patterns directly to the model, we first in-
stantiate a metamodel from the specification. The templates are the
specified in terms of the metamodel. The metamodel can be extended to in-
clude domain or architecture specific aspects

FRAME PROCESSING describes a way of generating code by means of so-
called frames. Frames can be seen as programs (functions) that generate code
as the result of their evaluation. Frames can be parametrized by number and
string literals as well as other frame instances.

API-BASED GENERATORS provide an API against which code-generating
programs are written. This API is typically based on the metamodel/syntax
of the target language.

INLINE CODE GENERATION describes a technique where code generation
is done implicitly during interpretation or compilation of a regular, non-
generated program, or by means of a precompiler. This process typically
modifies the program that is then subsequently compiled or interpreted.

CODE ATTRIBUTES describe a means by which normal, non-generated
program code contains annotations, or attributes, that specify things that
are not contained in the code per se. Based on these attributes, additional
code can be generated.

Finally, CODE WEAVING is about combining, or weaving, different parts
of program text together. These different parts typically specify different
independent aspects which are then combined in the woven program.
Weaving is based on specifications, how the different aspects fit together,
so-called join-points.

Templates + Filtering
Consider the creation of simple class skeletons from UML models. UML
models are typically stored using the XMI standard [OMG specs], a persis-
tent representation of UML based on the MOF, the Meta Object Facility
(see [OMG specs]). XMI files are typically large and complex and contain a
lot of information you don’t want to when generating your target code.
You need to „filter out“ the relevant subset of the information in the model,
typically the information that can be represented with the help of your tar-
get programming language. A typical, simple example would be to generate
JavaBeans from an analysis classes that simply have public attributes.

Overview over
the patterns

Motivation

B6-7

You want to create simple code fragments from higher level specifica-
tions. Based on a potentially large and complex description exported from
a modelling tool, you have to filter out relevant parts or aspects and create
code from them.

Provide a filtering syntax based on pattern matching or similar techniques
to „select“ specific parts of the model in a declarative way. Then use tem-
plates to describe the target code artefacts. The template language must
be able to access the selected part of the model to be able to include infor-
mation from it in the target code.

TEMPLATES + FILTERING is an efficient way to perform code generation or
model transformation if the filtering mechanism is powerful and the speci-
fication well defined. Writing generators in such a scenario is straight for-
ward. It can, however, quickly become too complicated if more than trivial
„queries“ have to be performed, TEMPLATES + METAMODEL can be a good
alternative because it provides a higher-level, specification-syntax indepen-
dent way to work on the model. A disadvantage of TEMPLATES + FILTE-
RING is that the generation infrastructure is tightly bound to the
specification syntax. In contrast to TEMPLATE + METAMODEL there is no
indirection level in between. A big advantage of TEMPLATES + FILTERING
is that it can be based on industry standard tools such as XML and XSLT.

Using XSLT as an example, you can use <xsl:template match...> clauses to scan
the XMI document for relevant information, such as classes and their public
attributes. The code to be generated is specified inside the template tag. Using
<xsl:value-of ...> you can access information from the model for inclusion in
the generated code. For example, you can access the names of the attributes
and generate the respectively named getters and setters in the JavaBean.

This technique is useful whenever the source specification is highly struc-
tured and uses a systematic, well-defined meta syntax. This is especially ap-
plicable for model-to-model or model-to-source code generation. XML
based systems are often used today for model specification, XMI in partic-
ular. To filter, XSLT or XQuery can be used. Source-to-source transforma-
tions are typically handled with API-BASED GENERATORS because it is hard
to specify rules and filters for source code.

Problem

Solution

Specification

Filters

apply to

Specification
subset Templates

apply to

Target Code

Consequences,
Benefits and

Liabilities

Motivation
revisited

Applicability

B6-8

XML+XSLT, Fuut-je [Bronstee, web]

Templates + Metamodel
Consider a situation where you need to generate code from models in the
context of a system family. The family architecture defines a limited set of
well-defined architectural building blocks that have a clearly defined mean-
ing in the application domain, and a well-defined mapping onto the imple-
mentation platform. Examples could be the three different bean types in
EJB, activities, transitions and processes in a workflow system, or the no-
tion of a component in a proprietary component infrastructure, where each
component defines (among other things) resources it requires and services
it provides. Once you have specified that a model element represents such
an architectural building block, the mapping to the implementation is clear-
ly defined and can be automated. The code generation process should be
controlled in terms of the domain concepts represented by these building
blocks and not in terms of low-level details of the model representation or
the to-be-generated code. Also, you want to be able to efficiently encode
and enforce domain rules in your generator (for example, service operations
that can be invoked asynchronously must feature a void return type).

You want to generate code for products of a software family where you
have well-defined architectural building blocks and those have a clearly
defined mapping onto an implementation platform. You want to make
sure your code generation templates can be specified in terms of domain
concepts and do not depend on the low-level details of the modelling data
(such as XMI).

Provide an explicit, customizable metamodel for your code generator. Im-
plement a two step code-generation process that first instantiates the
metamodel based on the model data. Then write the templates in terms of
this metamodel. Make sure the metamodel can be adapted to include do-
main-specific concepts, and that these can be mapped to model elements
(such as stereotyped classes)..

This approach has the big advantage that the parsing of the model and the
instantiation of the metamodel is completely separated from the templates

Known Uses

Motivation

Problem

Solution

Specification
Metamodel

parse

Target CodeMetamodel
Instance

create

Templates

instance of

apply to

adheres to

Consequences,
Benefits and

Liabilities

B6-9

that control code generation. It is therefore easier, e.g. to change the model
format without needing to adapt the templates. It is also possible to write
the templates in terms of the (possibly adapted, domain-specific) metamodel
and not in terms of low-level details of the model representation. This meta-
model is adapted to include terms of the problem domain. As a conse-
quence, the templates become more readable and easier to maintain. Also,
it is possible to integrate domain specific attributes and behaviour into the
metamodel. The metamodel is also an ideal place to include modeling con-
straints. These will be evaluated by the generator when the metamodel is
instantiated during code generation. As a consequence, the template lan-
guage can be simple and easy to understand, moving complex behaviour
into the metamodel (which is implemented with a real programming lan-
guage).

Looking again at the custom component infrastructure, the metamodel can
provide metaclasses such as Component (specializing Class) or Service (special-
izing Operation). The Service metaclass will verify that each service operation
that is tagged as capable of asynchronous execution has a void return type,
throwing an exception if this rule is violated. Code generation templates
can then be formulated with the help of the metaclasses, writing things such
as „foreach service in component do <to-be-generated code goes here>“.

This approach is typically used during the generation of code from (UML)
models where profiles (stereotypes, tagged values, OCL constraints) pro-
vide a way to make models mode domain specific.

b+m Generator Framework [b+m, web]], Kenndy Carter iUML
[Kennedy Carter, web]

Metamodelling: Metamodelling is concerned
with defining models for models. These
metamodels define the which modelling
elements models (i.e. instances of the
metamodel) can contain, as well as additional
constraints. For example, one can define that
elements in a model that have the stereotype
<<service>> must always have an init(), start()
and stop() operation. Also, the metamodel can
define which datatypes are allowed for
operations of <<services>>, for example, only
primitive datatypes could be allowed.
Metamodels thus allow developers to
customize modelling.

metamodel

model

instance

meta-
metamodel

<<instanceof>>

<<instanceof>>

<<instanceof>>

Motivation
revisited

Applicability

Known Uses

B6-10

Frame Processing
Imagine building a software system family of stacks. These stacks have the
common property that they behave as stacks typically do: you can push el-
ements on top of it, and pop them from there again. However, there are
many more or less subtle differences between different stack incarnations:
the datatype that should be stacked, optional checking for a maximum size,
on-the-fly calculation of the current stack size, thread-safety etc. When cre-
ating one of these stacks in the context of your family, you want to be able
to assemble a concrete stack (with a specific configuration regarding the
above options) from prebuild components based on some kind of abstract
specification (e.g. STACK[type=int, calculateSize=true, threadSafe=false]. Note,
however, that these „components“ are not building blocks in the sense of
objects. Some features have aspect-like semantics (such as thread safety)
whereas others are a kind of parametrization (the element type) and again
others require additional, more or less orthogonal functionality (on-the-fly
calculation of the current size).

