Ignored Architecture, Ignored Architect

Klaus Marquardt
Email: pattern@kmarquardt.de
Copyright © 2004 by Klaus Marquardt. Permission granted for EuroPLoP 2004

Being a software architect is fun. Besides the obvious challenges in
technology, architects often face interesting team situations, and can have
more influence and impact on the project’s success than their manager.

Let's face it: Having to deal with a software architect can be, well, also
funny — but not necessarily constructive. Any influential person is highly
visible and evokes emotional reactions. Personality clashes can lead to
mutual ignorance, and team members might deliberately choose to ignore
the architect at least occasionally. Sometimes the architecture itself gives
good reasons to ignore it. Sometimes the "architect" is not really the
architect, and other developers or managers are answering the tough
questions, or worse: nobody does.

This paper aims to help architects and other project participants find out
what is going on in the project and to explore whether and why the architect
or the architecture is being ignored. A variety of counter measures are
available, some of which should be applicable even in the most difficult
situations.

Introduction

There is an expert role in software development that involves a high level of
communication, a visionary view on the system and a broad understanding
how to build it. Where this role has a name, it is typically called software
architect'. A software architect also knows how to bring the vision to life,
and takes responsibilities to educate people and integrate the system until
the vision has become reality.

Real projects might encounter deviations from this ideal. When projects fail,
the reasons are mostly attributed to non-technical issues [CACMO0?2]. This
paper examines whether a tendency of the development team and
management to ignore the architecture or the architect can be such an issue.
It aims at giving hints for all project participants to identify and name yet
hidden problems.

This paper tackles a difficult topic of primary concern to the architect: an
assessment of the architecture and the architect. She needs to interpret early
signals about her own work and role. Filling one of the lead positions of a
project can make it difficult to learn from others. As few people are able to
reflect upon their own role and behavior, most issues can better be identified
during retrospectives [Kerth(1]. When these retrospectives are conducted
during the project’s course, the architect can initiate effective counter
measures and improve the situation before somebody complains about
obvious deficiencies [Lind+03].

All of the situations are described from the viewpoint of a software
architect. However, some insights are more obvious to the people who have
to deal with an architect, rather than to the architect themselves. Most
measures require joint understanding and effort of managers and architects.
Insightful observers, especially architects, senior developers, consultants
and managers, will find hints to improve their current or future projects.

About this Paper

This paper aims at helping architects and other project participants to find
out what is going wrong in their project and why, and what they can do
about it.

For this purpose the problem is described in a form appropriate for a
medical disease, as a diagnosis. Known resolutions or measures are
introduced as therapies. Similar to the medical world, a complex problem
might have more than one solution, and a solution might help to solve more

' The literature distinguished software architects at application, system, and enterprise
scope, and categorizes into functional or application, infrastructure or technical, integration,
and security architecture. The described role is independent of these dimensions and applies
potentially to all key developers, independent of a job title.

than one particular problem. Diagnoses and therapies do not stand on their
own but are cross-linked back and forth.

Following this medical metaphor brings some unique features. A wealth of
vocabulary becomes accessible. The metaphor also shows the limitations we
face: none of the presented solutions might actually cure a particular system.
Some therapies are only effective when applied preventively, others are
merely palliative or might at best lead to a remission.

In this paper, diagnosis names are written in UNDERLINED SMALL CAPITALS
and therapy names in SMALL CAPITALS. Names used but not listed herein are
marked (2) and can be found in the references. Both diagnoses and
therapies follow their own pattern formats including sections that contribute
to the medical metaphor.

e The description of a diagnosis starts with a small summary and a
picture. Symptoms and examination are discussed and concluded by
a checklist that enumerates mandatory, typical and occasional
symptoms. A description of possible pathogens and the etiology
closes the diagnosis.

