Platonic Schizophrenia

A pattern about mistaking the idea for the real thing [PlatoA]
... and mistaking a thing for what you actually need.

Klaus Marquardt

Email: pattern@kmarquardt.de
Copyright © 2004 by Klaus Marquardt. Permission granted for EuroPLoP 2004

Taking the requirements for the system is a well-known recipe for failure, as
is taking the architect’s explanation for the implementation, as is taking the
latest tool for what supports your needs.

Mistaking the ideal for the reality is a schizophrenic misconception way too
common to go undescribed. This pattern helps to identify its presence and
gives hints how to overcome its negative impact.

Introduction

Focus on the core business! Following this imperative, companies and
projects try to take advantage from globalization and environment. Software
parts or entire systems are being contracted out to companies that
understand better how to engineer software systems. In the automobile
industry, a long tradition of combining complex ingredients has changed the
focus from building automobiles towards the process of supplier
management. Organizations rely on external knowledge to do the payroll
system or the entire IT support.

Defined deliverables are contributed from contractors and then deployed or
integrated into the own system or product. This is the place where the ideal,
the focus on the core business and deliberate incompetence for anything
else, meets the reality. The new core business is in fact integration.

For many companies, integration comes surprisingly hard. Their idea was
plug and play. Their reality is a tedious business concerned with contracts,
process, architecture, and peopleware. Some companies admit difficulties
and cope with them. They either learn about integration, or they broaden
their focus to include business beyond the minimal core.

This article is about the other kind of companies and projects. Those that
claim to experience no difficulties in spite of lacking success. Those that do
not perceive a difference, or seek fault on an implementation level. Those
that exhibit denial.

Focusing on the core business does not only translate into integration.
Psychologically it is about trust in a situation of limited knowledge. Other
areas in life have exactly that — think of the daily commuting. Traffic is
dangerous and life is at stake anytime, and nobody knows what will happen
in the next minute. However, we have learned early signals of deviation
from the ideal. Plenty options for reaction with different significance is
available. It can be considered healthy to ignore the fear and — trust.

Control is an illusion. The secret to successful outsourcing and integration is
a sound knowledge of the necessary techniques, management of risk,
dependencies and complexity, the ability to tell the difference between the
reality and the ideal, to detect it early, to have measures available for
corrective action. And to learn, not to deny.

About this Paper

This paper aims at helping architects and other project participants to find
out what is going wrong in their project and why, and what they can do
about it.

For this purpose, the problem is described in a form appropriate for a
medical disease, as a diagnosis. Known resolutions or measures are
introduced as therapies. Similar to the medical world, a complex problem
might have more than one solution, and a solution might help to solve more
than one particular problem. Diagnoses and therapies do not stand on their
own but are cross-linked back and forth.

Following this medical metaphor brings some unique features. A wealth of
vocabulary becomes accessible. The metaphor also shows the limitations we
face: none of the presented solutions might actually cure a particular system.
Some therapies are only effective when applied preventively, others are
merely palliative or might at best lead to a remission.

In this paper, diagnosis names are written in UNDERLINED SMALL CAPITALS
and therapy names in SMALL CAPITALS. Names used but not listed herein are
marked (2) and can be found in the references. Both diagnoses and
therapies follow their own pattern formats including sections that contribute
to the medical metaphor.

The description of a diagnosis starts with a small summary and a
picture. Symptoms and examination are discussed and concluded by
a checklist that enumerates mandatory, typical and occasional
symptoms. A description of possible pathogens and the etiology
closes the diagnosis.

Each diagnosis comes with a brief explanation of applicable
therapies. This includes possible therapy combinations and the kind
of effect: curative, palliative or preventive. Where available,
treatment schemes are described that combine several therapies.
These are suggested starting points for a successful treatment of the
actual situation.

Therapies are measures, procedures or other medications applicable
to one or several diagnoses. Their description includes problem,
forces, solution, implementation hints and an example or project
report. Their initial context is kept rather broad. For each applicable
diagnosis, applicability and particular consequences are evaluated.

In addition to the common pattern elements, therapeutic measures
contain additional sections containing the medical information.
These are introduced by symbols and show the mechanisms of a
therapy and how it works (!-‘), the involved roles and related costs
(/47), counter indications, side and overdose effects (), and
cross effects when combined with other therapies (<-:,’). For the
diseases it can be applied to, usage sections are added (/)

Diagnosis: Platonic Schizophrenia

The project or some of its key players mis-take important concepts for their
implementation. They deny the difference and are mentally unable to
recognize and react appropriately when the real situation starts to deviate
from the assumed ideal.

The fictitious project is the embedded software part of an industrial product.
This product shall make use of new technologies that are emerging on the
market but have not been available to industrial users so far.