You want to generate products from a software system family. Each prod-
uct possesses some valid combination of features defined by the family.
These features might be cleanly modularized or they might be crosscut-
ting aspects. You want to implement both of these kinds of features as
separate, orthogonal artifacts in order to combine them easily to generate
products of a family.

Use parametrizable templates called frames. A frame can be seen as a
typed function that generates code when evaluated. To compose software
systems from a collection of frames, frames have „slots“ that can be pa-
rametrized with one or more other frame instances, as well as code snip-
pets (such as type names, integrals, etc.). Code generation is controlled by
a top-level frame (called the specification frame) - it instantiates, parame-
trizes and composes instances of the other frames. Finally, it evaluates the
composed frame hierarchy in order to generate the code

Frame processing comes in two flavours: script-based frame processors
work with (typically procedural) scripts that instantiate and parametrize
frames (filling in their slot values), building a tree of parametrized frame in-

Motivation

Problem

Solution

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Metamodel
Instance

Specification
Frame

Target Code

Code
Frame

Generator

1) create &
instantiate 2) instantiate &

parametrize

in
st

an
tia

te
 &

pa
ra

m
et

riz
e

{repeat}
3) generate

4)

Consequences,
Benefits and

Liabilities

B6-11

stances. In contrast, frame processors that are based on the adaptation ap-
proach „inject“ code into specific locations (i.e. the slots) in other frame
instances. The question whether to insert code to slots is controlled by the
specification. Because the adaptation-based processors can modify several
slot values in different frame instances from within one controlling frame,
this approach is well suited for aspect-like composition. Combinations of
both approaches are of course also possible.

Note that frame processing, as opposed to TEMPLATES + FILTERING and
TEMPLATES + METAMODEL, resembles the imperative style of program-
ming because frames are instantiated and parametrized manually, just as
you would instantiate and parametrized a class in an OO language.

To be able to use the „late-code-injection“ feature efficiently, an instantiated
frame must not be output (i.e. code-generated) directly after instantiation.
The instantiated and parametrized frame needs to go into a repository,
where it can be reparametrized and modified later, by other frame instanc-
es. Only then can aspectual features be realized. In a last step, instantiated
frames are code-generated.

For generating the stacks, you could define a principal frame that generates
the push and pop operations, as well as the stack class itself. This frame has a
slot to accept another frame that generates the element data type-specific ar-
ray declaration to hold the raw data. Another frame is used to generate lock-
ing code (for thread-safety). The principal frame has a slot for holding such
a thread-safety frame - if one is set, it is used to generate locking code. If
none is set, no locking code is generated. This allows us to configure the to-
be-generated code by composing frames.

Frame processing is best used for problems where a small family of closely
related members (such as the stacks mentioned above) needs to be generat-
ed. Because of the imperative way of programming, generating code from
(UML-) models is better done with TEMPLATE + METAMODEL based ap-
proaches.

Netron Fusion [Netron, web], Delta Software Technology’s ANGIE [d-s-t-
g, eb], National University of Singapore’s XVCL [XVCL, web] (the XML
Variant Configuration Language). The initial concept of frames was invent-
ed by [Basset, 1996]

API-based generators
Object-oriented database systems usually try to provide orthogonal persis-
tence, which means that programming language objects are automatically
made persistent (once tagged to be a persistent instance). As a consequence
this means that when navigating objects through links (instances of associ-
ations) the link target might not yet be loaded into memory, it might be an
object stored in the persistent store. It needs to be loaded on-demand when

Motivation
revisited

Applicability

Known Uses

Motivation

B6-12

it is accessed. As we don’t want to bother the programmer with manually
inserting code to lazy-load the instance, one option is to preprocess the
source code (or the bytecode, if available) and insert code at the respective
locations that „loads the targetted object if it’s not yet in the cache“.

You want to provide a way to generate a small amount of code that needs
to handle a well-defined task. You don’t have a specification for the gen-
erated code, it is always the same, perhaps with some small modifications
because it is typically generated in the context of a specialized, problem-
specific tool.

Provide a code-generation API that is defined in terms of the abstractions
of the code to be generated (such as the abstract or concrete syntax tree
or the byte code grammar). There are no templates and models, instead a
manually written program utilizes the API to create or modify the code in
question.

API based systems are easy to use to generate small amounts of code. Larger
model-based generations quickly become overly complex and cumbersome
to write, TEMPLATE + METAMODEL is much better suited there. Note also
that API-BASED GENERATORS are naturally specific to the programming lan-
guage they generate, although this fact sometimes get blurred: e.g. genera-
tors that generate code for .NET compatible languages can be built in terms
of the MSIL while still outputting source code in the various .NET languag-
es. This is because all these languages have the same semantics just using dif-
ferent textual representations (concrete syntax).
Note that API-BASED GENERATORS often serve as a basis for some of the
other generator types, such as CODE WEAVING.

Using an API-BASED GENERATOR to add OO-database code, the developer
would first parse all persistent classes and those that use instances, creating
an AST representation of the code. The developer can then iterate over all
expressions that follow links to persistent objects, inserting code (again, us-
ing the AST) that ensures the target object of the link is loaded from the da-
tabase and instantiated in memory.

API-BASED GENERATORS are well suited to problems that involve the cre-
ation of small amounts of code, typically during postprocessing source
code. While there are APIs to access models (such as XMI), most API-based
tools modify source code or, even more typically, byte code for platforms

Problem

Solution

Client Program API Code
calls

Grammar
AST/CST

instance of,
adheres to

formulated
in terms of

create or
modify

Consequences,
Benefits and

Liabilities

Motivation
revisited

Applicability

B6-13

such as Java or .NET. Typical applications can be found in e.g. IDL com-
pilers, AOP tools, OO-databases, etc.

Jenerator (a code generator for Java) [Voelter, web], Compost/Recorder
[Uni Karlsruhe, web], BCEL, the Byte Code Engineering Library [Apache,
web], .NET’s Reflection.Emit [Microsoft, web]

Inline Code Generation
Consider developing a threading library that should run on platforms as di-
verse as Win32, different Unix variants and several real-time operating sys-
tems (ACE is such a library that provide threading support, amongst other
things). The source code for the library will not run unchanged on all plat-
form. However, you still want to have a single, coherent code-base. As a
consequence you might have to make some parts of the code depend on the
operating system for which you compile, or some types might need to be
adapted to the OS. Also, you might want to be able to optimize some as-
pects of your source code by e.g. unrolling loops or by using the smallest
integer type possible (based on a known, but varying range of values).
Again, you want to keep things in one code base, but optimize for specific
circumstances.

You need to develop source code that is flexible with regards to some as-
pects, e.g. types used, operating system calls or simply the amount of
functionality it provides. All these options should be contained in one
code base, selecting the specific options to use at compile time when de-
cisions regarding the options have been made.