Each diagnosis comes with a brief explanation of applicable
therapies. This includes possible therapy combinations and the kind
of effect: curative, palliative or preventive. Where available,
treatment schemes are described that combine several therapies.
These are suggested starting points for a successful treatment of the
actual situation.

e Therapies are measures, procedures or other medications applicable
to one or several diagnoses. Their description, in full following a
canonical pattern form with medical and pharmaceutical extensions,
is abbreviated in this paper.

Diagnosis: Ignored Architecture?

The project team pays lip services to its architecture, but the project is
organized around other criteria, the team commits to no architecture and
raises obstacles to any architectural attempts.

You are the dedicated architect of a project. Having said that, the actual role
behind the job title does not meet your expectations. The range of decisions
that you are empowered to make is limited. Before anything gets
implemented or changed, most team members ask the project manager for
approval.

The project manager emphasizes that the project needs a sound architecture;
however, his goals are only related to the timely release of the first software
version. Whenever issues arise that are relevant to his goals, he makes
decisions himself. Neither the project team nor the management has a clear
understanding what they expect from the architecture and exactly why they
need it.

Effective managers tend to plough through everything perceived
as an obstacle, unless it is sufficiently resistant in which case it
needs to be negotiated. The project’s own architecture and its
consequences can become an obstacle e.g. by increasing the
amount of work required before the next milestone. In that case
the architecture will be overrun or undermined whenever
possible, just as the rat ploughs through the walls of the maze
negating their original purpose.

% A previous version of this diagnosis can be found in [Marq03b]

The team consists of several specialists in the application domain. These
specialists do not merely create software but work closely with product
management, marketing, and customers or their representatives. They view
software architecture as an activity that does not add value. Discussions
with the architect are welcome as long as they clarify issues but do not
cause changes to their existing software or increase the effort to deliver the
domain functionality to the system. They perceive the rules and obligations
imposed by the architecture as an unfriendly intrusion into their home area.
When architectural changes are discussed, the domain specialists start to
worry about the impact on the progress of their assigned tasks.

Being the software architect becomes frustrating over time. While all project
team members rely on your knowledge and insight, your contributions are
hardly acknowledged. Even though a sound architecture reduces the total
cost of ownership, management is more interested in short term goals.
Despite the fact that a sound architecture enables parallel and independent
development, agreement on the necessary infrastructure can not be reached
and it is implemented and used merely half-heartedly and partly avoided.

Finally when changes become unavoidable, however well motivated, it is
found that the internal structure of the applications does not live up to the
principles that the architecture has demanded. Measures to limit the effect of
changes, such as the open-closed principle [Meyer97] or dependency
inversion [Martin96], have not been taken. The changes to the system
require tremendous effort and become the nightmare that everybody was
afraid of. Even though common software structures and shared code would
have increased system usability through a common style, look and feel
together with easier maintenance, each application specialist has resorted to
his own style, opinions and habits within his private area.

Symptoms:

e The architect has little or no decision authority.
e Short-term goals are in the focus of management.

e The purpose of the architecture is not obvious to the project
participants.

e There is a strong focus on domain and application knowledge.
e Architecture is perceived an intrusive obstacle to progress.

e The structure of the software does not support the intended system
qualities.

e Little attention is paid to consistency and reuse across different
project areas.

There are different pathogens responsible for IGNORED ARCHITECTURE.
They all result from clashes of expectations or interests that have not been
resolved.

A technically 72INSUFFICIENT ARCHITECTURE is one possible reason
to ignore the architecture. In dramatic cases such ignorance might
even increase the project’s chances to deliver on time or at all.

The architecture is usually closely associated with the person
advocating it and so their credibilities are mutually related. Team
members ignoring the architect themselves is a common cause of an
IGNORED ARCHITECTURE. A software architect will always have to
cooperate with managers and most developers and needs to have a
strong influence.

Another cause of an IGNORED ARCHITECTURE is a poor architectural
process that fails to make the architecture explicit, as in 2IMPLICIT
ARCHITECTURE.

