
Patterns for Managing Shared Objects
in Groupware Systems

Stephan Lukosch and Till Schümmer

University of Hagen
Department for Computer Science

58084 Hagen, Germany
{stephan.lukosch, till.schuemmer}@fernuni-hagen.de

Abstract

Groupware is a technology that facilitates teamwork. Developing groupware is a
difficult and time-consuming task. To enable collaboration, groupware applications
have to share data. Sharing data is among the main obstacles during groupware
development. There exist many groupware platforms which offer programming ab-
stractions to relieve developers from recurring issues. However, these platforms have
one problem. They are too prescriptive. To assist developers in the development
process of groupware applications, we provide a pattern language that offers proven
solutions for recurring issues and allow developers to reuse them in the intended
context.

1 Introduction

An increasing number of applications are currently designed for the use of more than
one user. Examples are multi-player games, web-sites that foster interaction between the
audience, applications for mobile interaction between users, systems that foster collabora-
tive learning, or peer-to-peer applications to name only a few application areas. All these
systems support group interaction. Groupware supports communication, coordination,
and cooperative work between team members. A well-known definition of groupware was
stated in [11]:

Groupware are computer-based systems that support groups of people en-
gaged in a common task (or goal) and that provide an interface to a shared
environment.

Developing groupware applications is a difficult and time-consuming task. Apart
from the actual task of the application, e.g. editing texts or spreadsheets,

– network connections between the collaborating users have to be established,

Copyright c© 2004 by Stephan Lukosch & Till Schümmer.

– parallel input from many users has to be handled,

– specific group functions have to be included, and

– shared data has to be managed.

All the difficulties relate to the management of shared objects (or more general shared
data). We define a shared object as an object that is used by more than one user. The
usage may be at the same time (synchronous) or at different points in time (asynchronous).

To communicate about the shared objects (and exchange information about the shared
object’s state), the different users have to connect their clients (the computer that they
are using) using a network connection.

Since they work on different machines, each user will be able to access the input devices
(often at the same point in time). Thus, the control flow within the application gets much
more complicated. Unlike in traditional applications where one user changes the shared
data at a time (triggered by one input device) systems based on shared objects can have
multiple requests for changing the shared object’s state at the same time. Maintaining
consistency becomes an critical issue in such situations.

Related to the problems raised by the multiple control flows is the problem of making
the users aware of other users’ activities. In traditional single user applications, data
changes are initiated by only one user. Thus it is easy to understand for the user, why
data changed (if we ignore annoying auto-changing data like in Microsoft Office, where so-
called “Assistants” permanently mess up the user’s data....). In groupware applications,
it is intended that the shared objects change without the local user’s initiative.

The patterns in this paper complement other patterns proposed for higher level group-
ware design. Tab. 1 provides an overview about how the current set of patterns in our
work can be organized.

Our patterns follow the pattern structure outlined in the Oregon Software Develop-
ment Process [43]. While using the pattern names in software labs and in our group, we
noticed that it was easier for all persons working with patterns to remember more funny
pattern names. Thus, we use more funny pattern names, which are followed by a more
accurate AKA name. The names are followed by an image which gives a metaphoric
description of the pattern and a small pattern map showing the position of the actual
pattern in context of the pattern language. The images are followed by the intent and
the context of the pattern. All these sections help the reader to decide, whether or not
the following pattern may fit into his current situation.

Then follows the core of the pattern composed of the problem and the solution state-
ment separated by a scenario and a symptoms section. The scenario is a concrete de-
scription of a situation where the pattern could be used, which makes the tension of the
problem statement tangible. The symptoms section helps to identify the need for the
pattern by describing aspects of the situation more abstract again.

After the solution section, the solution is explained in more detail and indications for
further improvement after applying the pattern are provided. The participants section
explains the main components or actors that interact in the pattern and explains how
they relate to each other. The rationale section explains, why the forces are resolved
by the pattern. Unfortunately, the application of a pattern can in some cases raise new
unbalanced forces. These counter forces are described in the section labelled danger spots.

Pattern (collection) Description Reference

Open Communities A pattern language for sup-
porting virtual communities
in the process of integrating
new members.

Shepherded at Euro-
PLoP2004 (also in this
volume).

More than 1000 words Pattern for integrating
graphical artifacts in com-
munication.

Pattern discussed at
CHI2003.

Room Support communication and
group management.

Pattern discussed at
CSCW2002.

The Public Privacy Patterns for Relationship
Management in Collabora-
tive Systems.

Discussed and shep-
herded at CHI2004.

GAMA - A Pattern
Language for Computer
Supported Dynamic
Collaboration

Patterns for creating dy-
namic teams based on the
awareness of other users in
the system.

Shepherded at Euro-
PLoP2003 [42].

Activity Awareness
Patterns

Patterns for informing users
about other users’ activities
in a shared workspace.

Shepherded at Euro-
PLoP2002.

Patterns for managing
shared objects.

Technology centered pat-
terns for concurrent use of
shared objects (in central-
ized and distributed environ-
ments).

In this paper.

Table 1: Overview about low-level and high-level patterns

The pattern map in fig. 1 shows the patterns of this language and the relations between
the patterns. The patterns in the grey boxes show patterns from other pattern languages
that are related to our patterns. If a pattern A points to another pattern B, pattern A
is important as context for the referred pattern B. One can start exploring the pattern
language by reading Centralized Objects→2.1.1. One reasonable sequence through the
pattern language can then for instance be Centralized Objects→2.1.1→Replicate
for Speed→2.1.2→Update Your Friends→2.2.1→Believe in Your Group→2.3.1.

The patterns are:

Centralized Objects→2.1.1: Allow users to access data objects remotely.

Replicate for Speed→2.1.2: Allow users to access data objects without network delay.

Replicate for Freedom→2.1.3: Provide wire- and waveless data access.

Guess What I Need→2.1.4: Reduce network communication costs and response time by
replicating only selected shared objects.

Update Your Friends→2.2.1: Distribute local state changes to the other users to achieve
consistency.

Mediated Updates→2.2.2: Minimize the administrative load for updates by using a cen-
tral instance that dispatches the updates.

Believe in Your Group→2.3.1: Change data optimistically and undo the operations if
users performed conflicting changes.

Don’t Trust Your Friends→2.3.2: Allow only one user at a time to change the same
data object.

Detect A Conflicting Change→2.3.3: Detect conflicting changes.

Lovely Bags→2.3.4: Use bags for storing concurrent objects because they provide the
best concurrency behavior.

The following sections describe each pattern in more detail.

consistency

avoid parallel

changes

reduce

administrative

overhead

support offline work

selective replication

propagate changes

after reconnection

support interactive

HCI

data modeling

directly propagate

changes

data structure to

reduce conflicts

consistency

handle parallel

changes

Caching

Believe in Your
Group

Change Warning

Recoverable
Distributor

Don't Trust Your
Friends

Centralized Objects

Guess What I Need

Mediated Updates

Update Your
Friends

Detect A Conflicting
Change

Optimistic
Transaction

Acknowledgement

Mediator

Memento

Roll Forward

Replicate for Speed

Lovely Bags

Object Manager

Replicate for
Freedom

RollbackCommand

Blackboard

Figure 1: Pattern map

2 The Pattern Language

2.1 Data Sharing

2.1.1 Centralized Objects

Allow users to access data objects remotely.Intent

You are developing a groupware application. Now you are thinking ofContext
how to organize the data so that many users can work with it.

4 4 4

To enable collaboration users must be able to share the data.Problem

Think of a group of researchers who want to exchange new researchScenario
ideas. They meet at a conference and present their ideas (on a large
screen that sets a group focus). After exchanging first ideas, they arrange
the research concepts on a blackboard to identify relations between the
different research ideas.

Now think of the same group acting in the virtual space. How can such
a group share a common focus (on the presentation) or collaboratively
arrange the different research concepts without physically meeting at the
same place?

You should consider to apply the pattern when . . .Symptoms

– users have to meet in person to collaborate because they don’t know
how to exchange data.

– users with a permanent network connection want to collaborate in
an interactive application but cannot share data.

– users cannot establish a common ground, i.e. get an understanding
of the shared data.

Therefore: Manage the data necessary for collaboration on aSolution
server that is known to all users. Allow these users to access
the data on the server.

The main participant is the server. The users who want to collaborateCollaborations

must know the address of the server. The server stores the data which is
shared for collaboration. The users access the server to retrieve shared
data and locally display it. When changing the data, they again have
to contact the server which performs the change. Accessing and chang-
ing the data can be implemented by, e.g., using remote procedure calls
(RPCs) [2].

Since all users rely on the same shared data, they can access this dataRationale
and collaborate. Besides this, the main advantages of this pattern are:

– All users know the address of the server and therefore can find the
shared data easily and fast.

– As the shared data is kept and only changed on the well-known
server, it is easy to maintain consistency.