Provide a preprocessing facility for your code. This preprocessor can pro-
vide include facilities, conditionals, variables, type expressions, etc. that
are all evaluated at compile time. The basis for these evaluations can be
explicit specifications or the code itself. The generated code is custom-
ized and optimized for the specific context resembled by the decisions
made during compile time.

Known Uses

Motivation

Problem

Solution

integrated compiler suite

Machine- or
byte code

preprocessSource code
including variant
configurations

Source code
with some

variants resolved

compilation
Source code

with all
variants resolved

preprocess

[all resolved]

[else]

config
specification

{o
pt

io
na

l}

{optional}

B6-14

Preprocessing is a powerful concept that is typically used - as in the moti-
vating example - to embed several versions of a source code in on artifact
(file). Before actual compilation, these variations are resolved to a specific
one. While there is no technical need that this happens in one tool, typically
the different preprocessing steps are integrated in one compiler (suite).

There are several flavours of preprocessing. On the one hand there is pure
textual replacement based on some kind of specification (such as the C++
preprocessor, being controlled through #DEFINEs at compile time) or
there is a more integrated approach that takes into account the semantics
and type rules of the host language. C++ templates are an example for this
approach, the „variant decisions“ are based on information in the rest of the
source code (maybe parts of the code that are there solely for this purpose).

Note that while there is no limit to the expressive power of such prepro-
cessed languages (the C++ template mechanism is a complete functional
programming language), the complexity of the compiler, as well as compile
times and resource consumption increases with the power of the preproces-
sor. This can also be seen as a negative example of the accidental complexity
that can arise if several languages are embedded in each other.

ACE uses quite a lot of #DEFINE and #IFDEF statements to make parts
of its C++ source code specific to certain operating systems/compilers/
machines. C++ template metaprogramming can be used to define the type
of a variable dependent on its maximum value. Static implementations of
the Strategy pattern are also very useful to have compiler-checked, but still
static variations of functionality. Note that C++ templates are implement-
ed internally simply as (machine) code generation during compilation of the
source code whereas preprocessor statements actually modify the source
code before it is compiled.

As the practice shows, this method should only be used to configure vari-
ants into a code artifact that change only slightly, otherwise the code will
become very hard to understand and compile-time increase significantly.
For more complex variation problems use CODE WEAVING as it provides
„code mangling“ based on well-defined semantics.

Include processors for various languages (Pascal, C, C++), the C++ pre-
processor, C++ templates [Andrescu, 2001 and Vandervoorde & Josuttis,
2002], Lisp’s ’quote feature [Koschmann, 1990]

Code Attributes
In the context of Enterprise JavaBeans development, a bean consists of sev-
eral artifacts: the bean implementation class, the bean’s various interfaces
and an XML configuration file called the deployment descriptor [Voelter
et. al. 2002]. These artifacts are related to each other, for example all opera-
tions defined in the bean’s remote interface have to have a corresponding

Consequences,
Benefits and

Liabilities

Motivation
revisited

Applicability

Known Uses

Motivation

B6-15

method in the bean’s implementation class, and all operations in the inter-
face need to have a couple of security and transaction properties defined in
the deployment descriptor. To be able to deploy the bean into an applica-
tion server, all these different artifacts need to be consistent. Keeping these
things consistent manually is rather hard to do and the Java compiler can-
not help you either. Ideally, you only want to implement one artifact - the
implementation class - manually and the other ones should be generated au-
tomatically, as far as possible.

You have a piece of source code and you need to generate additional arti-
facts based on the code and additional information. While most of the in-
formation you need for the generation is available in the source code, you
need to specify additional information that cannot be directly expressed
with the means of the language, but is closely related to the information
in the code.

Annotate the source code with additional attributes. In most languages
these attributes will be special comments. The code generator parses the
code and the comments and creates the additional artifacts based on this
information.

This pattern typically uses API-BASED GENERATORS for its own implemen-
tation. The big benefit of this pattern is that you can annotate code with
whatever additional information you need as long as the subsequent code
generator „understands“ the annotations. Because the generated code is „de-
duced“ from the source code and its attributes, the different artifacts cannot
easily get out of sync.

Implementation of the attributes varies based on the language/system in
use. In Java, these attributes are typically specified as special comments be-
ginning with a @ (the same way as JavaDoc does it). In .NET, it is possible
to define custom attributes (which are classes themselves) that are compiled
and included in assemblies (.NET’s packaging and distribution artifacts).
The attributes can then be accessed using reflection, and code can be gener-
ated based on this information (for example using CodeDOM or Reflec-
tion.Emit, see [Microsoft, web]).

Using XDoclet, you can provide special JavaDoc comments in your bean
implementation class that are subsequently used by the XDoclet code gen-
erator to define the bean’s remote/local interface, it’s (local) home inter-
face, as well as deployment descriptors for different application servers. By
including the XDoclet execution in the build process, you can easily make
sure that the different EJB artifacts are always in sync.

Problem

Solution

Generated
Code

Generated
Code

Generated
Code

Master Source
+

Attributes

Internal
Representation

Generated
Code

parse generate

Consequences,
Benefits and

Liabilities

Motivation
revisited

B6-16

This pattern should be used whenever there is one „master“ artifact (source
code) and several other artifacts have to be generated, depending on the
master. Attributes are then necessary to support additional information not
expressible with code only.

JavaDoc is one of the most well-known tools that use this approach, al-
though they don’t generate Java source, but documentation HTML.
XDoclet provides a framework where you can define your own „special
comments“, tags, and generate artifacts based on these. Among other
things, it provides tags to solve the EJB problem mentioned in the motiva-
tion section. Microsoft’s .NET [Microsoft, web] has attributes as first-class
citizens. You can define your own attributes and attach them to methods,
classes, etc. They can be accessed using reflection.

Code Weaving
Consider the construction of an application that displays the state of a set
of objects graphically. To separate the data model (the „business objects“)
from the display, the well-known model-view-controller pattern can be
used. However, while it does help to separate rendering code from the data
model, introducing the rendering layer still needs an invasive change into
the model classes; the updateView() operation needs to be called at appropri-
ate times in the model code. And the model needs to have a reference to its
view (or some kind of mediator) to be able to notify the renderer of changes
in its state. Changing the policy that determines when and how often the
view is updated might required additional adaptations to the source code.
This is especially problematic since, while these changes are highly mechan-
ic, they are distributed all over the source code; they cannot easily be local-
ized to one specific location in the code.

You want to provide a way to join different code artifacts in a well-defined
manner. The artifacts to join may just implement different optional appli-
cation features that need to be plugged into an application in a controlled
way, or they might address different, often orthogonal concerns, or as-
pects of a system that cross-cut the primary decomposition hierarchy.

Define different meta-artifacts from which programs can be composed.
Clearly define the semantics and responsibilities of each meta-artifact.
Key to composing artifacts in applications is then a precise definition of
how the different (meta-)artifacts go together and how they influence
each other. A code-weaver will then join the different artifacts according
to these definitions.

Applicability

Known Uses

Motivation

Problem

Solution

B6-17

This pattern describes a general way of weaving pieces of code together.
Such pieces of code can be localized or cross-cutting. The important thing
is that the relationship of the different code artifacts must be clearly defined.

The most prominent member of this kind of tools is AspectJ, a code-weav-
ing based tool for aspect-oriented programming in Java. Note, however,
that AspectJ can also be used as a straight-forward code-generator, not using
many of the AOP-concepts. Another tool is IBM’s Hyper/J which allows
composition and extraction of different code artifacts on Java byte-code lev-
el.