Bad decisions that an architect has made in the past, are likely
remembered by the team and management.

Finally, the architecture needs to both address and manage the stakeholders’
expectations and so it is mostly about communication. The architect’s
communication is almost always an area that can be improved regardless of
any other underlying problems. A typical example is the communication
with the experienced developers on the team. This group is allergic to an
architecture passed with a “throw it over the wall” attitude, but conversely
they dislike their software portions being micro-architected.

Differential Diagnosis

It is important to clarify the underlying cause of an IGNORED
ARCHITECTURE so that the therapies can be chosen. If the problem
originates from an IGNORED ARCHITECT, you would need to address
all personal issues first.

e Do developers go to the architect to ask for clarification, and
invite her to discuss their ideas? That would indicate an
2IMPLICIT ARCHITECTURE or IGNORED ARCHITECTURE, but
not an IGNORED ARCHITECT.

e s the architect perceived a nay-sayer? That would indicate
an IGNORED ARCHITECT.

e Is the architect an accepted software developer? That would
indicate an IGNORED ARCHITECTURE rather than an IGNORED
ARCHITECT.

e s the architect able to dedicate time for architectural work?
If not, that would indicate an 2IMPLICIT ARCHITECTURE and
possibly an IGNORED ARCHITECT.

e Is the system perceived as complex? That would indicate
2INSUFFICIENT ARCHITECTURE or IGNORED ARCHITECTURE.

e [f external observers can spot problems with the architecture
just by looking at available documentation, that would
indicate 2IMPLICIT _ARCHITECTURE or 2INSUFFICIENT
ARCHITECTURE.

The first set of therapies focuses on increasing the acceptance of the
architecture — not of the architect, but that may follow as a consequence.
The key to acceptance is the value that other participants receive. An
effectively communicated BIG PICTURE ARCHITECTURE is a good way to
establish the key architectural elements and feedback mechanisms —
provided the architecture is technically sound and sufficient. Together with
VISIBLE QUALITIES, a subconscious awareness of the architecture can be
achieved that avoids some of the frustration on both sides.

If the project has DEFINED ARCHITECTURAL GOALS, it is easier to recognize
that the architect has delivered these with the defined architecture. Such
goals also help to communicate to developers and management why the
project benefits from the architecture and how different elements of the

architecture relate to the goals. Make sure you EXPOSE your PROCESS to
avoid the management impression that an effective architecture happens by
accident. It also helps when you need to get buy-in for your activities or for
the demands you make on the developers.

An effective and influential architect needs to combine technical and social
skills. This valuable competency needs to be acknowledged by employers.
In some way the ARCHITECT IS REWARDED, or rather should be rewarded.
Otherwise the company basically gets what it pays for — not enough in this
case. There are many ways to embody this principle, such as a technical
career path; a goal related bonus policy; or special project opportunities and
education.

Initial Treatment

Before you start to diagnose much and wait for serious symptoms,
there are a number of therapies that are never wrong, and that help
both with IGNORED ARCHITECTURE and IGNORED ARCHITECT. You
can initiate them preventively, or when the first signs of problems
emerge.

e A BIG PICTURE ARCHITECTURE is helpful in any project
situation and needs to be installed as early as possible. Even
spending minimal effort to establish seemingly trivial rules
helps to get the project and its treatment started.

e A DEFINED NEGLECTION LEVEL prevents you from digging
too deep into areas that are uncritical to the project’s
success, and empowers developers to take over architectural
responsibility in their work area.

e DIVIDE ET IMPERA is the butter and bread task of all
architects. Never forget the symmetry to the final activity,
integration.

e VISIBLE QUALITIES is a great communication means to
transport what is really important.

Therapy Overview

Applicability Effect Related therapies

BIG PICTURE Any time during the Palliative. The essence of
ARCHITECTURE project, preferably early. | Supportive. ADIVIDE ET IMPERA.