Due to the contribution of other departments, projects and companies, the
project’s success is highly dependent on successful cooperation and
integration. The market introduction plan is not outright aggressive, but
upper management expects a decrease in development time due to the
technology delivered by external partners.

In order to maintain a chance to meet the project goals, parallel tasks are
identified, and as many of them as possible have been delegated to selected
contributors. The remaining task is to integrate the delivered portions of the
software, to build a meaningful application out of them, and to maintain the
link to management, customers and end users.

The project lead has tied the partners to the project by contracts and
milestone plans. The contributors agreed to deliver work portions by certain
dates, and the project relies on these deliveries. To enable independent
parallel development, the responsibilities of the external components have
been functionally specified. The technical protocol interface definition has
been planned for an early milestone.

The project leader uses the company’s standard procedures for external
contractors. These standards include legal actions on contract violations, but
little assistance for early warning signs and indications for potential
deviation.

“For the measurement of the technical gases, we used a
component that had been developed and used before. Well, not
exactly; due to our unique geometry we had to specify changes
and combine two different sensors into one component. A
software team in the Netherlands started to build the sensor
package device, specified the protocol, and programmed a test
application to prove the functionality. In the following weeks and
months, this test application grew to become part of the
application software.

“In the course of integrating further components, we had to
change our architecture with respect to the responsibilities of
individual software portions. Especially the real time behavior
became critical, and the entire message handling mechanism had
to be refactored. It turned out that due to its internal structure,
the entire driver and application code for the gas measurement
had to be reworked, requiring more effort than the external team
had promised to spend in total.”

The first major integration efforts turned out to be difficult. While the
agreed functionality appeared to be available, it was not instantly usable
within the integrated system. The necessary changes of the infrastructure
and calling code pieces required more effort than expected. The leader
reported delay to upper management, which was accepted with the premise
that no further delays would occur.

Later on integration became even more awkward. While all components
were up and running, the crosscut workflows visible to the user stuck.
Workflow oriented testing had only been foreseen late in the project.

The project now entered a strange state between on-track and delayed.
Officially all tracked deliverables were there, but the confidence of the
project team diminished. Some team members sensed that the project might
fail, but they could not prove it due to lack of evidence. The project leader
decided to ignore these irritations, as no tangible delay or problem could be
reported to upper management. The project established implicit rules for
communication, an explicitly optimistic attitude, and it silently tabooed
questions. After weeks, the team used sarcasm as the sacrosanct
replacement for open questions and honest words.

Symptoms:

e Key components are provided externally.
e The project’s main duty is integration.
e Procedures are considered more important than people.

e Management does not accept repeated project replanning.

o Integration comes more costly than expected.

o The company has no apparent technical core competence.

o In-house competence is ignored.

o The project is not aware of early warning signals.

o Sarcasm replaces honest communication.

o The architecture is not binding except for a very global level.

o The architecture for contributed software is not ready to publish.

o The project has no measures to intervene early against contractors.

o Early integration does not cover user workflows.

The major pathogen responsible for PLATONIC SCHIZOPHRENIA is the denial
of being in a situation where reality deviates from an ideal. Involuntary
denial is promoted by inexperience, not being aware of potential problems.
Voluntary denial is promoted by experience, being aware of potential
problems but not willing to acknowledge them.

Inexperience combined with lack of mentoring or visionary thinking
potentially leads to taking the wrong decisions, and worse it disables the
project to know when it starts getting off track. While early signals might be
there and be seen, their importance is underestimated and no appropriate
reaction follows.

The person responsible for a working system is under pressure to get
something done within boundary conditions that make the achievement
virtually impossible. However, when neither the responsibilities nor the
conditions must be questioned it is most convenient to place the
unachievable onto somebody else’s shoulder, and expect the impossible
from there. This can be a conscious decision, but often it is subconscious at
best. While it is individual behavior, it tends to establish itself throughout
the organization. Finally, people do not want to be reminded of their own
negative feelings, irritation and insecurity, so they stick to the ideal and
pretend that reality is like that.

PLATONIC SCHIZOPHRENIA can be acquired in environments that neglect
learning and do not allow for open communication. Sometimes it is a
transition state towards experience based wisdom, a “second system effect”
[Brooks79] when potential problems become vaguely aware but are not
seriously considered in the situation at hand.

Schizophrenia in the medical sense [Green0I] is a complex syndrome with
little objective diagnostic criteria. The set of typical symptoms includes
delusion, thought disorder, lack of motivation, and impaired attention and
problem solving. Different kinds of schizophrenia are described; we call this
particular kind “platonic” because the delusion is linked to the notion of an

ideal (the Form of the Good) known from Plato’s school of thought
[PlatoF.