This pattern might sound like „The Great AOP Pattern“. However, aspect-
oriented programming is not the same: semantically, AOP [AOSD, web] is
a part of this pattern, other ways to weave code can be used. And technical-
ly AOP need not necessarily be realized with code generation, there are sev-
eral completely dynamic AOP frameworks (such as Aspect/S Squeak/
Smalltalk).

The model-view-controller problem introduced in the motivation section
is a typical example for a cross-cutting concern, addressed by AOP1. Using
a aspect weaver, you can define an aspect that introduces an association to
a view object into the model classes. You can also advice all the locations in
the code2 that should trigger the a view update. All these specifications are
done in one separate artifact (the aspect) and are woven into the normal
program code by the aspect weaver.

1. The example is actually adopted from the AspectJ tutorial.
2. Actually, you advice points in the execution of the program. But for the sake of

simplicity, assume that these correspond to specific locations in the code (which
they actually do in the vast majority of the cases).

code
weaver

Artifact A

Woven Source
Code

(A,B,C)

Meta-Artifact 1 Meta-Artifact 2 ...

Join-Spec

instanceof

Artifact B Artifact C
m

et
a

le
ve

l
co

nc
re

te
 le

ve
l

Consequences,
Benefits and

Liabilities

Motivation
revisited

B6-18

The code weaver will need some kind of metamodel to work correctly, typ-
ically this metamodel consists of the syntax/semantics of the languages that
are woven. Developing this metamodel and the code-weaver is a lot of work
and is certainly not done in an ad-hoc fashion. You should only invest in
such an approach if you can frame your code generation problem very well
and if you can specify a well-defined semantic relationship among the dif-
ferent artifacts. Then, however, using this approach is very powerful be-
cause the weaver can give you very expressive error messages even at
compile (or weave-) time. Once the weaver completes without errors, the
generated, woven code is very likely to be correct in the sense that it does
what the metamodel specifies.

AspectJ [AspectJ, web], Hyper/J [Hyper/J, web]. Some metamodelling
tools such as GME provide a framework for such an approach [ISIS, web].
Note that compile-time MOPs such as Kava [Kava, web], OpenC++
[OpenC++, web] can also be seen as an instance of this pattern.

Integrating generated code with
non-generated code

After having looked at the different patterns for code generation we now
look at how generated and non-generated code can be integrated. This is im-
portant, since often, one can hear statements such as „I don’t like code gen-
eration because the generated code is hard to read and modify!“. Typically,
this is true. The problem is not so much with layout, formatting and style
- modern generators can create nice looking code. However, it is not easy
to actually understand the generated code, because you don’t want to deal
with the low-level details of the generated code.

In most cases, it should never be necessary to read, let alone modify gen-
erated code. There are other ways of successfully integrating generated and
non-generated code. To get started, let’s first classify the patterns into two
groups with regards to whether the generated code is a separate artifact or
whether it is seamlessly integrated. The following patterns fall into first cat-
egory:

• TEMPLATES + FILTERING

• TEMPLATES + METAMODEL

• FRAME PROCESSING

• API-BASED GENERATOR

• CODE ATTRIBUTES

The second group of patterns are those where the pattern itself mandates
a specific way of integration of generated and non-generated code:

Applicability

Known Uses

Two kinds of
generators

B6-19

• INLINE CODE GENERATION: here the generated code becomes a part
of the non-generated code during compilation.

• CODE WEAVING produces a „merger“ of the different source artifacts
as the result of the weaving process.

This distinction is necessary because following discussion is only appli-
cable to code generation techniques where generated and non-generated
code are two different artifacts, the first category. The following illustration
provides an overview of how to integrate generated and non-generated code
in an object-oriented language and is explained below.

First of all, generated code can call non-generated code contained in li-
braries (case (a)). This is an important use, as it basically tells you to generate
as few code as possible and rely on pre-implemented components that are
used by the generated code. As shown in (b), the opposite is of course also
possible. A non-generated framework can call generated parts. To make this
more practicable, non-generated source can be programmed against abstract
classes or interfaces which the generated code implements. Factories [Gam-
ma, et. al. 1994] can be used to „plug-in“ the generated building blocks, (c)
illustrates this.

Generated classes can also subclass non generated classes. These non-gen-
erated base classes can contain useful generic methods that can be called
from within the generated subclasses (shown in (d)). The base class can also
contain abstract methods which it calls, they are implemented by the gen-
erated subclasses (template method pattern, shown in (e)). Again, factories
are useful to plug-in instances.

Of course it is possible to combine several of the integration techniques
explained here. Generated code can use a non-generated abstract interface
that is implemented by another piece of generated code and accessed throu-
gh a non-generated factory. And in the context of a project, different parts
can be implemented using different means.

Integrating
code

a)

b)

c) d) e)

generated code non-generated code

B6-20

There is one special case I want to look into, that is typically considered
a reason to modify generated code. Imagine the following UML model:

You might want to use a generator that generates class skeletons, inclu-
ding the pre- and postconditions. You want to ensure that the pre- and post-
conditions are always checked, no matter what the developer enters in their
implementation code. A simplistic solution could be the following, using
Java:

// generated
class Account {
 int balance;
 public void increase(int amount) {
 assert(amount > 0); // precondition
 int balance_atPre = balance; // postcondition
 // --- protected area begin ---

 // --- protected area end ---
 assert(balance = balance_atPre + bamount); // postcond.
 }
}

The problem here is that using simple inheritance does not work. You
could check preconditions by calling super.increase(amount) at the beginning of
the implementation subclass’s increase method. But developers could forget
to do so. And checking the postcondition that way is not possible. You
could also genereate operations such as increase_pre(...) and increase_post(...) re-
quiring developers to call these at the beginning of the method in their im-
plementation subclass. But again, they could forget to do so. The easiest
solution is to use a slight modification ofh the template method example
above, using method renaming:

// generated
public abstract class Account {
 int balance;
 public final void increase(int amount) {
 assert(amount > 0); // precondition
 int balance_atPre = balance; // postcondition
 increase_internal(amount)
 assert(balance = balance_atPre + bamount); // postcond.
 }
 protected abstract void increase_internal(int amount);
}

Developers would the overwrite the internal method in their subclass
and use a factory to make sure that Account instances are actually instances
of the implementation subclass, for example AccountImpl.

// generated
class AccountImpl extends Account {
 protected void increase_internal(int amount) {
 balance += amount;
 }
}

A special case -
pre- and postcond’s

Account

increase(int amount) : void

context Account.increase(int amount)
pre: amount > 0
post: balance > balance@pre + amountbalance : int

B6-21

Because the external interface used by clients is still the increase operation,
pre- and postconditions are always checked. There is no way for clients or
implementation developers around that.

As a general guideline, one can say that integration of generated and non-
generated code can be simplified by defining a clear architecture with well-
defined responsibilities and interfaces, which also defines which parts are
generated, and which are not. The Small Components Project [SmallCom-
ponents, web] is an example of such an approach.

How these patterns fit together
This section shows the relationships among the patterns explained

above. Let us first look at an overview:

There are two fundamentally different basic approached: template-based
generation and API-BASED GENERATORS. TEMPLATES + FILTERING gener-
ates code directly from the model specification and templates, combined by
filters and rules. TEMPLATES + METAMODEL can be seen as an extension of
TEMPLATES + FILTERING since the metamodel and its instances are „put in
the middle“, to decouple the templates from the model syntax.