Danger Spots – The central server is a bottleneck for accessing and changing the
shared data. When all users intensively access the shared data, the
response time of the application increases. This can make collabo-
ration difficult.

– If the central server becomes unavailable, users cannot access the
shared data anymore.

Known Uses Suite [10] uses a Document-View variant of the Model-View-
Controller pattern [4] for dividing model and presentation. Suite
keeps the model objects (called active variables) on the server. The
views and controllers (called dialogue managers) are kept on the
clients. Whenever a client’s dialogue manager needs to modify the
data, it asks the server to change the model.

NSTP [33] provides a service for data sharing in synchronous multi-user
applications. The service is offered by a well-known notification
server. The server provides clients access to a shared state and
notifies these clients, whenever the shared state changes. The server
contains two kinds of objects: places and things. A place contains
the shared state and partitions the resources of the server among
several applications. Each application uses at least one place. A
client joins a collaborative application by entering the place. Things
are the actual objects that maintain the shared state and can be
created, changed, locked, unlocked, and deleted.

DreamObjects [29] supports a variety of distribution schemes. Among
these distribution schemes DreamObjects supports a variant of the
centralized distribution scheme. In this variant each participating
site can act as server for a central object and thereby easily introduce
local data in a collaborative session. Changes to these centralized
object are only performed at the object hosting site. All other
sites can transparently access a centralized object via so-called local
substitutes that handle all necessary mechanisms.

WIKIs [28] are a special kind of web applications, on which users can
modify the stored pages using a simple set of editing rules. Typi-
cally, a client first requests a page for viewing. The WIKI engine
creates a HTML version of the page that is stored (in plain text) on
the server. If the user decides to edit the page, the server creates a
form-version of the page that includes an input field for editing the
page’s source. Finally, if the client decides to store the page again,
the changed text is sent to the server and stored in the server’s
pages.

4 4 4

Related Patterns Replicate for Speed→2.1.2: If the collaborative application is highly
interactive and all users perform many changes, Replicate for
Speed decreases the response time of the application. Additionally,
Replicate for Speed increases the availability of the shared data.

Replicate for Freedom→2.1.3: If there is no permanent network con-
nection, use Replicate for Freedom to make the data accessible
for disconnected users.

Blackboard: The Blackboard pattern [4] makes use of structures
described in the Centralized Objects pattern. It is an exam-
ple for distributed processing with exchange of intermediate results
(called hypotheses) at a central location. The hypotheses are thus
the objects that are shared between processing units. The black-
board that manages hypotheses is an instance of the server in the
Centralized Objects pattern.

2.1.2 Replicate for Speed

Photo: Loikkanen, Antti, Finland,
www.visipix.com

When the hare therefore arrived in full career at the lower end of the field,
the hedgehog’s wife met him with the cry, ”I am here already!” The hare
was shocked and wondered not a little. He thought it was the hedgehog
himself who was calling to him, for the hedgehog’s wife looked just like her
husband.

From Jacob Ludwig Grimm and Wilhelm Carl Grimm: ”Hase und Igel”

Allow users to access data objects without network delay.Intent

You have considered to manage the shared data using CentralizedContext
Objects→2.1.1. Now you are concerned about speed.

4 4 4
The response time of interactive applications has to be short.Problem
The network latency and delay wastes time in distributed sys-
tems. Thus interactive applications are inappropriate if the
response time depends on client-server communication.

Imagine a group that works with a collaborative diagram editor. EachScenario
diagram element is represented by a shared data object. Now, imagine
that a user wants to drag a diagram element and drop it somewhere else
on the drawing areas. If the diagram elements are managed on a server
(compare Centralized Objects→2.1.1), a user has to access the server
for each movement step while dragging the diagram element. As this
causes network communication, the movement of the diagram element is
not smooth or may even freeze. This makes interaction with the editor
hard.

You should consider to apply the pattern when . . .Symptoms

– users with a permanent network connection collaborate in a highly
interactive application.

– users perform many incremental changes on large objects.

– the response of the application is too slow.

Therefore: Replicate the shared data to the users’ sites. LetSolution
a user change its local replicas and ensure consistency by using
the Update Your Friends→2.2.1 pattern.

When a user joins an already collaborating group, its site has to requestCollaborations
all shared data objects from a site which already participates in the
collaboration. Upon request the site transfers the shared objects to the
requesting site.

Since users can access the data locally, they can perform local changesRationale
or display refreshes without network costs.

Danger Spots – Replication ensures that the delay for accessing the shared objects
is low, but it may cause a large initial delay, when the common
objects are accessed for the first time. Thus, you should schedule
the initial transmission in times, where the user does not need fast
response times (using the Guess What I Need→2.1.4 pattern).

– Replication causes high communication costs [16]. If this is an issue
and you want to reduce the communication costs, use the Guess
What I Need→2.1.4 pattern.

– As every user can locally access and modify the shared data, the
consistency of the shared data is an issue. To ensure consistency,
use the Update Your Friends→2.2.1 pattern.

– Requesting and transferring the state of a shared object is compli-
cated, as you have to ensure that the transferred object is consistent
to all other replicas. There exist different approaches to solve this
problem, compare [26] for a starting point.

Known Uses GroupKit [38] organizes shared objects in so-called environments [37].
An environment is a hierarchical data structure, where a node either
can hold a value or have other nodes as children. The runtime
system transparently replicates an environment. A developer can
bind callbacks to an environment and receive a notification when a
node is added, changed, or removed.

COAST [40] allows clients to keep replicas of shared objects. To main-
tain a replica, the clients register at a central server, who provides a
primary copy of the objects. Clients can directly change their repli-
cas and visualize the new state of the replica in their user interface.
This ensures a high level of interaction in the application. Whenever
a client changes the state of a replica, this change is propagated by
means of the Mediated Updates→2.2.2 pattern. Changes can be
state changes or the creation of new replicated objects.

DreamObjects [29] supports replicated objects for highly interactive
applications. All participating sites maintain a replica and can per-

form reading accesses locally. Changes to the replica are handled
transparently by a local substitute for the shared object that is re-
turned to the developer when creating a new shared object.

HTTP/1.1 [12] supports caching at the client and the server site.
Caching at the client site is the most common used practice. To
ensure the consistency of the cached document HTTP/1.1 uses an
expiration mechanism. Instead of again requesting a cached doc-
ument the client asks the server if the document is still valid or
is already expired. In connection with Replicate for Speed a
cached document can be compared with a replicated shared object.

4 4 4

Related Patterns Centralized Objects→2.1.1 can be used to reduce the communication
costs and to simplify the management of the shared data.

Guess What I Need→2.1.4 reduces the communication costs by distrib-
uting a replica to only those users who access the shared data.

Replicate for Freedom→2.1.3 supports collaboration between users
that are not permanently connected to the network.

Update Your Friends→2.2.1 can be used to propagate changes to all
other sites that maintain replicas of the shared data.

Fail-Stop Processor [39] discusses replication for another purpose:
system failure. As in the Replicate for Speed pattern, different
clients keep replicas of the shared data. If one client fails, users
are redirected to other clients. In the terminology of this pattern
language, such behavior would be called Replicate for Relia-
bility.

Caching [24] addresses the same problem as the Replicate for
Speed pattern. In both patterns, the response time becomes crit-
ical due to expensive retrieval of shared data. The Caching pat-
tern focusses more on applications in which users only retrieve data.
Replicate for Speed instead focusses on applications in which
users interactively modify shared objects.

2.1.3 Replicate for Freedom

Alternative names: Offline work by replication

Provide wire- and waveless data access.Intent

You have created an architecture that allows users to access shared ob-Context
jects over a network, e.g. by using Centralized Objects→2.1.1. Now
you want to allow them to work disconnected as well.

4 4 4
Users may not have a permanent connection to the system,Problem
where relevant data is kept. Without a permanent or just a
poor connection to the data, users will not be able to finish
their work, if the data cannot be accessed.

Imagine a group of authors who are working together on course on soft-Scenario
ware engineering. hey have made the course draft accessible on a file
server so that all authors can access it over the internet.

Unfortunately, they do not find much time to work with the docu-
ments at the customers’ sites (where they would have web access). For-
tunately, the authors also travel a lot, which gives them plenty of time
to work on the course during their journey. But during the journey, they
cannot access the internet and thus cannot access the shared data.

You should consider to apply the pattern when . . .Symptoms

– users work disconnected with various devices on data that is kept
at least on one system.

– users cannot work wherever they want.

– users need to work on correct and complete shared objects.

– users are connected via an unreliable network (e.g. GSM on a train
of the German rail).

Therefore: Replicate the data to the user’s device. UpdateSolution
the replicas whenever two systems which hold copies of the
data connect.

Whenever a client connects to the network, it identifies relevant objectsCollaborations

provided by a central server or another client. It replicates these objects
by asking the publisher of the object for a replica. The client may then
disconnect from the network.