Therapy Overview

The fictitious example demonstrated a desperate situation. Luckily, it does
not need to get that bad. Organizations and people are able to learn, and
counter measures are available at any state.

Becoming aware of the schizophrenic mindset is the first step for remission.
In terms of Plato’s analogy of the cave [PlatoA], it is an example of the
second stage of self and world recognition. You already identify that there
are just shadows, but you still think the cave is the real world.

The second step is to embrace change [Beck(00]. Panta rei - everything is in
flow. Consider change to be the natural thing, allow it to happen. There is
no steady state in life. If you decide to initiate a change, prepare that the
system you change reacts by itself and changes also.

The roadmap gives an overview on the therapies, when they are best applied
during the project, and which are preconditions for others.

f{ 7 Plug-In Architecture

7 Big Picture Architecture Transposed Organization

/é(Behavioral Contract

A Visible Qualities

Explicit Risks

Decision Support Questions

Incremental Planning

Integration First Architecture

The project in the introduction has shown a final state of the disease.
However, there are early signs and signals that allow you to initiate
corrective action.

The project includes deliveries from
external partners ...therefore establish a BEHAVIORAL
CONTRACT early in the project.

The architecture is not binding, and

the project is managed on

requirements alone ...therefore publish a 72BIG PICTURE
ARCHITECTURE, for example using
PLUG-INS, and ensure that only
integrated components are
considered done (INTEGRATION
FIRST ARCHITECTURE)

Project management decisions are

not discussed, questions are tabooed ...therefore initiate changes only with
DECISION SUPPORT QUESTIONS, and
practice honest INCREMENTAL
PLANNING.

The managers are uncomfortable but

do not know where to start change ...therefore EXPLICIT some less
commonly seen RISKS, and suggest
changes that disrupt the normal
procedures and change the
participants mindset, such as
TRANSPOSED ORGANIZATION.

EXPLICIT RISKS helps to identify potential problems that have not hit the
project yet. The introduced element of self-reflection creates awareness of
an ideal, and potential deviations from it. Furthermore the risk management
process ensures that this awareness does not fade but becomes refreshed
periodically.

The awareness from applying EXPLICIT RISKS can initiate a curative process
for the schizophrenia. This requires that the therapy is applied seriously and
open-minded. However, if interpreted as a mandatory exercise demanded
for formal approval, possibly copying the risk list from some previous
project, EXPLICIT RISKS undermines the intention and minimizes the effect.
Inadvertently it can create the illusion of awareness and a false sense of
control, magnifying the schizophrenia.

EXPLICIT RISKS is best applied early in the project. There is no counter
indication, even the mandatory exercise interpretation might help in
unrelated problem areas. Combine EXPLICIT RISKS with techniques that help
open the mind, such as 7BRAINSTORMING. An 2EXPENSIVE CONSULTANT
can both reveal hidden knowledge and mention it seriously to any
management level.

DECISION SUPPORT QUESTIONS help to identify potential conflicts that have
not affected the project yet. Their purpose is to address a variety of aspects
that would be a frequent source of arguments otherwise, and bring the

discussion to closure. They introduce elements of reflection on analysis and
team personality level.

DECISION SUPPORT QUESTIONS do not address the schizophrenia, but they
can support its identification and diagnosis. Becoming aware of the
motivation behind decisions might make the schizophrenic mindset visible
to project sponsors and observers. However, the platonic nature of the
perception is not addressed.

DECISION SUPPORT QUESTIONS should be applied for each major decision in
the project, especially those that have a strategic impact or that are likely
driven by opinions and discussed several times. An 2EXPENSIVE
CONSULTANT can help to introduce this technique into an organization.

INCREMENTAL PLANNING shifts the focus from the deficiencies to the
achievements, and acknowledges the learning curve in integration that the
project experiences.

INCREMENTAL PLANNING can only be applied preventively, before a
schizophrenia is manifest. An existing chasm between word and fact will
not accept its application, but early introduction can lead to an
immunization against denial.

INTEGRATION FIRST ARCHITECTURE helps to focus on the necessities the
project faces. It approaches the project from the integration end and
determines the mandatory steps to be taken. The side paths considered when
things go wrong facilitate awareness of problems and corrective actions.

INTEGRATION FIRST ARCHITECTURE does not resolve the schizophrenia, but
it is palliative because it limits its effect on the project success. Applied on
an organizational scale, it can lead to a remission in the long term when the
organization has learned about integration and its limitations.

INTEGRATION FIRST ARCHITECTURE 1is best applied early in the project.
AAPPLICATION DRIVES PROJECT and 2TIME-BOXED RELEASES support the
concept. BEHAVIORAL CONTRACT is a strengthening counterpart on
contracting and analysis level.