In the realm of API-based approaches, the direct API-BASED GENERA-
TORS is obviously the most fundamental pattern. CODE ATTRIBUTES is
mainly concerned with how generation information is specified, namely in
terms of code attributes. However, it does not say anything about how the
target code is generated. In most tools (.NET, XDoclet) an API-based ap-
proach is used. CODE WEAVING is mainly concerned with how the different
aspects are specified and how they can be joined rather than saying how the
weaving should take place. Typically, the different code artifacts are parsed,
woven on AST level using an API-based approach and then unparsed. An
alternative approach is of course based on pure text processing using regular
expressions and the like. INLINE CODE GENERATION can also use API-based
approaches, although typically, simple text processing and „printf-genera-
tion“ is applied. Last but not least, FRAME PROCESSING can also use API-
based approaches; internally, frame instances are based on the syntax/meta-
model of the target language.

TEMPLATE-BASEDAPI-BASED

TEMPLATE +
FILTERING

FRAME
PROCESSING

API BASED

INLINE CODE
GENERATION

CODE ATTRIBUTES CODE WEAVING
TEMPLATE +
METAMODEL

can use
can use

can use

can use

Template based
approaches

API-based techniques

B6-22

The following table presents some categorization/overview over the pat-
terns in this language.

Example Technologies
After discussing the different patterns in an abstract fashion above, let’s

now look at some concrete examples. Note that because of space limita-
tions, we cannot go into too much detail here. For more detailed examples
see the slides on code generation at my web page ([Voelter, slides]).

Based on the overview of the code generation applicabilities in the appli-
cation development lifecycle from the introduction, we now show where
and how these technologies are used today. The following table presents an
overview.

Template +
Filtering

Template +
Metamodel

Frame
Processors

API-based

Inline Code
Generation

Code
Weaving

Code
Weaving

Code
Attributes

generated/
ungenerated

code

separate

separate

separate

separate/
integrated

integrated

separate

integrated

initial
learning

complexity

simple

high

high

simple/high

simple

simple

high

suitability
for complex

uses

not very
good

very good

very good

depends on
abstraction
level of API

not very good

good

good

flexibility

not very
good

very good

very good

depends on
abstraction
level of API

good

not very good

good

template /
API

template

template
(plus m-

model API)

template

API

template/API

template/API

API

B6-23

We will now provide a mapping from the patterns to concrete technol-
ogies and also show some very brief examples of their use.

Examples for Templates + Filtering

The simplest example for the pattern is to use XML-based specifications
and XSLT-based filtering. In this case, the XSLT contains source code as the
text output. The usual XSLT tags specify the filers, or application rules. The
following piece of source code specifies, in XML, a Person class with two at-
tributes name and age:

<class name="Person" package="de.voelter.test">
 <attribute name="name" type="String"/>
 <attribute name="age" type="int"/>
</class>

The product of the code generation should be a Java class that looks like
the following:

package de.voelter.test;

public class Person {
 private String name;
 private int age;
 public String get_name() {return name;}
 public void set_name(String name) {this.name = name;}
 public int get_age() {return age;}
 public void set_age(int age) {this.age = age;}
}

To generate code from this specification, one can create an XSLT docu-
ment that selects each class tag from the XML document and creates a Java
class body, then going on to select each attribute and generating a Java mem-

Model
Transformation

(Source) Code
Generation

Code
Transformation

Byte Code
Creation/Modif.

Template +
Filtering

Template +
Metamodel

Frame
Processors

API-based

Inline Code
Generation

XML+XSLT
Fuut-je

b+m
Generator
Framework

OpenC++
OpenJava

Code
Weaving

Preprocessors
C++ Templates

XMI APIs

XML+XSLT

CompostJenerator

AspectJ
AspectC++

BCEL
.NET CodeDOM,
Reflection.Emit

HyperJ

ANGIE
XVCL

Code
Weaving

Code
Attributes XDoclet .NET

Specification

Resulting Code

B6-24

ber variable as well as getter and setter operations. Java source code snippets
are printed bold.

<xsl:template match="/class">
 package <xsl:value-of select="@package"/>;
 public class <xsl:value-of select="@name"/> {
 <xsl:apply-templates select="attribute"/>
 }
</xsl:template>

<xsl:template match="attribute">

 private <xsl:value-of select="@type"/>
 <xsl:value-of select="@name"/>;

 public <xsl:value-of select="@type"/>
 get_<xsl:value-of select="@name"/>() {
 return <xsl:value-of select="@name"/>;}

 public void set_<xsl:value-of select="@name"/> (
 <xsl:value-of select="@type"/>
 <xsl:value-of select="@name"/>) {
 this.<xsl:value-of select="@name"/> =
 <xsl:value-of select="@name"/>; }

</xsl:template>

As can be seen even from this simple example, the XSLT syntax is not
very readable, even for simple problems this approach becomes complex
quickly. And usually, you‘ll need a pretty printer to clean up and correctly
indent the generated code. Also, you have to deal with some XML process-
ing issues, for example, you cannot simply use a space because that is ignored
by XML/XSLT, you might need to use XML entities. The biggest advan-
tage of this approach is that you don‘t need special tools. For more details,
see Craig Cleaveland‘s book [Cleaveland, 2001].

Examples for Template + Metamodel

Let’s look at the following example from a system that generates compo-
nent infrastructures for embedded systems. The following is an example
model a system consisting of a couple of components and uses the b+m
Generator Framework [b+m, web[.

Note the custom-stereotypes applied to the classes. These stereotypes
have a well-defined semantics in the respective domain:

XSLT
Generator
Template

The Model

<<Component>>
FileWriter

<<ServiceInterface>>
FileWriterServices

+openFile(name:String):handle
+write(data : byte[])
+close(h : handle)

<<Component>>
ThreadPool

<<Component>>
XMLSerializer

threadPool

serializer

<<resource>>

<<resource>>
<<configparam>>
rootDir: String

B6-25

• A component is a special kind of class that is instantiated an controlled
by a container.

• A component has config parameters that need to be supplied by a con-
fig file when the container starts up.

• A component provides services in the form of a set of operations.
• And a component requires resources in order to run properly. The

container needs to provide them when it starts up.

The next illustration shows the custom-made metamodel that represents
these components and the relationships. The metaclasses are subclasses of
the standard MOF metaclasses available in the generator tool.

When the parser analyzes the model (it is represented as an XMI file) it
instantiates the metamodel classes based on the stereotypes. The metaclasses
shown above can contain custom functionality such as constraint checking.
We provide the interface Checkable in the metamodel. The following shows
the code that needs to be implemented to ensure that ConfigParams can only
be attributes of type String.

public class ConfigParam
 extends Attribute implements Checkable {

 public void checkConstraint() {
 if (getType() != Type.STRING) {
 throw new DesignError(„ConfigParams have to“+
 „be Strings“);
 }
 }

}

We can now write templates that generate code by iterating over the
metamodel an accessing properties of the metaclasses. The following is a
simple template. The template control language code is rendered in bold.