If the client connects to the network again, it contacts the publisher
of the replicas and ensures that both parties have an updated version of
the replicated object (mechanisms for achieving this are presented in the
Update Your Friends→2.2.1 pattern).

Since the needed data is always on the user’s device, the user is able toRationale
access this data when using the device.

In addition to the danger spots from Replicate for Speed→2.1.2, itDanger Spots
might be complicated to decide which data is needed in disconnected
situations. However, this issue cannot be solved on a technical level.
Instead, it requires end-user involvement.

Known Uses Sync [32] is a framework that supports the development of mobile col-
laborative applications. It bases on replication and offers some basic
classes which a developer can use to implement shared data objects.
Applications developed with Sync use a central asynchronous syn-
chronization, i.e. users can connect at different times with the server
and balance their changes. The basic classes contain mechanism
which solve a set of predefined conflicts that can occur when users
changed the same data.

IMAP [8] uses replication of e-Mail messages and folders to support
users to read and archive their mail on different clients. Each client
can replicate the mail messages when connected to the IMAP server.
In the off-line mode, the client can organize the mail (e.g. move
messages to other folders or create new folders). When the client
reconnects to the network, it synchronizes its local state with the
state on the server (and makes the users changes persistent).

CVS: An example for asynchronous collaboration is the well-known
CVS system. Users can checkout modules from a well-known server.
The CVS server transfers the requested module to the user’s site.
After checkout the user can disconnect from the network and can
access the module’s data locally.

4 4 4

Related Patterns Replicate for Speed→2.1.2: The solution of Replicate for Speed
is comparable to the solution of Replicate for Freedom in the
aspect of replicating objects to the clients. The difference is the
way how changes are handles. Since the clients stay connected in
Replicate for Speed, they can ensure consistency directly after
a user changed an object.

Update Your Friends→2.2.1: To ensure consistency, a client has to in-
form other clients about changes in its replicas.

Fail-Stop Processor [39] models replication for the purpose of reli-
ability (cf. the discussion in the related patterns section of Repli-
cate for Speed→2.1.2).

2.1.4 Guess What I Need

Alternative names: Partial or adaptive replication

Reduce network communication costs and response time by replicatingIntent
only selected shared objects.

You decided to use Replicate for Speed→2.1.2 to speed up your ap-Context
plication. Now you are thinking about reducing communication costs;
especially in large data spaces.

4 4 4

The response time of interactive applications has to be short.Problem
The network latency and delay wastes time in distributed sys-
tems. Full replication, i.e. every user maintains a replica, de-
mands high communication costs for initialization and consis-
tency. If network communication between the users is slow, the
response time of interactive applications increases and makes
collaboration hard.

Imagine users collaboratively working in a text editor. The text docu-Scenario
ment is structured into single logical pieces, i.e. words, sentences, para-
graphs, and sections. Each section is represented by a replicated object.
Normally, not all users view or edit all sections of the text document.
However, as all sections are replicated, each user maintains a replica,
which causes network communication costs during the initialization and
whenever a section is changed. This wastes network communication ca-
pacities which is already low as the network connection between the users
is slow.

You should consider to apply the pattern when . . .Symptoms

– users complain that the initial replication of shared data takes too
long.

– users do not need all shared objects at every point in time.

– users usually request replicas and then work on these replicas. Be-
fore working with another object, they request its replica, which
takes time.

– the communication costs for maintaining shared objects are too
high.

Therefore: Let a user only hold a replica for a shared dataSolution
object which she currently accesses or is supposed to access in
near future. The other shared data objects that also belong to
the state of the application can be ignored without any adverse
effect to the user interface.

Replicate a shared object as soon as a user accesses it. For this purpose,Collaborations
the user’s site has to contact a site which already holds a replica of
the necessary object. When a site does not access a shared data object
anymore, e.g. the local user changed his working focus, discard the shared
object and thereby reduce the communications costs that are necessary
for consistency. Otherwise the set of replicas continually grows and finally
the shared data object is replicated to all participating sites.

As a user only maintains a replica for those shared objects, she currentlyRationale
uses, the communication costs compared to Replicate for Speed→2.1.2

are reduced. However, as a user can still locally change and access the
data she is working with, the response time of the interactive application
is reduced.

Danger Spots – As the working style of a user is not deterministic, this pattern
can also lead to high communication costs. For instance, consider
a user who just takes a short look on a document part and then
continues his work on a different document part. In the worst case,
the runtime system would request the shared data object and almost
immediately discard it.

For a more sophisticated approach, use heuristic approaches to
guess, if a user really needs a shared object or not. Wolfson et
al. [48], [49], [50] introduce several distributed algorithms for an
adaptive replication. The algorithms use different cost-functions to
adapt the replication scheme of a shared data object. The cost func-
tions base upon the read-write pattern on the shared data object.
They also show that their adaptive replication algorithm signifi-
cantly reduces the network traffic.

– You might not know a site that already holds the replica you are
looking for.

– Requesting and transferring the state of a replicated object is com-
plicated, as you have to ensure that the transferred object is consis-
tent to all other replicas. There exist different approaches to solve
this problem, compare [26] for a starting point.

Known Uses DreamObjects [29] offers two predefined adaptive distribution
schemes. These distribution schemes dynamically change the distri-
bution of a shared data object according to a user’s working style,

i.e. how often a user accesses a shared object, or according to the
topology of the connecting network, e.g. one replica per subnet.

Mozilla is a popular Open Source web browser that uses link prefetch-
ing [13] to reduce latency for the user when visiting a web site.
The prefetching mechanism depends on the origin server or an in-
termediate proxy server. One of these servers, has to determine the
set of documents which the browser shall prefetch. When prefetch-
ing a document, a browser stores the document in its local cache.
Thereby, a user can access the document without network latency.
Though the server specify which documents the user will probably
access next, the browser uses its own heuristics to determine when
to prefetch the specified documents.

4 4 4

Related Patterns Replicate for Speed→2.1.2: The Replicate for Speed pattern in-
creases the network communication costs that are necessary for data
consistency. However, as a user receives a replica for each shared
object as soon as he joins the collaboration, its site can contact an
arbitrary site to request a replica.

2.2 Change Notifications

2.2.1 Update Your Friends

Distribute local state changes to the other users to achieve consistency.Intent

You have developed support that lets users access replicated objects (c.f.Context
Replicate for Speed→2.1.2 and Replicate for Freedom→2.1.3). Now
you are thinking about effects of changes to these objects.

4 4 4

Users change their local copies of the replicated artifacts andProblem
the other users cannot notice these local changes. This makes
collaboration impossible.

Consider, e.g., a collaborative diagram editor where all diagram elementsScenario
are represented by a replicated object. Users collaborate in the diagram
editor to specify the class diagram of a new project they are working on.
Each user locally modifies the class diagram by adding new classes or
changing the interface definition. As these changes are not propagated,
each user has a different class diagram at the end of the collaborative
session. After implementing their part of the class diagram, the users try
to integrate their work and wonder why this is not possible without a lot
of errors.

You should consider to apply the pattern when . . .Symptoms

– users collaborate by sharing and changing replicated artifacts.

– the state of the replicated object diverges, as users locally change
their replicas.

Therefore: After changing a replicated object locallySolution

– send an update message for this object to all clients that
also maintain a replica,

– take care that all clients receive this update message, and

– let these clients change their replica according to the infor-
mation in the update message.

Fig. 2 shows how the network communication works. A client modifiesCollaborations
its replica and distributes an update message to all clients who also hold
the replica. This update message may contain the new object state or
the transformation that led from the old to the new state. Both cases are
equivalent regarding update distribution but different regarding consis-
tency management. After distributing the update message, the sending
client collects acknowledgements from the receiving clients to ensure that
each one received the update message.

To know who has to receive the update each client has to maintain
a list of these clients. The time to which the update message is sent
depends on the connectivity of the clients.

Client A Client B Client C

UpdateUpdate

Modification

Ack
Ack

Figure 2: A client distributes update messages to all other clients

Since all clients sooner or later receive an update message, they canRationale
change the state of their replica to the new state.

Danger Spots – You might not know all your friends. In this case [9] proposes to
use a flooding technique where the informed friends inform their
friends. The latter is, e.g., done in Gnutella.

– Update messages might get lost and thus not all your friends get to
know the update. One possibility to overcome this problem is to use
sequence numbers in the update messages. Each client tracks the
received sequence numbers and detects a missing update message
by a gap in the received sequence numbers. In that case the client
has to ask for the missed update message or request a new replica.

– If users change the state at the same time, there can be a conflict.

– If network bandwidth is an issue, distribute the actions describing
the state change instead of the new object state to reduce the net-
work load. Be careful as this might not be true in every case, e.g.
actions may need arguments larger than the whole object state.

– If the execution of a state-changing action is more time-consuming
than transmitting the whole object state to the other clients, dis-
tribute the new object state as update message.