A BEHAVIORAL CONTRACT assists all involved parties in getting the
expectations about the interaction right. It refines the contract between
different groups and towards external contributors, and it outlines and
assists system test and integration.

A BEHAVIORAL CONTRACT does not resolve the schizophrenia, but it is
palliative as it limits its effect on the project success. In particular it does not
leave the mindset that an ideal is achievable. A remission is possible when

the organization has learned during multiple projects and is aware of the
chances and limitations of integration.

BEHAVIORAL CONTRACT needs to be introduced early in the project to
become effective. It is supported by an architecture process using 7BIG
PICTURE ARCHITECTURE and 2VISIBLE QUALITIES.

A 7PLUG-IN ARCHITECTURE gives concrete technical means to integrate
external contribution. It is a technical solution appropriate for an
INTEGRATION FIRST ARCHITECTURE approach. Plug-Ins demand that the
architecture is set in advance. In return, the Plug-In interface offers
opportunities to tailor the kind and amount of external contributions. The
points of integration match the Plug-In interfaces. The distribution of
workload and responsibilities between organization and external
contributions can be scaled and adjusted in the granularity of the Plug-In
components.

A 7PLUG-IN ARCHITECTURE does not resolve the schizophrenia, but it is
palliative because it limits its effect on the project success. In the long term
it can lead to a remission as it facilitates process and technology towards an
integration based organization.

A 2PLUG-IN ARCHITECTURE needs to be applied early in the project.
Organizations familiar with integration might have this architecture in place
as prevention; however this still requires that the contractors subscribe to it.

TRANSPOSED ORGANIZATION is a poisonous therapy that works by enforcing
change. It functions through the rich side effects of an induced change, and
the subsequent changes that the team and organization take in reaction.

TRANSPOSED ORGANIZATION does not resolve the schizophrenia, but it can
move the attention to areas where no schizophrenic mood exists. It can be
palliative or suppress some of the symptoms as it hinders the project to
maintain a denial stance for a long time.

TRANSPOSED ORGANIZATION must only be applied very rarely. As the
resulting changes can have serious drawbacks, its success is not ensured.
Apply it only when your risk estimation demands so.

Explicit Risks

Consider any project.

In every software project the unexpected may happen, and you need to be
prepared. Or rather, you need to know whether you should prepare or not.

You cannot be prepared for each

imaginable thing to happen, ...but some events are rather likely to
happen, while others might be
especially harmful to your success.

It is strange to think how you could

fail while you are struggling hard to

succeed, ...but not acknowledging the risks
limits the probability to effectively
address them.

Mentioning the chance of failure

might demotivate some

stakeholders, ... but trying to justify failure that
could easily have prevented might
even be less motivating for future
projects.

Spending effort for measures that

are probably ineffective and do not

contribute to the final delivery is

painful, ...but not spending any money on your
insurance at all is a strategy you will
not recommend to your own kids.

Therefore, address your project’s risks explicitly. Maintain a list of your
top five risks. Define measures to mitigate them, and determine frequently
whether the risks remain or further risks appear.

When addressing risks and initiating measures, choose the most efficient
ones. Each risk has a probability to become reality, and a severity how hard
it will impact the project’s success. Each measure has an effectivity on the
risk it addresses, and a price. Choose those measures that address risks of
high probability and impact most effectively and cheap. The product of
probability, severity (in money) and effectiveness must be higher than the
cost of the initiated measure. This evaluation technique is similar to the
FMEA technique used for product related risks [FMEA].

Though risk management is considered a standard technique for project
management [McCo97], it is also a valuable tool for software architects.
Especially in distributed teams or projects that span entire organizations,

risk appear on technical and communication level that the manager may not
be aware of and not be able to address.

The main mechanism behind EXPLICIT RISKS is that the project team
becomes conscious of possible obstacles, including a self
consciousness with respect to the own working habits and approach.

Risk management requires a manager, typically a lead. The costs are
basically those of the initiated measures. Similar to an insurance, the
costs are lower than the costs that you could have if you omit them.

There are no counter indications to EXPLICIT RISKS. Possible
overdose effects occur when you neglect all human factor leadership
skills for the sake of managing explicit risks, or if you invest in
mitigation measures that are no longer cost effective.

EXPLICIT RISKS might be the initiation for a variety of other
therapies. It is best combined with therapies that address the implicit
side of things, like 7ZARCHITECT WALKS AROUND and #ARCHITECT
ALSO COACHES. 7 VISIBLE QUALITIES is based on a similar approach.

PLATONIC SCHIZOPHRENIA: Apply EXPLICIT RISKS preferably early
in the project’s course, and throughout its entire duration. Consider a
secondary therapy when you find yourself copying a risk list from
another project.