<<FOREACH Component AS c IN Model {>>

 public class <<c.Name>> extends ComponentBase {
 <<FOREACH ConfigParam AS p {>>
 private String <<p.Name>>;
 public void configure_<<p.Name>>(String p) {
 this.<<p.Name>> = p;
 }

 <<}>>

 }

<<}>>

Metamodel

Custom Metamodel Classes

Class Operation Association Attribute

Component

checkConstraint()

<<interface>>
Checkable

checkConstraint()

ServiceOp Resource ConfigParam

checkConstraint()

Template

B6-26

It is ineresting to see that, in the template, we access the Name property
of the Component metaclass, as well as the ConfigParams property. These need
to be defined in the corresponding metaclass to be accessible from within
the templates. The following shows an example definition of the Component
metaclass.

public class Component extends Class {
 public String getName() {
 return super.getName();
 }
 public Collection getConfigParams() {
 // get all attributes
 // check which of them are instanceof ConfigParam
 // return these
 }

}

Example for Frame Processing

This example uses the ANGIE processor [d-s-t-g, web]. Consider the gen-
eration of simple member variables into a system. The declarations should
in the end look somewhat like the following:

short int aShortNumber;

This little piece of code contains already a significant number of variable
aspects, such as the name of the variable, the type (short, int, long) depend-
ing on the required range of values, an optional initialization parameter, etc.
The following piece of code shows a frame that takes care of this:

.Frame GenNumberElement(Name, MaxValue)

 .Dim vIntQual = (MaxValue > 32767) ? "long“ : "short"
 .Dim sNumbersInitVal

 <!vIntQual!> int <!Name!> <? = <!sNumbersInitVal!>?>;

.End Frame

The first line declares the frame - this is basically a constructor with two
parameters, the name of the number element and the max value. Line two
determines based on the max value if we need a short or a long int. Line three
defines a globally accessible slot (whose value is supplied optional by the
current frame’s environment when it is instantiated) whereas the fourth
line is the so-called host-code that contains embedded (target) code and a
(optional) slots: The <! ... !> syntax accesses the content of the slot inside
it whereas the <? ... ?> generates the code only when the slot inside actu-
ally has a value. The following statement instantiates the frame:

.myNumbElm = CreateFrame("GenNumberElement",
 "aShortNumber", 100)

Note that this does not yet create any code. It only instantiates the frame
and stores it in the internal frame instance repository. For example the val-
ue of the sNumbersInitVal slot is not yet bound and can still be changed!

A Frame

Frame
Instantiation

B6-27

When calling

.Export(myNumbElm)

the instantiated frame is exported. Instead of exporting it (which actually
generates the source code), this frame instance can also be used as a value for
slots in other frame instances, building a hierarchy of instantiated frames.
For example, consider the following frame that generates a Java class, Java
code in bold again:

.Frame ClassGenerator(fvClassName)
 .Dim fvMembers = CreateCollection()
 public class <!fvClassName!> {
 <!fvMembers!>
 }
.End Frame

This frame takes the class name as a parameter and also defines a multi-
valued slot inside it (a „member“). An external script, or another frame, can
now add values to this collection. For example, the number elements from
before.

.Static myGeneratedClass As ClassGenerator

.Function Main(className)
 .myGeneratedClass =
 CreateFrame(„ClassGenerator",className)
 .Add(myGeneratedClass.fvMembers,
 CreateFrame(„GenNumberElement",“i“, 1000))
 .Add(myGeneratedClass.fvMembers,
 CreateFrame(„GenNumberElement",“j“, 1000000))

.End Function

Exporting myGeneratedClass will output a Java class with two members, i
and j.

Examples for API-based generators

Let’s first take a look at the .NET code generation facility, CodeDOM.
Consider generating the following C# code:

public class Vehicle : object {
}

 This piece of code is generated by the following piece of (yet another)
piece of C# code:

CodeNamespace n = ...

CodeTypeDeclaration c = new
 CodeTypeDeclaration („Vehicle");

c.IsClass = true;
c.BaseTypes.Add (typeof (System.Object));
c.TypeAttributes = TypeAttributes.Public;
n.Types.Add(c);

The generating C# is actually still independent of the language in which
the generated code is written as it operates on top of the semantics of the
MSIL. Outputting of the code is done with an instance of the ICodeGenerator
interface which can be implemented for various languages. The generating

Composition

.NET
CodeDOM

B6-28

program can even determine which language features are supported by the
targetted source language:

ICodeGenerator cg = // obtain code generator for
 // intended target language

if (cg.Supports(GeneratorSupport.
 MultipleInterfaceMembers)) {
 ...
}

if (cg.Supports(GeneratorSupport.DeclareValueTypes)) {
 ...
}

Outputting the code is also very simple. The following operation is pro-
vided by the code generators:

void GenerateCodeFromNamespace(CodeNamespace e,
 TextWriter w, CodeGeneratorOptions o);

Another way of generating code in .NET is using the Reflection.Emit
package. The nice thing about this one is that it does not generate source
code, instead it directly creates MSIL code in the form of readily executable
assemblies. .NET uses this feature extensively to on-the-fly generate client-
side proxies for remote objects. Let’s look at the following piece of C# code.
First you need to construct the name for the assembly:

AssemblyName an = new AssemblyName();
an.Name = „MyOwnAssembly";

Then you create the assembly itself, in the current application domain:

AssemblyBuilder abuilder =
 Thread.GetDomain().DefineDynamicAssembly(an,
 AssemblyBuilderAccess.Save);

Once this is done, you can create a module in the assembly and create a
type, here we create a class called ExampleClass.

ModuleBuilder module = abuilder.
 DefineDynamicModule(„Example“,„Example.DLL“);

TypeBuilder myClass = module.
 DefineType(„ExampleClass", TypeAttributes.Public);

You can then subsequently add a method to this class, in this case one
that takes two ints and returns another one.

Type[] params = new Type[2];
params[0] = typeof(int);
params[1] = typeof(int);
Type returnType = typeof(int);

MethodBuilder addMethod = myClass.DefineMethod
 („Add",MethodAttributes.Public | MethodAttributes.
 Virtual,returnType,paramTypes);

Last but not least you can also add real implementation code - however,
this needs to happen on the IL level, not with source code:

ILGenerator ilg = addMethod.GetILGenerator();
ilg.Emit(OpCodes.Ldc_I4, 0);
....

.NET
Reflecton.Emit

B6-29

Examples for Inline Code Generation

The following examples are probably really well known, they cover the
C/C++ preprocessor. The most well-known statement is probably the
#include statement which textually includes other files:

#include „iostream.h“

The preprocessor can also be used for conditional evaluation of code, as
in the following example: (taken from the ACE libraries)

#if defined (ACE_HAS_TLI)
static ssize_t t_snd_n (ACE_HANDLE handle, const void
 *buf, size_t len, int flags, const ACE_Time_Value
 *timeout = 0, size_t *bytes_transferred = 0);
#endif /* ACE_HAS_TLI */

The above piece of code is only compiled if the ACE_HAS_TLI flag is
defined (which can be interpreted as consituting a true value whereas unde-
fined can be seen as false). This is either done in another part of the code us-
ing a

#define ACE_HAS_TLI

statement, or as a define that is passed to the compiler. However, the C/
C++ preprocessor can also be used for defining constants as in

#define MAX_ARRAY_SIZE 200
#define AUTHORNAME MarkusVoelter

or to define simple macros that are evaluated at compile time. Note that
there is no syntax checking available when defining the macro, it is simply
textually expanded. The compiler then syntax-checks the resulting code.

#define MAX(x,y) (x<y ? y : x)
#define square(x) x*x

A much more powerful means for inline code generation, again in C++,
is based on template metaprogramming. Here the fact is exploited that the
C++ template evaluation mechanism is a full-fledged functional program-
ming language (with an awkward syntax, though). For example, the follow-
ing templates constitute a compile-time if.

template<bool condition, class Then, class Else>
struct IF {
 typedef Then RET;
};

//specialization for condition==false
template<class Then, class Else>
struct IF<false, Then, Else> {
 typedef Else RET;
};

This can be used, for example, to determine the type of an expression at
compile time.