Applicability Effect Related therapies

DEFINED NEGLECTION Preferably early in the Palliative.

LEVEL project. Remission
AKA NEGLECT THE LEVEL possible.
BELOW
VISIBLE QUALITIES Any time during the Palliative.
project, preferably early. | Supportive.
DEFINED Any time during the Remission
ARCHITECTURAL GOALS | project, preferably early. | possible.
EXPOSED PROCESS Preferably early in the Remission
project. possible.
ARCHITECT IS REWARDED | Any time during the Preventive.
project. Remission
Requires management possible.
support.

Suggested Treatment Schema

In psychology, a major criterion that governs whether a patient is worth
treating is the personal degree of suffering. While an architect might suffer
from her work being ignored, she could indirectly strengthen her position if
she manages to make others suffer as a result of them ignoring it. However,
this might take too much time to be considered satisfactory — and it
contradicts the positive and productive work ethics that most people value
from software architects.

The steps you can take are very much dependent on the personalities
involved, and so no definitive or proven treatment schema can be offered.

A good starting point seems to be an EXPOSED PROCESS when it comes to
creating an architecture, so that development team and management can
understand what kind of work the architect does. While the EMPHASIZED
ARCHITECTURAL BENEFITS could be more than enough to get the required
level of buy-in, most architecture stakeholders can be won over with a
concise set of DEFINED ARCHITECTURE GOALS that match mostly with their
own goals.

To depend the architect’s salary and career on goals that match mostly with
those of the direct manager is also one of the more elegant possibilities to
implement ARCHITECT IS REWARDED. When the architect is perceivably
interested in getting her points across, she will be more open to focus on the
important aspects — which is key to a successful architecture. BIG PICTURE
ARCHITECTURE and a DEFINED NEGLECTION LEVEL are helpful to avoid
micro-architecting the developers.

Big Picture Architecture®

Define a compact architecture outline and make it become part of the project
jargon. The software architecture outline must cover the top level of the
technical structure, the key domain abstractions, interfaces and interactions,
and the order and stability of development.

You need to illustrate the most important issues in a simplified way. The
simplifications should match with the developers’ experience and scale up
to a large extent. Examples from the technical domain are a Document-
View or a layered architecture. The domain model typically comprises less
than 20 classes and their relations. The most relevant interfaces can also be
categorized and sketched. The order and stability of development can be
expressed in packages and their dependencies.

Metaphors can help you to outline parts of the BIG PICTURE ARCHITECTURE
with a few words that evoke guiding associations. Graphics and diagrams
are typically most appropriate for components, interfaces and interactions.
Resist the temptation to use buzzwords and technology phrases as they do
not help you to distinct your unique system.

In the absence of other common vocabulary, an architect
introduced an extensible architecture with the notion of “colored
boxes”. Each box represented an extension component, the color
indicated its particular purpose with respect to techniques and
application. Within each component, a Model-View-Control
pattern (MVC) came into place, and within the MVC participants
one more level of substructure was defined. After some time, the
vocabulary and dependencies became obvious to the team, and
each developer was able to place a given class at the correct
logical location — or to tell what was wrong about it.

Defined Neglection Level*

Decide on the level of detail that is controlled by the architect, and neglect
all levels below that. While you are serious about the architectural rules at
high levels, relax your control on all levels below the one that is of
architectural interest. You might define a different neglection level for each
area of architectural interest.

® A full version of this therapy can be found in []
* A full version of this therapy can be found in []

While there is no commonly valid rule across all projects and domains, here
are some starting points how to determine your initial level of neglection.
Be aware that this neglect is subject to change during the project, according
to identified risks, workload, and customer needs.

e One Level Below Basic Components. As a first approximation,
look at the components you defined in DIVIDE ET IMPERA and take
care of no more than one level below that one.

e Listen. Unless the team is particularly inexperienced, they usually
know quite well where critical points are, what aspects they need to
care for, and what level of design responsibility they are capable of.

e Don’t Interfere Experience. In the areas assigned to the most
experienced developers, you may neglect most activities — provided
you have a common understanding of priorities and architectural
goals.

e Be Arrogant. After accepting other people’s competence and
wisdom, you need to be sufficiently arrogant to go for your own
viewpoint in case of any doubt.