© Awareness can initiate a curative process.

© Costs are invested where they are most likely to help the
project.

Provides means to identify deviations and develop options.
Risks can serve as a communication means to stakeholders.

Effectiveness depends on the individuals in the project.

® G 6 6

Might have controversial effect when applied as a formal
exercise, e.g. when risk lists are considered formal
deliverables and just copied from one project to another.

Decision Support Questions

Consider any project.

Leading or architecting a software project requires making a lot of
decisions, some of which have a high impact on people and technology.
You need to get those decisions right.

Deciding early is helpful and

guiding, ...but it limits your reaction options on
changes in your environment.
Making the wrong decision is bad, ...but making no decision at all gives

the decision making out of your
hands and replaces intention by
accident.

Decisions need to be made by the

responsible person, ...but without agreement from the
team who has to implement them,
all decisions require enormous
power to be enforced.

Therefore, ensure that you only make those decisions that need to be
decided by that time, and get buy in by the team that needs to implement
what the decision is about. Use a checklist for decision making that covers
hard and soft factors and that prevents you from accidental neglect of
important issues.

It can be useful to publish the set of questions that you prefer, so that team
members can prepare for them when they propose particular solutions or
actions.

Which particular questions you use is a matter of personal taste. The set I
have found most helpful consists of six questions:

e What is the problem?

e What is the proposal?

e What does it cost?

e Who wants this?

e What happens if you do not do this?
e Does everybody agree?

This set is being attributed to a former manager of NUR touristics, Mr
Khaksar [sdm95].

The main mechanism is to create awareness of the different aspects
of decisions and their consequences, and to handle them explicitly.

DECISION SUPPORT QUESTIONS are available to all project
stakeholders. The related effort is minimal, not larger than with any
other formal or informal decision making process.

Neither counter indications nor overdose effects have been observed.
DECISION SUPPORT QUESTIONS can improve team morale as the buy-
in by key players is explicitly addressed, and no hidden agenda is
obviously present.

DECISION SUPPORT QUESTIONS can be combined with other decision
making processes. An 7EXPENSIVE CONSULTANT can help to
introduce this explicit technique into an organization.

PLATONIC SCHIZOPHRENIA: Apply DECISION SUPPORT QUESTIONS
with each decision that has a strategic, long-term impact. Apply it
also with decisions that are driven by personal opinions and have
been discussed several times.

© Technical and social issues are treated alike, avoiding the late
personality and team effects of denial.

© Personal opinions can be raised without becoming obstacles.

© A supportive decision making process does not include a
solution.

“The decision to develop a framework and to found a dedicated
business unit for that purpose was already made before I joined
that company. That business unit spanned two teams in different
countries. After learning about the domain and application, 1
suggested a plug-in architecture. Unfortunately the technical cuts
would have contradicted the current distribution of
responsibilities within the organization. The key that enabled an
open minded discussion about changing the organization was to
raise the question: what will happen if we do not have that kind of
architecture?”

Incremental Planning

Consider any project that explores new territory in at least one significant aspect.

Exploratory projects have to deal with uncertainty and unknown obstacles.
The project and its stakeholders need to know whether it is on the right
track.

The project needs to report its goals

to the stakeholders, ...but the goals need to be achievable.

Knowing a completion date well in

advance allows to coordinate all

shipping activities, ...but unleashing all related forces
becomes expensive when the project
team is not able to deliver in time.

Stakeholders demand that their

questions be answered, ...but knowing when you will be able
to give details is also an answer.

Stakeholders do not like to spend

extra effort or attention, ...but once every few weeks they will
be available and interested.

Project leaders want to please their

bosses and do the best job possible, ...but keeping most small promises is
better than risking to break a big
one.

Changing a plan appears like

changing ones mind and not

knowing the job, ...but the learning of the project needs
to find a visible presentation.

The presence of obstacles and their

effects are not known in advance, ...but once the project hit them, their
influence can be estimated.

Therefore, plan only for the near future, and incrementally update the plan.
Adapt your plans to the experienced circumstances as soon as you can
estimate their impact. A realistic forecast is often in the range of few weeks.
More can be given when it is understood that the probability of changes is
high, or when the project reaches a phase of well understood tasks.

Make sure that the project makes progress compared to the plan. Keep a
history of all plans and how their compared to the reality at that time. If the
project shows a tendency to mis-estimate its abilities, adopt the assumed
velocity so that the successful prediction rate is higher than 60%.

While you might update your plan and schedule often, publish them only
once every few weeks. In large organizations or with external clients, this
will be the level of day care upper management will be willing to spend.