C/C++
preprocessor

Template
Metaprogramming

B6-30

The following is a (admittedly useless) example:

const int a = 10000;
const int b = 1200;

void main() {
 IF<(a+b<32000), short, int>::RET i;
 i = a+b;
}

This automatically uses the smallest integer type possible to hold the
sum of a and b. Note that changing the values of a and b automatically ad-
justs the type of i to be large enough to hold the sum. Using this technique,
you can build compile-time linked lists, provide compile-time type infor-
mation, etc. For details see Andrescu’s book.

A last example is the calculation of a factorial at compile time.

struct Stop
 { enum { RET = 1 };
};

template<int n>
struct Factorial {
 typedef IF<n==0, Stop, Factorial<n-1> >::RET
 PreviousFactorial;

 enum { RET = (n==0) ? PreviousFactorial::RET :
 PreviousFactorial::RET * n };
};

void main() {
 cout << Factorial<3>::RET << endl;
}

Examples for Code Attributes

Let’s first look at the XDoclet example. The following is a bean imple-
mentation class (a stateless session bean):

/**
 * @ejb:bean type="Stateless"
 * name="vvm/VVMQuery"
 * local-jndi-name="/ejb/vvm/VVMQueryLocal"
 * jndi-name="/ejb/vvm/VVMQueryRemote"
 * view-type="both"
 */
public abstract class VVMQueryBean

 /**
 * @ejb:interface-method view-type="both"
 */
 public List getPartsForVehicle(VIN theVehicle) {
 return super.getPartsForVehicle(theVehicle);
 }
}

The @ejb:bean tag in the comment area for the class specifies that this class
should be a Stateless Session Bean, its name should be vvm/VVMQuery and
the name of the remote home interface in JNDI should be /ejb/vvm/VVM-
QueryRemote. The view-type attribute specifies that the bean should have a local

XDoclet

B6-31

and a remote interface. In the method’s comment, we specify that this
method should be available in the interface(s) of the bean. view-type=“both“
specifies that it should be visible in both interfaces.

Running the XDoclet tool agains this class source generates the remote
interface, the local interface, the home interface and the XML deployment
descriptor. Running the tool can be integrated into Java’s ant build tool, an
automated generation of the code as part of the build process is possible
with this approach.

Writing custom tags (or attributes) is rather simple. The nice thing about
XDoclet is that is implemented on top of JavaDoc. JavaDoc handles all the
parsing of the code and the attribute extraction.

In the .NET world, it is possible to attach attributes to interfaces, classes,
members, and methods. .NET uses this facility for several „internal“ uses,
for example, classes can be marked to be Serializable, or a method in a class
can be marked to be accessible as part of a webservice (Webmethod).

Associating an attribute with a code entity you just specify the attribute
in the code. The following example declares the class SomeClass to be serial-
izable.

[Serializable]
public class SomeClass {
 // ...
}

Another example is the webmethod-declaration:

public class MyWebservice : System.Web.Services.WebService {
 public void init() {
 // ...
 }
 [WebMethod]
 public int add(int a, int b) {
 return a+b;
 }
}

It is easily possible to define your own attributes. You have to inherit
from the System.Attribute class and specify the AttributeUsage attribute for the
class:

[AttributeUsage(AttributeTargets.Method, AllowMultiple=false)]
public class Transaction : System.Attribute {
 private string txType;
 public Transaction(string txtp) {
 txType = txtp;
 }
}

You can now use this attribute on all methods (AttributeTargets.Method),
such as here:

public class MyComponent : ComponentBase {
 [Transaction(„required“)]
 public void someMethod(...) {
 // ...

.NET

B6-32

 }
}

At runtime, e.g. a container that runs the above component, can use
.NET reflection to find out about the value of the Transaction’s txType at-
tribute. The container can then use .NET’s Reflection.Emit facility to code-
generate a proxy than handles transactions.

Examples for Code Weaving

Let’s look at the simplest of all AspectJ examples, namely the introduc-
tion of logging output into normal Java code. The following is the aspect
that defines this an aspect that prints out log messages whenever an opera-
tion on

aspect Logger {

 public void log(String className, String methodName) {
 System.out.println(className+“.“+methodName);
 }

 pointcut accountCall(): call(* Account.*(*));

 before() calling: accountCall() {
 log(thisClass.getName(), thisMethod.getName());
 }

}

This aspect specifies that before the calling of all operations on the Ac-
count class. After running the aspect weaver with the Account (and other)
classes, the following code results:

public class SomeClass {
 private Account someAccount = ...;

 public someMethod(Account account2, int d) {
 System.out.println(„SomeClass.someMethod“);
 someAccount.add(d);
 System.out.println(„SomeClass.someMethod“);
 account2.subtract(d);
 }

 public void anotherMethod() {
 System.out.println(„SomeClass.anotherMethod“);
 int bal = someAccount.getBalance();
 }

}

Another example of code weaving is OpenC++ [OpenC++, web].
This is an example of a compile-time meta object protocol (MOP). It is im-
portant to emphasize „compile-time“, because typically, MOP’s are imple-
mented dynamically as a means for reflection [Kiczales et. al., 1991] and do
not use any code generation at all. In principle, the OpenC++ compiler
works the following way: first you write a meta-level program, which spec-
ifies how to translate or analyze a C++ program. It is written in C++.
Then the meta-level program is compiled by the OpenC++ compiler and
linked to the compiler itself. The resulting compiler translates or analyzes
a source program as the meta-level program specifies. The meta-level pro-
gram is written conforming to the OpenC++ MOP which exposes the in-

AspectJ

OpenC++

B6-33

ternal structure of the compiler with object-oriented abstraction. The
following illustration shows this process.

Take a look at the following OpenC++ (base-level) source code:

class Point {
 ...
};

metaclass MyMetaClass Point;

The important statement - and the only difference to ordinary C++ - is
the one in the last line, where the metaclass MyMetaClass is assigned to the
class Point. To make this program translatable, we have to define the meta-
class. This class contains operations that specify how the compiler translates
the base-level source. For example, the following operation (which could be
a member of MyMetaClass) renames all members of its instances (i.e. base-lev-
el classes with MyMetaClass associated as metaclass) which are called f to g.

void MyClass::TranslateClass(Environment* e) {
 Member m;
 LookupMember("f", m);
 m.SetName(Ptree::Make("g"));
 ChangeMember(m);
}

Several other utility functions can be used to alter the instances of the
current metaclass, such as RemoveClass(), ChangeName(Ptree* new_name), Append-
BaClass(Class* c, int specifier = Public) or AppendMember(Member& added_member, int
specifier = Public).

We can also work on a different level of granularity, e.g. on the level of
method bodies. The following operation sets all method bodies to be emp-
ty:

void MyClass::TranslateMemberFunction(Environment* env,
 Member& m) {
 m.SetFunctionBody(Ptree::Make("{}"));
}

Usage Examples
This section just briefly wants to introduce some concrete example

projects where the respective technologies have been used. I cannot provide
examples for all technologies, so if you know of other examples, please
contact me so that I can integrate them here.

Base Level
Program (.cc)

Meta Level
Program (.cc)

OpenC++
compiler C++ compiler .so

OpenC++
compiler C++ compiler .o

dynamic load

B6-34

I have no concrete project examples for this approach, I know, however,
that several people and companies are working with XML+XSLT. Also,
the FUUT-je tool [Bronstee, web] has been used in real projects at IBM, as
far as I know.