– If clients are disconnected, use push- and pull-phases [9].

Known Uses GroupKit [38] transparently replicates an a programming abstraction
called environment. Whenever users change the value of a node in
the shared environment, the runtime system automatically distrib-
utes the new content of the node to the other participating sites.
Additionally, GroupKit supports a multicast RPC like described in
[7]. By using the multicast RPC developers can distribute local
changes to all other participating sites.

DreamObjects [29] supports a more sophisticated multicast RPC as
described in [7] to achieve consistency. In DreamObjects each site
maintains for each shared object a list of sites that hold a replica
of the shared object. Based on these lists the runtime system of
DreamObjects distributes the necessary update messages. These
update messages describe the change and allow each receiving site
to re-execute the change.

USENET uses a flooding mechanism to exchange messages between the
different machines [21]. A message is posted on one machine to a
list of newsgroups. This machine accepts it locally, as if applying a
local change, and then forwards it to all its neighbors. The neighbors
check if they are really interested in the new message and then apply
the change. Furthermore, the neighbors forward the new message
to all their neighbors. By using this technique, a site can apply a
change without knowing all sites that are interested in the change. It
is only necessary to now some sites. However, there are two further
danger spots. First, to reduce network load loops must be avoided.
Second, it has to be ensured that still all sites can be reached.

4 4 4

Related Patterns Replicate for Speed→2.1.2: As users can locally change their replicas,
it is necessary to inform the other participating sites to keep the
shared data consistent. The Update Your Friends pattern can
be used for this purpose.

Replicate for Freedom→2.1.3: If users are allowed to modify their lo-
cal replicas, the Update Your Friends pattern can be used to
distribute the modifications and keep the shared data consistent.

Mediated Updates→2.2.2: In Mediated Updates all changes are dis-
tributed by one site. Compared to this, the Update Your
Friends pattern does not have a single-point of failure, is not a
bottleneck, and the communication costs are lower, which reduces
the response time of the application.

Believe in Your Group→2.3.1 provides a way to optimistically ensure
consistency when different users modify same parts of the shared
data at the same time.

Acknowledgement [39]: This pattern can be used to model the ac-
knowledgement interaction between the update receivers and the
originator.

Roll Forward [39] discusses how to replay changes on replicated data.
It uses a replication at two sites. One site performs the change and
the other site replays the change after receiving an update message.
If the first system crashes during the update, the second system will
still be operational and thus not be affected by the illegal change
of the first client. In the context of collaborative applications, this
behavior is also desirable. If one user performs changes that cause
inconsistent data, other clients will not replay these changes because
the first client will no longer be able to update his friends (if it
crashes before sending the updates).

2.2.2 Mediated Updates

Alternative names: Update dispatcher

Minimize the administrative load for updates by using a central instanceIntent
that dispatches the updates.

You have considered Update Your Friends→2.2.1 to inform other in-Context
terested clients about state changes to replicated objects. Now you want
to reduce the administrative overhead for ensuring consistency and prop-
agating update notifications.

4 4 4

Clients want to propagate update messages to other clients whoProblem
keep replicas of the same data. If they contact the other clients
directly, they have to maintain information who those clients
are and have to establish communication with these clients.
This is complicated and error-prone. Especially if some clients
may disconnect and reconnect in an unpredictable way (if the
set of clients changes over time).

Consider the German telephone network. Each year the German telecom-Scenario
munication company distributes phone books containing the actual tele-
phone numbers of their customers.

You should consider to apply the pattern when . . .Symptoms

– the state of the replicated objects often diverges because of missed
update notifications.

– not every client knows who all the other clients are.

– it is hard to manage the set of interested clients; especially when
the set of clients changes frequently.

Therefore: After changing a replicated object inform a medi-Solution
ator which will distribute an update message to all interested
clients.

As shown in fig. 3, a user modifies her replica and sends an update mes-Collaborations
sage to the mediator. The update message may contain the new object

state or the transformation that led from the old to the new state. Both
cases are equivalent regarding update distribution but different regard-
ing consistency management. The mediator maintains a list of all clients
that are interested in the replica and redistributes the update message to
these clients. As in the Update Your Friends→2.2.1 pattern, the medi-
ator collects the acknowledgements from the other clients and afterwards
acknowledges the changing client. To reduce network communication,
the interaction can also work without the acknowledgements of other
clients (as shown in fig. 3). In this case, the mediator only propagates
update messages if the update can be applied to the mediator’s current
state. At the same time, the mediator sends an acknowledgement to the
initiating client.

Client BClient A Mediator

Update

Client C

Update Update

Ack

Modification

Figure 3: Distributing updates via a mediator

As the mediator knows who has to receive the update and distributesRationale
the update to these clients, the clients do not have to deal with these
issues any longer (cf. Update Your Friends→2.2.1). The client list of
the mediator is always valid, as the clients have to register themselves at
the mediator for maintaining a replica.

Since the mediator is informed about all changes, it is also the pre-
ferred point for asking for the most recent version of each replicated
object. Thus, clients that disconnect or enter a collaborative session
after other clients already changed the data (these clients are called late-
comers) are provided with a method for retrieving the most current state.
In architectures that work without a central mediator, this is impossible
(cf. the discussion in Update Your Friends→2.2.1).

Danger Spots – The mediator is a single-point of failure.

– The mediator is a bottleneck concerning the network communica-
tion.

– If users change the state at the same time, there can be a conflict,
which should be resolved by the mediator.

– If clients disconnect, the mediator has to ensure that they receive
all updates that were distributed during their absence.

Known Uses COAST [41] uses possibly multiple mediators to ensure consistence on
shared data. In COAST clients register at a mediator when they
want to obtain replicas of shared data. The mediator keeps track
of the clients that keep replicas and are connected to the network
(if they get disconnected, they have to reconnect and obtain a fresh
copy of the data).

Whenever the client changes replicated data (using transactions), a
transaction log is sent to the mediator. The mediator then decides,
whether or not this transaction can be incorporated with the current
state. If this is possible, the master copy on the mediator is updated
and the transaction log is broadcasted to all other connected clients
that hold replicas of the object.

The mediator is also responsible for storing the shared objects.

DyCE [46] provides a central object manager which maintains the per-
sistent object storage and handles shared objects. Developers have
to define transactions to modify a shared data object. The transac-
tion manager at the server acts as a mediator and is responsible for
handling and distributing transactions.

Habanero [5] focuses on transforming Java applets into distributed ap-
plets (called Hablet). The state of such a hablet is replicated to
every participating site. To keep the shared state consistent, Ha-
banero intercepts user interface events and forwards them to a well-
known server that acts as mediator. The server serializes all events
and forwards them to all clients.

4 4 4

Related Patterns Replicate for Speed→2.1.2: As users can locally change their replicas,
it is necessary to inform the other participating sites to keep the
shared data consistent. The Mediated Updates pattern can be
used for this purpose.

Replicate for Freedom→2.1.3: If users are allowed to modify their lo-
cal replicas, the Update Your Friends pattern can be used to
distribute the modifications and keep the shared data consistent.

Update Your Friends→2.2.1: The costs for maintaining the client lists
are reduced. At a first glance the network load of Update Your
Friends is lower than the load of Mediated Updates since com-
munication with the mediator is not necessary. On the other hand
if clients change frequently and therefore the client lists, additional
network load is produced.

Believe in Your Group→2.3.1 provides a way to optimistically ensure
consistency when different users modify same parts of the shared
data at the same time.

Mediator [14]: The Mediated Updates pattern implements a dis-
tributed Mediator. As in the Mediator pattern, it decouples
the single clients and transforms the mana-to.-many communication
between the clients to an one-to-many/many-to-one communication
between the mediator and the clients. It also helps to centralize con-
trol, which is very helpful when establishing consistency (e.g. with
the Detect A Conflicting Change→2.3.3 pattern). The main
difference between the Mediator] and the Mediated Updates
is that the latter s more concretely focussing on the synchronization
of replicated objects. It can thus be considered as a more concrete
version of the Mediator.

Object Manager [3] describes how the use of an object can be de-
coupled from its life cycle management. The Object Manager
is responsible for retrieving the object, handing it out to clients, or
for keeping it persistent. The mediator in the Mediated Updates
pattern often plays the role of an Object Manager.

Recoverable Distributor [22] describes how local views of global
state can be kept consistent at different clients. It proposes a com-
parable interaction scheme. With this respect, it provides a combi-
nation of the Mediated Updates and Detect A Conflicting
Change→2.3.3 pattern. Such a combination makes the design of col-
laborative applications less flexible. Especially the focus on only
one distribution scheme narrows the applicability.

Acknowledgement and Roll Forward [39] relate to Mediated
Updates as it was discussed in the Update Your Friends→2.2.1

pattern.