With external contributors, INCREMENTAL PLANNING requires that you have
contracts that allow for mid project corrections. Prepare to spend as much
time with your contract partners as you would with internal teams, and to
care for a similar amount of detail. The win of having external partners is
not that you need not care for them, but that more work can be done in
parallel and with better expertise.

The main mechanism of INCREMENTAL PLANNING is the honest
acknowledgement of learning. Reflecting the learning in the plan
avoids delusion and late surprises.

INCREMENTAL PLANNING affects all stakeholders and participants. It
requires constant effort over the project lifetime, but not more than
other planning methods would.

In organizations where the messenger is killed on mere suspicion,
INCREMENTAL PLANNING is counter indicated. Overdose effects have
been observed with too frequent or too detailed reports on
incremental plans.

EXPLICIT RISKS can help to introduce INCREMENTAL PLANNING into
an organization.

PLATONIC SCHIZOPHRENIA: Apply INCREMENTAL PLANNING
preventively, to avoid the schizophrenic gap between perception and
reality. Continue its application through the entire project course.

© The gap between reality, communication, and perception can
be avoided.

© All stakeholders get honest data and can observe progress.
© The project gains trust from upper management.
© Contractors require explicit attention.

® An already existing gap between perception and reality
cannot be closed by INCREMENTAL PLANNING.

Integration First Architecture

Consider a project that comprises a large number of deliverables, potentially
contributed from different groups or suppliers.

You are responsible that the entire system works in the end. You need to be
able to tell whether concepts can be make working, and whether
contributions are valuable.

You need to rely on agreed

intermediate results, ...but intermediate results have limited
relevance for the final integration.

Each group or sub-team needs to be

able to work independent of other

teams, ...but the results need to operate
together smoothly to make sense.

Late changes are expensive in large,

dispersed projects, ...but uncorrected errors would be
even more expensive.

Therefore, do not consider anything done until it is integrated, and do not
consider anything plausible or conceptually solved until you know how to
integrate it.

Start all activities with the end in mind. Identify what you need to have to
ship a working system, and work back from this end to determine what you
need to have when, in order to reach your goal. Schedule the integration so
that each group contributes frequently every few weeks. This integration
milestone plan needs to be accompanied by a detailed integration procedure
that shares the responsibilities between the different teams.

The integration steps should comprise a mixture of user valuable functions
and the necessary infrastructure. Resist the temptation to focus on common
technology first; only employ the exact technical portions that are needed
for the application progress.

When portions of the software are contracted out, it is valuable to make the
architecture an explicit part of the legal contract. The binding architecture
should not stop at the level of “EJB”, “Oracle”, or “3-tier”. Surprises during
integration are by far less likely when important concepts are agreed up
front, like error handling strategies or data exchange sequences. In case you
are unable to specify all concepts in advance, establish cooperative contracts
that enable you to define them as you go. Most likely this will not be
possible with a fixed price, fixed scope contract.

When different teams work towards a common and unified product, it can
be helpful to introduce a steady rhythm and synchronize the integration
schedules of all associated sub-projects. Every few weeks each team from
the entire project delegates one or two developers to the “integration days”
where the entire functionality is being set together.

2

The main mechanism of INTEGRATION FIRST ARCHITECTURE is a
limitation of the overall risk, through the ability to detect conceptual
clashes and implementation insufficiencies as early as possible.

All roles in a project would be involved. The effort depends on the
overall team size and development process, but typically pays off
quickly due to risk reduction. As a rule of thumb, in large projects
you can expect the integration effort to exceed the effort spent on
initial development of individual contributions.

No counter indications are known: INTEGRATION FIRST
ARCHITECTURE works even for small teams provided you have a
simple enough process.

The efficiency can be improved when combined with process related
therapies such as #TIME-BOXED RELEASES and 7APPLICATION
DRIVES PROJECT.

PLATONIC SCHIZOPHRENIA: Apply INTEGRATION FIRST
ARCHITECTURE at the beginning of the project. It provides a reality
check that is most valuable in an early stage and can limit negative
effects. Applied on an organizational scale, it can lead to a remission
in the long term when the organization has learned about integration
and its limitations.

© The project develops knowledge about integration.
© The process allows for explicit warning signals.
© Early success cannot be extrapolated into a reliable schedule.

© Different subprojects are coupled tighter than they expect —
but not tighter than they actually were without INTEGRATION
FIRST, however implicit.

Behavioral Contract

Consider a project that is too large to be handled by a single team, and portions are
contracted out.

Work that has been contracted out finally needs to be included into the
project. The contract should support this integration.

Formal contracts are a legal

instrument rather then a technical, ...but technical integration requires a
technical agreement not a legal one.

Work contracted out is most easily

specified in terms of data, protocols,

and interfaces, ...but the overall dynamic system
functionality is the major goal of the
integration.