The b+m Generator Framework [b+m, web], as an example of the TEM-
PLATES + METAMODEL approach has been used by b+m in several projects
in a J2EE context, typically generating EJBs from models. I am using this
approach for the automatic generation of component containers [Voelter,
et. al., 2002] in a project about component infrastructures for embedded sys-
tems [SmallComponents, web]. The approach is also currently evaluated in
the context of the FI 2010 initiative [FI2010, web] for the generation of
IDL-like interfaces, as well as dummy implementations and CORBA server
apps from UML models.

I have no first hand experience with frame based technologies. As long
as nobody told me about projects using it (I know many exist, I just don’t
know the people personally), please look at the homepages of the respective
tools, they have case studies and success stories online: [d-s-t-g, web], [Ne-
tron, web], [XVCL, web].

Let’s pick three examples. The Jenerator tool [Voelter, web] has been
used in several project, for example to generate proxy implementations (for
security checking, e.g.) based on Java interfaces. The BCEL library is widely
used throughout the industry, e.g. it is used in the Xalan XSLT processor,
the Kava reflective Java implementation, the Ozone OO database, AspecJ,
and more. For imformation look at the [BCEL projects, web] page. The
.NET Reflection.Emit package is used for example by the .NET CLR itself
to on-the-fly-generate remoting proxies. Last but not least, the RECORD-
ER tool [Uni-Karlsruhe, web] is used in an EAOP tool.

The C/C++ preprocessor is used everywhere, anyway. A particularly
extensive example can be found in the ACE libraries [Schmidt, web]. Tem-
plate metaprogramming can be seen put to great use (not just explained, also
used!) in Andrescu’s book [Andrescu, 2001], inside the Boost library
[BOOST, web] or as part of the Generic Matrix Computation Library
[GMCL, web].

Attributes are used everywhere in .NET, for example in the context of
remoting, webservices, serialization, etc. Tools such as XDoclet [XDoclet,
web] are used to generate EJB artifacts, or mapping files for the Hibernate
O/R mapper tool.

AspectJ, probably the most prominent example of code weaving is used
in more and more projects. I have used it to „inject“ log statements into nor-
mal Java code for debugging purposes in several projects.

TEMPLATES+
FILTERING

TEMPLATES+
METAMODEL

FRAME

PROCESSING

API-BASED

GENERATORS

INLINE CODE

GENERATION

CODE

ATTRIBUTES

CODE

WEAVING

B6-35

Acknowledgements
First of all, I want to thank my EuroPLoP shepherd Arno Haase. He has

provided many very useful comment on the paper, especially (but not only)
with regards to structuring, categorization and overviews. Thanks!!

Second, I want thank all the pariticpants of the EuroPLoP 03 writer’s
workshop B, although some of their comments were rather harsh :-)

Several people have reviewed earlier versions of this paper and provided
many useful comments. Ulrich Eisenecker provided a lot of very helpful
comments regarding generative programming, product lines and frame pro-
cessing. Alexander Schmid provided a load of useful comments and discus-
sions on the topic, as well as on the patterns and their form. Last but not
least, Uwe Zdun provided a wealth of very useful comments on language,
style and of course, content and pattern writing. Thanks to all of you!

References
[Andrescu, 2001] Andrei Alexandrescu, Modern C++ Design, Addison-Wesley
2001
[Apache, web] Apache Group, The Byte Code Engineering Library,

jakarta.apache.org/bcel/index.html
[AspectJ, web] The AspectJ team, Aspect J homepage, www.aspectj.org
[b+m, web] b+m AG, Generator Framework, www.architectureware
[Basset, 1996] P. Basset. Framing Software Reuse: Lessons From the Real
World.

Prentice Hall, 1996.
[BCEL projects, web] Apache, BCEL projects, jakarta.apache.org/bcel/projects.html
[BOOST, web] Boost group, The BOOST C++ library, www.boost.org/
[Bronstee, web] Bronstee, FUUT-je, www.bronstee.com/spider/AboutF-
uutje.php
[Cleaveland, 2001] Craig Cleaveland, Program Generators with XML and Java,

Prentice-Hall, 2001
[Czarnecki & Eisenecker, 2000] Czarnecki & Eisenecker, Generative Programming,

 Addison-Wesley 2000
[d-s-t-g, web] Delta Software Technology GmbH, ANGIE, www.d-s-t-g.de
[FI2010, web] DoD, Foundation Initiative 2010, www.fi2010.org
[Gamma et. al. 1994] Gamma, Helm, Johnson, Vlissides, Design Patterns,

Addison-Wesley, 1994
[GMCL, web] K. Czarnecki, GMCL - A Case Study in Generative Pro

gramming, www-ia.tu-ilmenau.de/~czarn/gmcl/
[Hyper/J, web] IBM, Corp., Hyper/J - Multi-Dimensional Separation

of concerns for Java, www.research.ibm.com/
hyperspace/HyperJ/HyperJ.htm

[ISIS, web] Vanderbilt ISIS, The Generic Modelling Environment,
www.isis.vanderbilt.edu/Projects/gme/default.html

[Kava, web] Newcastle University, Reflection Page, www.cs.ncl.ac.uk/
old/research/dependability/reflection/

[Kennedy Carter, web] Kennedy Carter, iUML, www.kc.com
[Kiczales et. al. 1991] Kizcales, de Rivieres, Bobrow, The Art of the Metaobject

Protocol, MIT Press, 1991

B6-36

[Koschmann, 1990] Koschmann, The Common Lisp Companion, Wiley, 1990
[Metacase, web] Metacase Consulting, MetaEdit+, www.metacase.com/
[Microsoft, web] Microsoft Corp, .NET Framework, www.microsoft.com/net/
[Netron, web] Netron, Fusion, www.netron.com/products/fusion/
[OMG,specs] OMG, Modelling and Metadata Specs page, www.omg.org/

technology/documents/modeling_spec_catalog.htm
[OpenC++, web] Chiba, OpenC++, www.csg.is.titech.ac.jp/~chiba/
openc++.html
[Parnas, 1976] D.L. Pamas, On the Design of Program Families, IEEE

Transactions on Software Engineering, March, 1976
[Riehle, 2001] Riehle et. al., The Architecture of a UML VM, www.riehle.org/

computer-science-research/2001/oopsla-2001.html
[Schmidt, web] Doug Schmidt, The ADAPTIVE Communications

Environment,www.cs.wustl.edu/~schmidt/ACE.html
[SmallComponents, web] Voelter, SmallComponents, www.voelter.de/smallComponents
[Uni Karlruhe, web] Univerity of Karlsruhe, COMPOST/Recorder,

www.info.uni-karlsruhe.de/~compost/
[Voelter, slides] Voelter, Program Generation, A Survey of Techniques and Tools,

http://www.voelter.de/data/presentations/
ProgramGeneration.zip

[Voelter, web] Voelter, Gaertner, Jenerator - Generative Programming for
 Java, www.voelter.de/data/pub/jeneratorPaper.pdf

[Vandervoorde & Josuttis, 2002] Vandervoorde, Josuttis, C++ Templates - The Complete
Gui

de, Addison-Wesley 2002
[Voelter, et. al., 2002] Voelter, Schmid, Wolff, Server Component Patterns -

Component Infrastructures illustrated with EJB, Wiley 2002
[XDoclet, web] XDoclet Team, XDoclet - Attribute Oriented Programming,

xdoclet.sourceforge.net
[XVCL, web] Sourceforge, XML Variant Configuration Language

fxvcl.sourceforge.net/