A large Plug-In based project introduced design conventions that
banned bidirectional or cyclic dependencies among packages.
These rules were checked with automated tool support. Within a
package, dependency cycles were explicitly accepted. This
allowed for a refactoring when cycles were appropriate to the
solution, and kept the high-level dependency structure
manageable.

Visible Qualities®

Make your system’s internal qualities visible. Similar to sound risk
management practice, maintain a list of your top five qualities. Define
measures to achieve them, and determine frequently to what extent you have
reached your goal.

The key issue is to raise awareness amongst the team and in management of
the existence of these qualities and their relative importance to the success
of the project. Ask the team come for a list of possible qualities and discuss
their value and advantages, especially when the internal system qualities are
unbalanced. The team should order them according to their priority, taking
into account the expectation of the project’s sponsor, the daily work of the
team, ans the effects on the maintenance and costs of ownership. Do not

> A full version of this therapy can be found in [] Performitis

mind if the qualities you perceive as important are not the topmost — you
will go through the list every week or two and re-evaluate.

“Most team members were new to object-oriented design, so we
discussed a lot about the promised qualities it should deliver and
how to achieve them. We started to do AJOINT DESIGN at the
white board, and explored different alternatives how extensibility
could be reached, how testability could be increased, and what
amount of decoupling would require what effort. When the team
size increased, ZIDESIGN REVIEWS became an essential part of the
project. Initially I participated in most, and we established an
ordered catalogue of criteria to check. With this catalogue, the
process was accepted and carried by the team. Closer to the end
of the project, the team decided to focus on other issues and
reduce the ceremony level of the design reviews. By that time, the
project lasted for more than two years, all team members had
significant expertise and shared a common sense of the important
qualities to take care of, and how to address them.”

Defined Architectural Goals

Define goals that the architecture should meet, and get management
agreement. These goals should directly support the goals that the project
manager follows, and extend them towards a sustainable architecture
minimizing the total costs of ownership. It is important to negotiate the
goals with all clients (development and management) explicitly to avoid
subsequent conflicts.

Openly communicate the purpose of the architecture, and what the project
gains when compared to having no explicit architecture. Match the purpose
to the overall technical and business goals of the project.

Exposed Process

Explain for each activity why and how you do it.

To some project stakeholders, architecture may seem like an artist work
with little relevance to the project success. Developers may feel pampered
and controlled when the architect demands adherence to defined policies.

To explain why you take initiative helps to overcome this. Work in the open
to avoid that outsiders may assume a hidden agenda or other politics.

Exposed Process needs to be combined with other therapies that help to
create acceptance and trust, such as VISIBLE QUALITIES, DEFINED
ARCHITECTURAL GOALS, and ARCHITECT ALSO IMPLEMENTS.

Architect is Rewarded

Compensate the architect based on the technical and business goals of the
project. This can take the form of a success-based salary bonus
compensation similar to those used for accountable project managers, a
technical career path, or any other benefit of interest to the architect such as
education or more choice in their next assignment.

Provide opportunities for acknowledgement within the company that are
independent of the career path for managers. Make these opportunities
attractive in terms of both status and money. Prevent technically excellent
people from becoming managers or leaving to join competitors because they
see no avenues for personal growth.

Acknowledge the key developers by raising their status and distinguishing
them from less experienced technical staff.

Diagnosis: Ignored Architect

The project organization has established a software architect role, and
assigned a person. However, the architect does not have a strong voice in
important decisions, and his advice is not considered.