Therefore, accompany the data or deployment centric technical contract by
a behavioral contract including clear responsibilities in different workflow
situations. Do not stop at defining XML or similar data exchange formats,
or on web service definition level, but include a dynamic view on the
system.

Use cases [Cock00] or stories of scenarios [Beck(00] provide a good start to
define the individual behavior of different software parts. When breaking
the scenarios down, take special care on those parts that include interaction
across the different sub-projects’ responsibilities. Describe the expectations
in detail.

As a second step, abstract from the scenarios you have been exploring and
give overall rules and guidelines. These rules serve as decision guideline
when scenarios that have not been discussed in depth, are also crossing
component boundaries.

Error conditions deserve special consideration. Beyond the first order
workflow scenarios covering the normal flow of operation, include some
second order scenarios and derive overall rules. Integration towards a
consistent system is virtually impossible if all error handling is decided and
implemented locally to each individual component.

Factoring out components for external development is most convenient if
the technical interfaces are very thin. Unfortunately, thin interfaces usually
do not aim to maximize understandability and show a lack of behavioral
description. Instead of striving for narrow interfaces, emphasize the need to
have clear and unambiguously understandable interfaces.

To support a BEHAVIORAL CONTRACT, the architecture needs to state what
are overall concerns that needs to be handled consistently, and what aspects
may be decided locally by each component or implementer.

When defining interfaces between components, consider using shared code
on both sides of the component boundary instead of a defined backbone
protocol. Shared code increases the amount of coupling but maximizes the
opportunities for consistent and integrated behavior [Marg00].

F=1

’

The main mechanism is to put emphasis on an area that has not been
sufficiently covered by the most easily accessible mechanisms.

A BEHAVIORAL CONTRACT requires buy-in by upper management
and eventually the company’s layers. The organization needs to be
aware that the analysis becomes part of a contract, this change might
become costly. For each particular project its costs are only virtual —
the behavior needs to be right no matter when it becomes defined.

Among the side effects is that external contractors might start later
than you initially desired, and that you get that time back during
system integration. In those projects that consider time to deliver
more important than correct functionality, a BEHAVIORAL CONTRACT
might be counter indicated. You experience an overdose if you fail
to close the contract and keep specifying detailed scenarios. This
overdose effect is also known as analysis paralysis [Webster95].

A 7BIG PICTURE ARCHITECTURE should be available prior to
establishing the final contract. When discussing the interfaces,
AVISIBLE QUALITIES can be a great help for decisions.

PLATONIC SCHIZOPHRENIA: Apply BEHAVIORAL CONTRACT at the
beginning of the project.

© Behavioral expectations become explicit and allow for
recognition of deviations and warning signals.

© In-house knowledge of core competence fields is used to
reduce the integration risks.

© Early success cannot be extrapolated into a reliable schedule.

@ It requires an in depth analysis to describe the behavior
correctly.

Transposed Organization

Consider a project that is implemented by a team of more than a dozen developers.

A software project team that is structured into several sub-teams, the
distribution of team responsibilities can only follow one possible view on
the system decomposition. Each project must satisfy a number of different
aspects and cover a multi dimensional decomposition.

The organization into sub-teams

enables a focused work, ...but each project needs to have
different foci, and priorities change
over time.

Different foci could be supported by

having a multi dimensional team

structure, ...but reporting to different leads
obtains more overhead than even
most large projects can afford.

Changes cause friction in

reestablishing working teams, ...but important goals need to be
reflected in the organization to get
significant attention.

Therefore, change your project organization occasionally during the
projects course so that it reflects the highest risk.

Dividing the project team into sub-teams according to functional
components or layers is a very natural thing for architects to suggest, and
can be highly effective in technical domains. Dividing the project team
according to user visible function and workflow enables the team to deliver
quickly what the user expects. All significant systems need to cover both
views, but the organization cannot reflect both at the same time (Conways
Law [CoHa04]).

A deliberate change in the organization forces all project participants to
think in multiple dimensions, and the implementation and architecture
follows the organization with a delay, a phase shift in time. The expectation
of repeated reversion gets the participants used to multilateral thinking.

Such a deliberate violation of Conway’s Law is always temporary as the
structure of the architecture will follow after some time. You will make
mid-term progress in the area of the highest risk which can easily trade off
the restructuring costs.

F=1

The main mechanism is change, resulting in reactions and further
changes. Different aspects are addressed in the most effective way,
by changing the organization.

TRANSPOSED ORGANIZATION requires management decision and can
only be suggested by an architect. Its costs are similar to other costs
caused by change and should be seen as an insurance fee as in
EXPLICIT RISKS.