2.3 Consistency

2.3.1 Believe in Your Group

Alternative names: Optimistic transactions [20]

Change data optimistically and undo the operations if users performedIntent
conflicting changes.

Your system allows the users to work on replicated objects. You haveContext
managed to propagate state changes (c.f. Update Your Friends→2.2.1

and Mediated Updates→2.2.2). Now you are thinking about how to
ensure consistency.

4 4 4

You want to ensure consistency but you do not have much time,Problem
until you can perform these changes.

Imagine the users of diagram editor where the diagram objects are repli-Scenario
cated. Before a user can change a diagram object, she has to obtain
a lock to ensure consistency. This is time-consuming and increases the
response time of the diagram editor. As the response time is a critical
issue in interactive applications, the diagram editor becomes unusable.

You should consider to apply the pattern when . . .Symptoms

– the system ensures consistency but is terribly slow.

– acquiring locks is too time-consuming.

– the application domain is suitable for controlling concurrent inter-
action by means of a social protocol.

Therefore: Perform the change immediately. If another clientSolution
performed a conflicting change earlier (cf. Detect A Conflict-
ing Change→2.3.3), undo or rearrange your change.

A client changes a replicated object and informs the other clients by usingCollaborations
the Update Your Friends pattern. The client continues its work and
waits either for an acknowledgement or a reject. If its change is rejected
by the other clients, it has to undo or rearrange its change.

Client A Client B Client C

UpdateUpdate

Ack
Reject

Reject
Undo

Undo

Modification

Modification

Figure 4: Distributing an update message resulting in an undo

Fig. 4 provides an example of three interacting clients. Client B and
Client C perform modifications at almost the same time. After Client B
Updated his Friends, Client C finds out that B’s modifications are
conflicting. Now assume that Client C is authorized to reject B’s changes.
It informs all other clients that B’s modification has to be rejected, which
causes undo operations at the clients A and B. Note that client A also
has to undo the change since it already integrated B’s update with its
replicas of the shared data.

The client avoids waiting in two cases:Rationale

1. Before performing its change.

2. After performing the change and collecting the acknowledgements.

Danger Spots – The optimistic approach can confuse a user by rolling back or trans-
forming a modification.

– The implementation of a roll back mechanism is very memory in-
tensive, as the state of an application has to be stored. Sometimes
it can even be impossible or at least very expensive to define the
rules that are needed for the transformation.

– Rejecting takes time.

– To reduce the amounts of rollbacks, you may use the local lag par-
adigm [30].

Known Uses COAST [40] allows clients to perform their changes of shared objects
directly on their replicas. If a client needs to change a replica, it
starts a transaction and modifies the object using COASTs access-
ing methods. The transaction manager monitors each access and
remembers it on a transaction log. When the transaction is fin-
ished, it is sent to the mediator, a server that decides, whether or

not the transaction may survive. In the meantime, the client up-
dates all dependent views. If the transaction was accepted by the
server, the client has nothing more to do. Actually, the client will
have been able to continue with the application while the server was
still deciding whether or not to accept the transaction.

If the transaction was not accepted (i.e. if it failed the Detect A
Conflicting Change→2.3.3 test), then the client has to restore the
change using the old values that were also recorded in the transac-
tion log and updating all dependant views again.

DyCE [47] uses a comparable transaction mechanism with optimistic
transactions as COAST.

DOORS [35] allows independent changes to model objects replicated
between clients without requiring a central server. Whenever a
client changes a model object, it remembers the change and prop-
agates it to other clients as soon as it meets them. The decision
whether or not changes are acceptable is made by each client.

GINA [1] enables synchronous collaboration on replicated objects. It
understands the history of a document as operation tree and uses
the tree for undo/redo mechanisms, optimistic concurrency control,
and object merging.

4 4 4

Related Patterns Detect A Conflicting Change→2.3.3: An old Russian saying1 says:
Trust, but control. This means that even with a high level of trust
a group can produce conflicts. These conflicts have to be detected,
which is the intent of the Detect A Conflicting Change pat-
tern.

Lovely Bags→2.3.4: It is crucial to model the shared objects in a way
that allows many concurrent accesses. Otherwise, the Believe in
Your Group pattern will result in too many changes that need
to be undone. The Lovely Bags pattern provides one example of
how to model the shared objects this way.

Don’t Trust Your Friends→2.3.2: Even when most operations can be
performed in an optimistic way, there may be some changes that
are hard to undo. Especially changes with large side-effects can
be expensive (or impossible) to undo. In these cases, you should
perform these changes using locks.

Optimistic Transaction [20] explains how to optimistically perform
concurrent changes. It proposes to perform the changes on a shared
resource and test, whether other clients performed changes at the
same time. For testing, this pattern uses a change counter that
is compared to a change counter value expected for the case in

1Lenin is often referred to as the origin of this saying. However, he was not the author. The saying
was just one of his favorite sentences.

which only the changes of the local client had appeared. The main
difference to the Believe in Your Group pattern is that the
Optimistic Transaction pattern does not address the context of
replicated objects. This makes the detection of a conflicting change
through change counting simpler. If this pattern would be applied
in a distributed setting, the change counters would have to be kept
consistent which on its own results in the management of shared
data in a replicated context.

2.3.2 Don’t Trust Your Friends

Alternative names: Pessimistic locking

Allow only one user at a time to change a specific part of the sharedIntent
state.

You are working with replicated objects and users may change these ob-Context
jects at the same time. Now you are thinking about avoiding any inconsis-
tencies, as they can appear when using Believe in Your Group→2.3.1.

4 4 4

You want to ensure that nobody messes up your changes onProblem
replicated data objects, but many users are working with the
same objects at the same time. Each site performs its changes
locally before informing the other sites. This can lead to dif-
ferent execution orders of the changes. If the changes are not
commutative, i.e. changing their execution order does not lead
to the same shared state, the shared state becomes inconsistent.

Consider, e.g., a collaborative CAD application. Users collaborativelyScenario
work in this application to design a new engine. They can drag and
drop parts of the engine and change the specification of the single parts.
Now imagine that one user decreases the cylinder capacity of the engine
while another wants to move the cylinders into place. Depending on the
execution order at the different sites, either the CAD application rejects
the first or second modification. Some users might see an engine with a
lower cylinder capacity and others an engine where the cylinders are in
their place.

You should consider to apply the pattern when . . .Symptoms

– undoing inconsistent changes is hard, harder, or even impossible.
An example is the situation where changes rely on external events.

– the lack of a social protocol causes synchronous and conflicting
changes.

– you have made bad experiences with inconsistencies in your sensible
shared data (e.g. shared objects used to control the position of fuel
rods of a nuclear power plant).

Therefore: Let a site request and receive a distributed lockSolution
before it can change the shared state. After performing the
change let the site release the lock so that other sites can request
and receive it for changing the shared state.

The lock can have different grain sizes. The grain size of a
lock determines how much of a shared data object or all shared
data objects can be modified after getting one lock.

The different sites interact according to fig. 5. A site that wants toCollaborations
change the shared state, i.e. the content of the replicated objects, first
has to request a distributed lock. One strategy for obtaining the lock
is by means of a central lock manager. In this case, the lock manager
grants the lock to the requesting client. After receiving the distributed
lock, the site can perform its change and distribute the change to the
other participating sites. Finally, the site releases the distributed lock.
If other sites also requested a lock while another site held the lock, they
have to wait until the lock is available again (client B in fig. 5).

Lock manager Client A Client B

Lock request

Lock grant

Lock request

Lock grant

Lock release

Lock release

Figure 5: Requesting a lock with a central lock manager

There are many strategies to implement distributed locks [6]. The
central lock manager described above is only one of these strategies.
Selecting the distributed locking algorithm has an impact on the user
interface. When the participating sites are, e.g., connected via TCP/IP,
the use of a token-based algorithm, e.g. [45], reduces the number of ex-
changed messages and thereby also decreases the response time of an
application. If the participating sites are, e.g., connected via a network

that supports IP multicasting, an algorithm that bases on multicasting
messages, e.g. [36] is the proper choice.

By requesting and receiving a distributed lock before performing a changeRationale
to the shared state, only one site at a time can change the shared state.
This prevents inconsistencies of the shared state.

Danger Spots – Requesting and receiving a distributed lock before changing the
shared state can increase the response time of an application. In-
teractive applications demand a low response time. Therefore, be
careful when using distributed locks for concurrency control.

– It is a difficult issue to set the grain size of a lock. A coarse grain
size, e.g. all shared objects, reduces the number of lock requests, but
also the concurrency in the application. A fine grain size, e.g. for
each modifying method, increases the number of lock requests and
the network traffic, but improves the concurrency in the application.
Greenberg et al. [17] discuss these issues concerning its effects on
the user interface.

– If a user needs more than one lock to perform its changes, there is
the danger of deadlocks. So, you have to use deadlock avoidance
strategies, as, e.g., by totally ordering the locks that have to be
requested [19].