»doctor, people are ignoring me.*

,»hext please!*

You are the dedicated architect of a project. Having said that, the job title
does not seem to give you any influence within the project. More weight is
given to the opinions of other developers and they are more frequently
asked for advice during the course of the project.

The development team is aware of the need for a consistent design. Frequent
design meetings have been established, or the team convenes ad hoc design
sessions. While you are a frequent guest at those meetings, you neither
moderate nor instigate them — because the design issues are not deemed to
be at your level.

“In an international project we had some difficulties in
establishing a common understanding in system architecture.
Finally we formed a team of three: an external consultant, one
architect from the other location, and me. The other team was
living in its familiar habitat and was under management pressure
to complete early. All discussion and concept change that the
architecture team initiated was propagated to both teams. While
my team stayed in close contact with me, or vice versa, all of us
still learning, the other architect lost attention — because of the
new stuff was deemed irrelevant to that team’s immediate needs.
They established a design team and occasionally invited him to
give presentations, but did not approach him for the ad hoc
decisions.

“Several months later the project was cancelled due to overall
failure to cooperate, integrate, and deliver. The only reusable
remainder of the project was a functional team at this location,

and a wealth of concepts and implementation that served as a
starting point for the next project. At the follow-on project, that
software part formed a solid foundation that did not happen to be
on the critical path of the overall effort once.”

In an attempt to compensate, you might try to increase your influence by
raising the tough questions, intervening in decisions, and prescribing what
others have to do. However, this effectively deepens the gap as you are still
not approached and some developers actively avoid you. The manager does
not interfere, as she perceives that the team functional and is taking care of
the architecture by itself.

A common way for a manager to ignore a software architect is to perceive
and define him as a nay-sayer, a person who tries to prevent progress —
acting against common wisdom and without decision authority. Seasoned
developers often suffer a particularly allergic reaction against a “throw it
over the wall” attitude that arises when the formal technical work of the
architect is OK but the communication of the results is insufficient. In other
organizations, this might be the exact way that architects are expected to
behave.

Symptom checklist:

e The architect is not approached to answer questions.

e Other team members’ have a higher impact on decisions.

e The architect does not lead design efforts.

e Management does not care who fills which role.

e The architect is perceived a nay-sayer.

e The architect is accused showing a “throw it over the wall” attitude.

There are two major pathogens responsible for IGNORED ARCHITECT,
corporate culture and personality traits. A common factor is that they are
both dependent on the architect’s personality, but that he himself has a
limited ability to influence them.

The architecture is usually closely associated with the person advocating it,
and so the credibility of one is related to the credibility of the other. Team
members ignoring the architect themselves is a common cause of an
IGNORED ARCHITECTURE. A software architect will always have to
cooperate with the project’s management team and most of the developers,
and so the architect needs to ensure that they have a strong personal
influence on these groups.

A cure for an inappropriate personality is beyond the scope of this paper.
The suggested therapies can at best be palliative, and possibly lead to
remission in the long term.

Due to the close relation between the architect and the architecture, it is
wise to provide a sound architecture and promote it in a balanced way.
Check the therapies suggested in IGNORED ARCHITECTURE and
2INSUFFICIENT ARCHITECTURE, and the hints in the Initial Treatment box.

Avoiding obvious mistakes in the architecture does not make you an
accepted project team member. PART-TIME ARCHITECT allows you to
gracefully step back a bit and limit your personal exposure, while
ARCHITECT ALSO IMPLEMENTS can bring some peer acknowledgement. You
are not in a position to start 7ZARCHITECT ALSO COACHES, but DEFINED
ARCHITECTURAL GOALS help to get developers’ buy-in. It might also be
wise to have an external MENTOR join the team who could mitigate
personal, process related and technical issues

Therapy Overview

Applicability Effect Related therapies
PART-TIME ARCHITECT Any time during the Remission Combine with
project, preferably late. | possible. ARCHITECT ALSO
Requires management IMPLEMENTS.
support.
ARCHITECT ALSO Continuously during the | Supportive. | Counter indicated
IMPLEMENTS project. before DIVIDE ET
IMPERA or BIG
PICTURE
ARCHITECTURE are
in place.
DEFINED Any time during the Remission
ARCHITECTURAL GOALS | project, preferably early. | possible.
MENTOR Any time during the Possibly
project. curative, but
Requires management with latency.
support.