TRANSPOSED ORGANIZATION has a number of side effects including
communication changes, irritation, and tighter integration. If the
risks associated are higher than the chances it is counter indicated.
Overdose effects, when you change too often, are hidden
communication due to fear, ineffectiveness due to uncertainty, and
an increase in staff turnover.

EXPLICIT RISKS can help to determine the feasibility of TRANSPOSED
ORGANIZATION. An alternative team structure would be ”TEAM PER
TASK that avoids a breakup into sub-teams and forms teams for each
small task. The tasks may both be technical or application bound.

PLATONIC SCHIZOPHRENIA: Apply TRANSPOSED ORGANIZATION
when other therapies have failed to change the schizophrenic state.
Maximum dosage is twice during the project’s course. Do not apply
it in the first quarter of the estimated project time.

© Drastic change prevents participants from maintaining denial.

© The change gives opportunity for determined corrections and
risk mitigation measures.

© Change induces further change that cannot be foreseen.

© None of the negative impacts of PLATONIC SCHIZOPHRENIA is
directly addressed.

@ The friction from the change will consume project time.

The initial prototype phase ended with a team of five that did not
need further substructure. When more developers joined the
project team, the tasks and later the teams were split into different
areas: database, GUI, and network. Further teams were
established for quality and for connection to particular devices.
When field tests began, the workflows slightly beyond the trivial
standards failed or were unstable. To overcome this deficiency,
the team focus was shifted towards making the workflow
operable, and the team structure was reorganized according to
the workflows. The workflow teams were composed so that each
technical competence was represented.

Acknowledgements

I owe a great debt to my shepherd James Noble. Besides him insisting in the
readers’ rights, the discussions with him were intense and fun. Thanks to Dr.
med. Kerstin Marquardt for the discussion on the medical aspects and
schizophrenia. Further thanks to Volker Knapp for the permission to use his
photographic artwork.

The workshop participants at EuroPLoP provided great feedback: Lise
Hvatum, Allan Kelly, Andy Longshaw, Alan O’Callaghan, Jorge L. Ortega-
Arjona, and Anne Villems.

References
APPLICATION DRIVES PROJECT see [Marq01]
ARCHITECT ALSO COACHES see [Marq03]
ARCHITECT WALKS AROUND (to be published)
BIG PICTURE ARCHITECTURE see [Marq02]
EXPENSIVE CONSULTANT (to be published)
TEAM PER TASK see [CoHa04]
TIME BOXED RELEASES see [Marq03]
PLUG-IN ARCHITECTURE see [Marq99]
VISIBLE QUALITIES see [Marq03]
Beck00 Kent Beck: Embrace Change. Extreme Programming Explained.
Addison-Wesley 2000
Brooks79 Fred Brooks: The Mythical Man Month. Addison-Wesley 1979
Cock00 Alistair Cockburn: Writing Effective Use Cases. Addison-
Wesley 2000
CoHa04 James Coplien, Neil Harrison: Organizational Patterns of Agile
Software Development. Prentice Hall 2004
FMEA Potential Failure Mode and Effects Analysis in Design (Design

FMEA) and Potential Failure Mode and Effects Analysis in
Manufacturing and assembly Processes (Process FMEA)
Reference Manual. Document number SAE J 1739, SAE,
Warrendale

Green01 M. F. Green: Schizophrenia Revealed: From Neurons to Social
Interactions. Norton 2001. For a quick overview see also:
http://en.wikipedia.org/wiki/Schizophrenia

Marq99 Klaus Marquardt: Patterns for Plug-Ins. In: Proceedings of
EuroPLoP 1999
Marq00 Klaus Marquardt: How to Define a Protocol for Object

Transportation. In: Proceedings of EuroPLoP 2000

Marq01 Klaus Marquardt: Dependency Structures. Architectural
Diagnoses and Therapies. In: Proceedings of EuroPLoP 2001

Marq02

Marq03

McCo97

PlatoA

PlatoF

Sdm95
Webster95

Klaus Marquardt: Patterns for the Practicing Software Architect.
In: Proceedings of VikingPLoP 2002

Klaus Marquardt: Performitis. In: Proceedings of EuroPLoP
2003

Steve McConnell: Software Project Survival Guide. Microsoft
Press, 1997

Plato: Allegory of the cave. In: The Republic, book 7 (514a —
520a)

Plato: The Form of the Good. In: The Republic. For an
overview, see also: http://en.wikipedia.org/wiki/Platonic realism

reported at a staff meeting at sd&m, 1995

Bruce Webster: Pitfalls of Object-Oriented Development. M&T
Books 1995

	Platonic Schizophrenia
	Explicit Risks
	Decision Support Questions
	Incremental Planning
	Integration First Architecture
	Behavioral Contract
	Transposed Organization