Known Uses DreamObjects [29] supports two different grain sizes for concurrency
control. Developers can use one distributed lock per shared objects.
Whenever a site wants to change a shared object, it first has to
request and receive a distributed lock. Otherwise, the runtime sys-
tem prevents changes to the object. To achieve more concurrency,
developers can specify sets of methods that must be executed mu-
tually exclusive, e.g. methods that change same parts of a shared
object. For each set of methods DreamObjects uses one distributed
lock that must be requested and received by a site before execut-
ing a method in the set. Requesting and receiving the locks are
automatically handled by the runtime system.

DistView [34] divides an application into interface and application ob-
jects. Both are completely replicated. DistView intercepts all calls
to these objects and broadcasts them to the respective replicas to
synchronize the states of the shared windows. To ensure consis-
tency DistView associates with each replicated application object
one distributed lock. Developers explicitly have to request these
locks before changing an application object.

4 4 4

Related Patterns Believe in Your Group→2.3.1: If the response time of the application
is a critical issue, this pattern can be used to perform changes in an

optimistical way. However, if a conflict occurs, inconsistencies can
happen that can be hard to resolve.

Selective Locking [31] is a pattern language for locking in parallel
programs and examines constraints, e.g. memory latency or size, for
this scenario.

Permit based Locking [44] is a design pattern for requesting and re-
ceiving locks which aims to reduce network traffic. For this pur-
pose, it uses a central lock server that passes permits to lock to
those clients which are guessed to need the lock next. If a client
has a permit to lock, it need not request the lock and can perform
its change immediately. Otherwise, it has to request the permit
from the central lock server. If the server already distributed the
requested permit, it revokes this permit. This pattern lacks from
the central lock server which is a single-point of failure. Addition-
ally, if the clients often need different locks requesting and revoking
permits also produces network traffic.

Coordinator [23] uses a two-phase commit protocol to ensure that all
clients perform a change. The Don’t Trust Your Friends pat-
tern uses a locking approach to ensure that only one client performs
a change at a time.

Resource Lifecycle Manager [25]: The lock can be interpreted as
a resource in the sense of the Resource Lifecycle Manager. It
is a very simple resource that only controls the right for modifying
shared objects. Thus, a lock does not need a resource environment
as described in the Resource Lifecycle Manager.

2.3.3 Detect A Conflicting Change

Detect conflicting changes.Intent

You have managed to distribute state changes and still Believe inContext
Your Group→2.3.1. Now you are worried about conflicting changes.

4 4 4

If two or more users change the same data at the same time,Problem
changes interfere. This can lead to inconsistent data or con-
tradict the users’ intentions. If the users are not aware of this
conflict, they will no longer have a common base for collabora-
tion.

Remember the times when you were playing jigsaw puzzles. The goal ofScenario
this game was to rearrange a scrambled picture by moving single pieces of
the puzzle to the right position. This game can be played cooperatively
by allowing multiple users to move the pieces.

Now consider an electronic version of the game: Since the puzzle is
an interactive game, all players receive a replica of the shared objects
that model the puzzle pieces (replicate for speed). Now the players start
moving around the pieces. After each move, the player’s client informs
all other clients that the piece was moved. The other clients then update
the position of the piece.

This is unproblematic, if the users perform the changes at different
points in time so that the system finds time to receive other users’ changes
before the local user performs a new change. But now imagine that user
u1 moves piece p1 to the lower right corner and at the same time user u2

moves the same piece to the upper right corner.

After the client of u1 has performed the change, it notifies the client
of u2. Since the client of u2 has already performed its change (moving the
piece to the upper right corner), it will replay the other change (moving
the piece to the lower right corner) after it was informed by u1’s client.
Thus, u2 will see the piece positioned at the lower right corner.

Now switch perspectives and see what happened at the client of u1. It
has already performed the move to the lower right corner, when it receives
the information from u2’s client that the piece should move to the upper

right corner. Thus, it moves the piece to the upper right corner. u1 will
see the piece at the upper right corner.

Thus, both users will see the piece at different positions, which is
obviously a problem, especially, when they are communicating about the
pieces (e.g. when u1 asks u2 in a chat to move the piece at the upper
right corner to the center, u2 will take another piece than u1 intended).

You should consider to apply the pattern when . . .Symptoms

– users perform parallel changes that lead to inconsistent data.

– the social protocol does not ensure consistency.

– each user works on his own inconsistent view of the shared data.
This means that users are talking at cross purposes.

Therefore: Let each client remember all changes that have notSolution
yet been replayed by all other clients. Whenever a change is
received from another client check it against those changes that
have not yet been replayed by the other client and affect the
same shared object. If the performed operations will produce
a conflict then undo one of these changes.

Each client that should detect conflicts has to maintain a history of allCollaborations
changes that it performed up to now and note for each change, whether
or not this change was perceived by other clients. If the change has been
perceived by the other clients then it can be removed from the change
list, since no future conflict is possible regarding this change.

Clients perform changes locally first and Update their friends
directly after applying the change. The other clients receive the update
information and check their local change history, whether or not other
activities (not perceived by the client that sent the update notification)
have changed the same data.

Concurrent changes on the same data are potential candidates for
conflicts. The easiest way of deciding, whether or not it was a conflict is
to consider all changes that are modifying the same data as conflicting
changes. In general, one can consider two changes as conflicting changes
if they produce a different application state if they were performed in
different order. This means that the changes are not commutative. The
more detailed the test for commutativity is, the more concurrent changes
can be allowed in the application.

Consider a linked list as an example for a shared object. One could
decide to consider all adds to this list (addFirst, addLast) as conflict-
ing changes. One could also define addFirst and addLast as pairwise
commutative since an addFirst operation will not affect the position of
the element added with the addLast operation. On the other hand, two
concurrent addLast operations are never commutative since they both
affect the end of the list.

In a final phase, the client decides to undo one of the conflicting
changes or inform the user that the data is inconsistent (in some cases,
undoing is an expensive operation and small inconsistencies can be ac-
cepted). Which change is undone depends on the applied algorithm. It
only has to be ensured that each client undoes the same change. In a
system with Mediated Updates→2.2.2, it is often the second change that
reached the mediator.

The way how the change is undone depends on the way how changes
are represented. In cases where new state is propagated, the undo oper-
ation may be the replacement of the changed data with the state that
was present before the change. This implies that the old state is remem-
bered at each client. In cases where the change is a command, it may be
undone by executing an inverse command.

The change history allows each client to detect whether or not conflictingRationale
changes have been applied on the same artifact.

The process of undoing a change is often complicated again. But canDanger Spots
also be easy, if the change that was received from the other client needs
to be undone since this change has not yet been replayed by the local
client. The related pattern provides a link to the command pattern for
more information regarding undo.

Remember to forget those changes in the change history that have
been perceived by all other clients. To know what these changes are,
a client can include information on its perceived changes in its change
notifications sent to the other clients (using a Piggybacking scheme). The
more up-to-date the list of perceived changes is, the less changes will be
stored in the change history. This leads to shorter execution times for
detecting a conflict and less conflicts.

If the number of clients gets very large, the management of history
lists can become a major bottleneck of the whole system.

Ensure that no additional changes have been applied to an object
before undoing a conflicting change. Otherwise, the undo operation may
lead to an inconsistent state.

Known Uses COAST detects changes at the mediator as well as at the client. The
mediator (c.f. Mediated Updates→2.2.2) detects a change when
one client has based its change on data that has been changed by
other clients in between. In this case, the mediator forgets the
change that was received at a later point in time. The other clients
will not be informed about the conflicting change. The client that
initially performed the conflicting change will receive a change mes-
sage for the same object from the mediator indicating that the
change from the mediator is based on an old state. Thus, the client
will undo all changes that were performed locally back to the state
before the conflicting change. Since each client only has to detect
changes from its local execution and the (valid) changes from the

mediator, the management of the state only has to consider two
parties, which makes it simple and fast.

4 4 4

Related Patterns Lovely Bags→2.3.4 can be used to reduce the probability of conflicting
changes by modeling the data in a way that is suitable for concurrent
changes.

Rollback ([27], p. 163) discusses, how a client can return to a consis-
tent state after a conflicting change has been detected. Basically,
the old state of the system has to be recorded before the change
(using the Memento ([15], p. 283)) and is restored within the
Rollback. Besides the Memento one can also utilize the Com-
mand pattern with undoable actions for returning to an old state
([15, p. 233]). The Rollback pattern has been transferred to the
context of replicated systems [39].

Recoverable Distributor [22] combines the current pattern with
the Mediated Updates→2.2.2 pattern. A discussion, how the Re-
coverable Distributor relates to the current pattern is pro-
vided in the related Patterns section of Mediated Updates→2.2.2.

Change warning [42] reduces the risk of running into conflicting
changes by visualizing another user’s change as soon as it happens
(without necessarily replaying the change).