Part-time Architect®

Allow yourself only a limited time to care for the system in the architect’s
role. Let go as soon as the system can prosper with less care, and stay in
control of only the very essentials of the architecture.

This can be done in several ways that also give other advantages. You could
spend more time doing actual coding (as in ARCHITECT ALSO IMPLEMENTS),
helping to finish the system. You could move forward to another project or
other unrelated tasks. You could invite other team members to take some
architectural responsibilities, giving them adequate career opportunities.

When your time as full time architect of the particular system has passed,
strange things will happen. Colleagues and managers will pay less attention
to your suggestions, some colleagues might try to occupy your position,
your focus on structure might lead to over-design and unnecessarily slow
down the development pace — in short, you potentially harm the system and
your career.

The difficult part is to identify the right moment to let go. In a similar way
to movie stars and politicians, it is possible for observers to tell that the
moment has already passed. It takes a very self-conscious and ego-less
person to declare herself partially superfluous, and to admit that the project
would run faster without her work. If you initiate a change actively, you
avoid the risk that others perceive this lessening of effectiveness first, and
you can decide yourself to go back into full time mode when integration
problems arise or major extensions are planned.

For a significant functional extension of a medical product, an
architecture team was formed of four developers — one of each
development team. One developer was the initial architect of the
product. All architects remained the lead developers of their
respective teams. This lead to a very quick exchange of
experience, and the team established a productive and informal
working basis. Product development proceeded smoothly and
combined a successful follow-on product with a consistent
architectural vision of the complete system. The four architects
found a productive way to cooperate. While the initial architect
acted as a MENTOR and improved his team and change
management skills, the developers also raised their architectural
skill level.

% A full version of this therapy can be found in [Marq02a]

Architect also Implements’

Make the architect a developer, a primo inter pares® - in addition to her
architectural tasks. Assign development tasks to her that are influenced by
architectural decisions. It is common practice to let the architect implement
the most difficult system parts, but take care to keep him off the critical path
and plan some slack time for unforeseen architectural issues.

Leading by example brings a lot of short and long term benefits. You get a
consistent system and a well educated development team, and a number of
high quality feedback loops. This will most likely increase your system’s
development speed, its internal quality, and decrease its maintenance costs.
On the other hand, an architect switching between different tasks might be
less effective, and some of the tasks can not be completed as quickly as
usual.

In huge industrial projects, it is fairly uncommon to have an architect do
anything but architecture — whatever your organization defines this term.
However, ARCHITECT ALSO IMPLEMENTS is a common policy in smaller
teams. When different teams and organizations begin to cooperate, for
example in projects crossing geographical and cultural borders, stating this
policy explicitly is of major importance. Otherwise, misunderstandings will
occur with respect to roles, responsibilities, influence and availability that
can seriously hinder a successful cooperation.

Defined Architectural Goals

Define goals that the architecture should meet, and get management
agreement. These goals should directly support the goals that the project
manager follows, and extend them towards a sustainable architecture
minimizing the total costs of ownership. It is important to negotiate the
goals with all clients (development and management) explicitly to avoid
subsequent conflicts.

Communicate openly what the purpose of the architecture is, and what the
project gains compared to having no explicit architecture. Match this
purpose to the overall technical and business goals of the project.

7 A classic, first documented in [Copl95], then in [CoHa04]. A medical version is in
[Marq02b]
¥ Latin: first among peers

Mentor®

Bring in an external expert who is experienced with large systems and is
accepted by your architects. The mentor's task is to teach your team good
habits and working style so that it can succeed next time on its own.