2.3.4 Lovely Bags

Use bags for storing shared objects in a container because they provideIntent
the best concurrency behavior.

You are using mechanisms to Detect A Conflicting Change→2.3.3.Context
Now you are thinking about reducing the number of conflicting changes.

4 4 4
Access operations to shared container objects change the con-Problem
tent of the container by adding or removing elements. Most
of these operations are very bad regarding concurrency. Thus,
synchronous collaboration on container objects often seems im-
possible.

Imagine a chat system that was implemented on the basis of replicatedScenario
objects. The easiest way of modelling a chat would be to have one long
string to which the users append their contributions.

Now imagine that two users send a contribution at the same time.
While the first client has appended its contribution (and sent out his
update message to the second client), the second client already added its
own contribution to its representation of the chat log. Thus, it will add
the first client’s contribution after its own contribution. And the first
client will add the second client’s contribution after its own contribution.
Thus, both clients will see a different value for the chat log (which implies
that one of the changes has to be undone to ensure consistency).

Would it be better, if the clients used a list where they stored the indi-
vidual contributions? No, because again both clients would try to access
the same position in the object (the end) at the same time. This would
be true for all ordered objects such as Lists, Vectors, Arrays. Whenever
two clients try to modify an ordered collection in a way that affects the
positions of newly added elements, these accesses cannot be performed
concurrently.

You should consider to apply the pattern when . . .Symptoms

– access operations to container objects are often rejected since two
concurrent changes cannot be executed in different orders.

Therefore: Wherever a high level of concurrency is neededSolution
model your container objects by means of a bag. If the con-
tainer’s entries need to be ordered equip the data entries with
an order criterium that can be uniquely assigned by each client
(e.g. the current time stamp together with a unique client ID)
but still store the entries in the bag.

The main participant is the bag. The bag is a shared container objectCollaborations
that can hold references to other objects. It allows duplicates and does
not care about the order of the contained elements (from a mathematical
point of view, bags are often called multisets). Clients perform operations
on the bag concurrently. These operations are in most cases commutative
(because of the ignored order and allowed duplicates). In cases, where
the bag may only grow, one does no longer have to check for consistency
since clients will never perform operations that are not commutative. In
cases, where the clients also remove elements from the bag ensure that
the clients Detect A Conflicting Change→2.3.3.

When order is needed while iterating over the collection locally, it will
be converted to an ordered collection before iterating it. This conversion
requires that the contained elements provide one or more attributes that
can be used as a sorting criteria.

The simple explanation why this pattern works lies in the “lovely” natureRationale
of bags: A bag does not care about order and contained elements in the
same way as other container classes do.

Compared to an ordered container object where the add operations
are related to an insertion position (e.g. arrays or lists), bags produce
the same result if two elements are added in different order.

Compared to container objects where the add operations depend on
the current set of included objects (e.g. sets or dictionaries), bags produce
the same results if an element was already present in the bag and two
clients perform an add and a remove of this object concurrently.

This is illustrated in figure 6. In the left part, two users collaborate
on a list. The list has the initial state abc. Then User1 adds d while
User2 adds e at the same time. After both clients have performed their
operation, they find time to Update Their Friends. But since the
User1’s state differs from User2’s state, they will get different states if
they perform the updates. Thus, one operation has to be undone.

Now consider the right part of figure 6: again, the users performed
changes and Updated Their Friends. But now, the add -operations
can be performed since adds do not depend on the object’s state or the
(non-existent) order of its elements. Both users will reach a consistent
state after the updates.

In cases where order is needed, one can often restore this order. Con-
sider for instance a sorted collection: This class ensures that the elements
stored in instances of sorted collections will be stored according to the
sorting order (or iterated according to the sorting order). The main rea-

a
b

c

UPDATE YOUR FRIENDS

User1
add(d)

User2
add(e)

a
b

c
d

a
b c

e

add(e) add(d)

a
b

c
d

e a
b c

e
d

=

UPDATE YOUR FRIENDS

User1
add(d)

User2
add(e)

add(e) add(d)

a b c d e

a b c

a b c d a b c e

a b c de

Figure 6: Concurrent accesses to lists and bags.

son for using such a sorted data structure is to speed up the process of
iterating over the elements in a sorted way.

If a bag should be iterated in a sorted way, one can first convert it to
a (local) sorted collection and then iterate over the local copy. The order
(which drastically decreases possible concurrent operations on the data
structure) is thus restored locally where needed. This makes the access
to the ordered collection slower (and requires that each client sorts the
elements) but it makes the data structure more robust for concurrent
manipulations.

Another reason for storing objects in an ordered collection is the
desire to access it by an index. The reason for this is often to speed up
iteration again (by using a counter for the index when, e.g., iterating over
an array in Java). As with the sorted access order, the iteration speed is
less critical than the reduced concurrency. If the container object needs
to be iterated frequently, you can perform the iterations on local copies
of the replicated object, which are valid until the replicated object is
changed again.

Unfortunately, even the lovely bag is still vulnerable regarding removeDanger Spots
operations. If the same element is removed and added at the same time
and the bag did not include the element before, this will result in differ-
ent states of the bag depending on the order of the operations. Thus,
prohibiting removes could be an option.

In some cases, arrays can be as attractive (or even more attractive)
as bags: when the number of elements in the bag does not change often
and an entry of the array is accessed by its index without relating to the
other elements, this change is concurrent to all changes at other array
positions. But if the array should change its size (or have a shared index
as a current index), these attributes will reduce the concurrency of the
array.

Known Uses Chat in FUB: FUB [18] is a system built on top of COAST for sup-
porting brainstorming in the context of distributed collaborative
learning. Thus, the users are provided with two different kinds of
chats: a brainstorming chat and a discussion chat, where concepts
are discussed. While the brainstorming chat does not require any
order (and can thus be directly modelled using a bag), the discus-
sion chat needs to ensure that all chat entries are shown in the same
order for all users.

Thus, the chat is modelled as a set of chat entries. Each entry has a
time stamp that represents the (synchronized) time when the entry
was added at the client. For displaying the chat log, all entries are
sorted with the time stamp as a primary and the contained text as
a secondary key. This ensures that all entries are shown in the same
order at each client.

Arrangement of Messages in Usenet [21]: Usenet newsgroups are
semantically represented as trees of messages (modelling the reply-
relations between messages). While these relations could have been
explicitly modelled at the news server, the designers rather decided
to hide the relations within the news entries.

Each entry has a unique id, which is determined by the client that
generated the entry. The entry can relate to a parent message, while
the parent message is not changed at all (it does not know about the
child messages). All entries are then stored in an unspecified col-
lection by the server. The important issue here is that the protocol
does not demand for any order of the entries. When clients request
entries they can ask for a sorted version (by time), which will then
be generated (by inspecting the date fields of the messages).

The client is responsible for ordering the entries when displaying
the message threads.

4 4 4

Related Patterns Don’t Trust Your Friends→2.3.2: When the bag has to be reordered
before the client can process it, an additional computation overhead
is added. This may slow down the responsiveness of the application.
If the reordering process takes more time than obtaining a lock as
proposed in Don’t Trust Your Friends, you should prefer the
locking mechanism.

Detect A Conflicting Change→2.3.3: Even when using Lovely
Bags inconsistencies can occur. Detect A Conflicting
Change allows to detect these inconsistencies.

3 Conclusions

Among the main obstacles during groupware development is data sharing. Platforms
that aim at simplifying the development process are often too prescriptive. When using
a platform developers have to use a specific programming language or a specific class
structure. Due to this, it is often hard to use a platform in a project that has different
constraints.

This pattern language provides a set of proven solutions for the recurring issues dur-
ing the development process. It allows developers to use these solutions in their intended
context. The language concentrates on data sharing and keeping the shared data con-
sistent. However, it only covers a small part of all low-level issues concerning groupware
development. It, e.g., does not cover latecomer issues in synchronous groupware or shared
data persistency. Therefore, there is still a lot of work to be done.

Acknowledgements: We would like to thank our shepherd Andreas Rüping for his
excellent and challenging questions that helped to improve the patterns in this paper.

References

[1] Thomas Berlage and Andreas Genau. A framework for shared applications with a
replicated architecture. In Proceedings of the 6th annual ACM symposium on User
interface software and technology, pages 249–257. ACM Press, 1993.

[2] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39–59, February 1984.

[3] Frank Buschmann and Kevlin Henney. Explicit interface and object manager – two
patterns from a pattern language for distributed computing. In K. Henney and
D. Schütz, editors, Proceedings of the Eighth European Conference on Pattern Lan-
guages of Programs (EuroPLoP’03), pages 207–220, Konstanz, Germany, 2004. UVK.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A system of patterns. John Wiley and
Sons, Chichester, West-Sussex, UK, 1996.

[5] Annie Chabert, Ed Grossman, Larry Jackson, Stephen Pietrovicz, and Chris Seguin.
Java object-sharing in Habanero. Communications of the ACM, 41(6):69–76, June
1998.

[6] Ye-In Chang. A simulation study on distributed mutual exclusion. Journal of Parallel
and Distributed Computing, 33:107–121, 1996.

[7] Eric C. Cooper. Replicated distributed programs. In Proceedings of the 10th ACM
Symposium on Operating Systems Principles, pages 63–78, Orcas Island, Washington,
USA, 1985. ACM.

[8] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL — VERSION 4rev1.
Request for Comments 2060, IETF, December 1996.

[9] Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Updates in highly un-
reliable, replicated peer-to-peer systems. In Proceedings of the 23rd International
Conference on Distributed Computing Systems, ICDCS2003, 2003.

[10] Prasun Dewan and Rajiv Choudhary. A high-level and flexible framework for imple-
menting multiuser interfaces. ACM Transactions on Information Systems, 10(4):345–
380, October 1992.

[11] C. Ellis, S. Gibbs, and G. Rein. Groupware - some issues and experiences. Commu-
nications of the ACM, 34(1):38–58, 1991.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – http/1.1. Request for Comments 2616, IETF,
June 1999.

[13] Darin Fisher and Gagan Saksena. Link prefetching in mozilla: A server-driven ap-
proach. In Eighth International Workshop on Web Content Caching and Distribution,
Hawthorne, NY USA, September 2003.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, pages 273–282. Addison-Wesley, Reading, MA,
1995.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[16] Hector Garcia-Molina. The future of data replication. In Proceedings of the IEEE
Symposium on Reliability in Distributed Software and Database Systems, pages 13–19,
Los Angeles, CA, USA, January 1986.

[17] Saul Greenberg and David Marwood. Real time groupware as a distributed system:
Concurrency control and its effect on the interface. In Proceedings of the ACM 1994
Conference on Computer Supported Cooperative Work, pages 207–217, Chapel Hill,
NC, USA, 1994.

[18] Jörg M. Haake and Till Schümmer. Some experiences with collaborative exercises.
In Proceedings of CSCL’03, Bergen, Norway, 2003. Kluwer Academic Publishers.

[19] J.W. Havender. Avoiding deadlock in multitasking systems. IBM Systems Journal,
7(2):74–84, 1968.

[20] K. Hendrikxs, E. Duval, and H. Oliv´e. Managing shared ressources. In Martine
Devos and Andreas Rüping, editors, Proceedings of the Fifth European Conference
on Pattern Languages of Programs (EuroPLoP’2000), pages 411–430, Irsee, Germany,
2001. UVK.

[21] M. R. Horton and R. Adams. Standard for interchange of USENET messages. Re-
quest for Comments 1036, IETF, December 1987.

[22] Nayeem Islam and Murthy Devarakonda. An essential design pattern for fault-
tolerant distributed state sharing. Communications of the ACM, 39(10):65–74, 1996.

[23] Prashant Jain. Coordinator. In Alan O’Callaghan, Jutta Eckstein, and Christa
Schwanninger, editors, Proceedings of the Seventh European Conference on Pattern
Languages of Programs (EuroPLoP’02), pages 521–533, Irsee, Germany, 2003. UVK.

[24] Michael Kircher and Prashant Jain. Caching. In K. Henney and D. Schütz, editors,
Proceedings of the Eighth European Conference on Pattern Languages of Programs
(EuroPLoP’03), pages 257–268, Konstanz, Germany, 2004. UVK.

[25] Michael Kircher and Prashant Jain. Resource lifecycle manager. In K. Henney
and D. Schütz, editors, Proceedings of the Eighth European Conference on Pattern
Languages of Programs (EuroPLoP’03), pages 243–255, Konstanz, Germany, 2004.
UVK.

[26] J. C. Lauwers and K. A. Lantz. Collaboration awareness in support of collaboration
transparency: requirements for the next generation of shared window systems. In
CHI ’90 Conference on Human Factors in Computing Systems, Special Issue of the
SIGCHI Bulletin, pages 303–311, Seattle, Washington, USA, April 1990.

[27] Doug Lea and Douglas Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Patterns. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[28] Bo Leuf and Ward Cunningham. The Wiki Way. Addison Wessley Addison Wesley,
Longman, 2001.

[29] Stephan Lukosch. Transparent and Flexible Data Sharing for Synchronous Group-
ware. Schriften zu Kooperations- und Mediensystemen - Band 2. JOSEF EUL VER-
LAG GmbH, Lohmar - Köln, August 2003.

[30] Martin Mauve. Consistency in replicated continuous interactive media. In Proceedings
of the ACM 2000 Conference on Computer Supported Cooperative Work, pages 181–
190, Philadelphia, PA, USA, December 2000. ACM.

[31] Paul E. McKenney. Selecting locking primitives for parallel programming. Commu-
nications of the ACM, 39(10):75–82, 1996.

[32] Jonathan P. Munson and Prasun Dewan. Sync: A java framework for mobile collab-
orative applications. IEEE Computer, 30(6):59–66, June 1997.

[33] John F. Patterson, Mark Day, and Jakov Kucan. Notification servers for synchronous
groupware. In Proceedings of the ACM 1996 Conference on Computer Supported
Cooperative Work, pages 122–129, Boston, Massachusetts, USA, 1996.

[34] Atul Prakash and Hyong Sop Shim. Distview: Support for building efficient col-
laborative applications using replicated objects. In Proceedings of the ACM 1994
Conference on Computer Supported Cooperative Work, pages 153–164, Chapel Hill,
NC, USA, 1994.

[35] Nuno Preguica, J. Legatheaux Martins, Henrique Domingos, and Sergio Duarte. Data
management support for asynchronous groupware. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 69–78. ACM Press, 2000.

[36] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclusion
in computer networks. Communication of the ACM, 24(1):9–17, January 1981.

[37] Mark Roseman. When is an object not an object? In Proceedings of the Third Annual
Tcl/Tk Workshop, pages 197–204, Toronto, Canada, July 1995. Usenix Press.

[38] Mark Roseman and Saul Greenberg. Building real-time groupware with groupkit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction, 3(1):66–106,
March 1996.

[39] Titos Saridakis. A system of patterns for fault tolerance. In Alan O’Callaghan, Jutta
Eckstein, and Christa Schwanninger, editors, Proceedings of the Seventh European
Conference on Pattern Languages of Programs (EuroPLoP’02), pages 535–582, Irsee,
Germany, 2003. UVK.

[40] Christian Schuckmann, Lutz Kirchner, Jan Schümmer, and Jörg M. Haake. Design-
ing object-oriented synchronous groupware with coast. In Proceedings of the ACM
1996 Conference on Computer Supported Cooperative Work, pages 30–38, Boston,
Massachusetts, USA, July 1996.

[41] Christian Schuckmann, Jan Schümmer, and Till Schümmer. Coast - ein anwendungs-
framework für synchrone groupware. In Proceedings of the net.objectDays, Erfurt,
2000.

[42] Till Schümmer. Gama – a pattern language for computer supported dynamic collab-
oration. In K. Henney and D. Schütz, editors, Proceedings of the Eighth European
Conference on Pattern Languages of Programs (EuroPLoP’03), Konstanz, Germany,
2004. UVK.

[43] Till Schümmer and Robert Slagter. The oregon software development process. In
Proceedings of XP2004, 2004.

[44] Dietmar Schütz. Permit based locking. In Andreas Rüping, Jutta Eckstein, and
Christa Schwanninger, editors, Proceedings of the Sixth European Conference on Pat-
tern Languages of Programs (EuroPLoP’01), pages 347–359, Irsee, Germany, 2001.

[45] Mukesh Singhal. A heuristically-aided algorithm for mutual exclusion in distributed
systems. IEEE Transactions on Computers, 38(5):651–662, May 1989.

[46] Daniel A. Tietze. A Framework for Developing Component-based Co-operative Ap-
plications. PhD thesis, Technische Universität Darmstadt, 2001.

[47] Daniel A. Tietze and Ralf Steinmetz. Ein framework zur entwicklung komponenten-
basierter groupware. In R. Reichwald and J. Schlichter, editors, Verteiltes Arbeiten -
Arbeit der Zukunft (Proceedings der Fachtagung D-CSCW 2000), pages 49–62, Mu-
nich, Germany, September 2000. B. G. Teubner Stuttgart, Leipzig.

[48] Ouri Wolfson and Sushil Jajodia. An algorithm for dynamic data distribution. In
Proceedings of the 2nd Workshop on the Management of Replicated Data (WMRD-
II), Monterey, CA, USA, November 1992.

[49] Ouri Wolfson and Sushil Jajodia. Distributed algorithms for dynamic replication
of data. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS’92), pages 149–163, San Diego, CA, USA, June 1992.

[50] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algo-
rithm. ACM Transactions on Database Systems, 22(2):255–314, June 1997.