Given that the architects themselves need mentoring, the mentor could
become a consulting lead of the architecture team, in order to encourage the
architects to make the right decisions on their own. His working knowledge
must cover multiple working styles and be sufficient to allow the team to
also make decisions. He judges whether the team decision can lead to
success, and intervenes when the team diverges from a path that could
possibly be successful. He leaves early enough to allow other team members
to take over responsibility and pride of ownership.

The key difficulty about mentoring is to detect that you need it at all. You
can only spot the need when you retreat from your daily work. But this
distant look is among the working habits that a mentor is expected to teach
you, and probably the least experienced team members are the last ones to
recognize this. So those teams who know by themselves they need a mentor,
might be those who need him least.

The next key issue is more obvious: how do you find a good mentor? Do not
look for star developers; more important are communication skills and a
mindset to help other people.

? A full version of this therapy can be found in [Marq02a]

Acknowledgements

Wolfgang Keller shepherded this paper to EuroPLoP and insisted that he
understands it before bothering a workshop, and would not fall asleep
during the lecture. Further thanks to Andy Longshaw for his support in
language precision and elegance. If you find flaws, I introduced them after
his review.

Thanks to the workshop participants at EuroPLoP for their comments: Lise
Hvatum, Allan Kelly, Andy Longshaw, Alan O’Callaghan, Jorge L. Ortega-
Arjona, and Anne Villems. Andy Schneider provided valuable feedback
after the conference.

“There is no success like failure, and a failure is no success at all”
[Dylan65]. Thanks to the unnamed colleagues who enabled me to learn
from my own mistakes, and allowed me to learn from theirs. More thanks to
those who agree that you need to have success to learn how to do it again.

The copyright holder of the picture illustrating IGNORED ARCHITECTURE
could not be determined; hints are welcome.

References

CACMO2 Article in CACM raising the notion that the team is a key deliverable
of a project. 2002

CoHa04 James Coplien, Neil Harrison: Organizational Patterns of Agile
Software Development. Prentice Hall 2004

Copl95 James Coplien: A Generative Development-Process Pattern Language.
In: Pattern Languages of Program Design, Addison-Wesley 1995

DeMa0l Tom DeMarco, Timothy Lister: Peopleware. Second Edition, 2001

Dylan65 Bob Dylan: Love Minus Zero / No Limit. In: Subterranean Homesick
Blues, CBS Records 1965

Foote+00 Brian Foote, Joseph Yoder: Big Ball of Mud. In: Pattern Languanges of
Program Design 4, Addison-Wesley 2000

Kerth01 Norman Kerth: Project Retrospectives. Addison-Wesley 2001

Lind+03 Lowell Lindstrom, Kent Beck: XP and Culture Change Part II “It Gets

Worse Before It Gets Better: Changing to XP”. In: Cutter IT Journal,
February 2003, Volume 16, No. 2

Marq02 Klaus Marquardt: Architecture and Organization: Structure, Problems,
and Solutions. In: Proceedings of EuroPLoP 2002

Marqg02a Klaus Marquardt: Supporting the Software Architect: Selected Patterns
Covering Different Perspectives. In: Proceedings of EuroPLoP 2002

Marg02b Klaus Marquardt: Patterns for the Practicing Software Architect. In:
Proceedings of VikingPLoP 2002

Marq03a Klaus Marquardt: Performitis. To be published in: Proceedings of
EuroPLoP 2003

Marq03b Klaus Marquardt: Neglected Architecture. To be published in:

Proceedings of VikingPLoP 2003

	Ignored Architecture
	Big Picture Architecture
	Defined Neglection Level
	Visible Qualities
	Defined Architectural Goals
	Exposed Process
	Architect is Rewarded

	Ignored Architect
	Part-time Architect
	Architect also Implements
	Defined Architectural Goals
	Mentor

