
Reengineering for Parallelism:
An Entry Point into PLPP (Pattern Language for
Parallel Programming) for Legacy Applications ∗

Berna L. Massingill† Timothy G. Mattson‡

Beverly A. Sanders§

Abstract

We have developed a pattern language for developing parallel application pro-
grams [MSM04]. This pattern language, which we call PLPP (Pattern Language
for Parallel Programming), embodies a development methodology in which we de-
velop a parallel application by starting with a good understanding of the problem
and then working through a sequence of patterns, ending up with code. Often,
however, people begin not with a problem to solve from scratch but a piece of
legacy code they need to speed up by parallelizing it. Most of the patterns in PLPP
are applicable to this situation, but it is not always clear how to get started. The
pattern in this paper addresses this question and in essence provides an alternate
point of entry into our pattern language.

1 Introduction

Over the course of several years we have developed a pattern language for develop-
ing parallel application programs. The patterns were developed in a series of PLoP
papers [MMS99,MMS00,MMS01,MMS02,MMS03]; the complete language appears
in [MSM04]. This pattern language, which we call PLPP (Pattern Language for Parallel
Programming), embodies a development methodology in which we develop a parallel
application by starting with a good understanding of the problem and then working
through a sequence of patterns, ending up with code. Often, however, people begin
not with a problem to solve from scratch but a piece of legacy code that they would
like to speed up by parallelizing it. Most of the patterns in PLPP are applicable to this
situation, but it is not always clear how to proceed. The pattern in this paper addresses

∗Copyright c© 2005, Berna L. Massingill. Permission is granted to copy for the PLoP 2005 conference.
All other rights reserved.

†Department of Computer Science, Trinity University, San Antonio, TX; bmassing@trinity.edu.
‡Microprocessor Technology Laboratory, Intel Corporation, DuPont WA;

timothy.g.mattson@intel.com.
§Department of Computer and Information Science and Engineering, University of Florida, Gainesville,

FL; sanders@cise.ufl.edu.

1

this issue and essentially provides an alternate point of entry into the pattern language
for programmers parallelizing an existing, or legacy, piece of software.

The remainder of this section describes the overall structure of our pattern language
and lists the patterns that it comprises, with a brief description of each. Readers familiar
with PLPP can skip directly to Section 2 (Reengineering for Parallelism).

1.1 Overall Organization

The pattern language is organized into four design spaces, described below. Program-
mers normally start at the top (in Finding Concurrency) and work down through the
other design spaces in order until a detailed design for a parallel program is obtained.

1.2 The Finding Concurrency Design Space

This design space is concerned with structuring the problem to expose exploitable con-
currency. The designer working at this level focuses on high-level algorithmic issues
and reasons about the problem to expose potential concurrency. Patterns in this space
include the following.

• Decomposition patterns, used to decompose the problem into pieces that can
execute concurrently:

– Task Decomposition: How can a problem be decomposed into tasks that
can execute concurrently?

– Data Decomposition: How can a problem’s data be decomposed into units
that can be operated on relatively independently?

• Dependency-analysis patterns, used to help group the tasks and analyze the de-
pendencies among them:

– Group Tasks: How can the tasks that make up a problem be grouped to
simplify the job of managing dependencies?

– Order Tasks: Given a way of decomposing a problem into tasks and a
way of collecting these tasks into logically related groups, how must these
groups of tasks be ordered to satisfy constraints among tasks?

– Data Sharing: Given a data and task decomposition for a problem, how is
data shared among the tasks?

• Design Evaluation: Is the decomposition and dependency analysis so far good
enough to move on to the Algorithm Structure design space, or should the design
be revisited?

2

1.3 The Algorithm Structure Design Space

This design space is concerned with structuring the algorithm to take advantage of
potential concurrency. That is, the designer working at this level reasons about how
to use the concurrency exposed in working with the Finding Concurrency patterns.
The Algorithm Structure patterns describe overall strategies for exploiting concurrency.
Patterns in this space include the following.

• Patterns for applications where the focus is on organization by task:

– Task Parallelism: How can an algorithm be organized around a collection
of tasks that can execute concurrently?

– Divide and Conquer: Suppose the problem is formulated using the sequen-
tial divide and conquer strategy. How can the potential concurrency be
exploited?

• Patterns for applications where the focus is on organization by data decomposi-
tion:

– Geometric Decomposition: How can an algorithm be organized around a
data structure that has been decomposed into concurrently updatable “chunks”?

– Recursive Data: Suppose the problem involves an operation on a recursive
data structure (such as a list, tree, or graph) that appears to require sequen-
tial processing. How can operations on these data structures be performed
in parallel?

• Patterns for applications where the focus is on organization by flow of data:

– Pipeline: Suppose that the overall computation involves performing a cal-
culation on many sets of data, where the calculation can be viewed in terms
of data flowing through a sequence of stages. How can the potential con-
currency be exploited?

– Event-Based Coordination: Suppose the application can be decomposed
into groups of semi-independent tasks interacting in an irregular fashion.
The interaction is determined by the flow of data between them, which
implies ordering constraints between the tasks. How can these tasks and
their interaction be implemented so they can execute concurrently?

1.4 The Supporting Structures Design Space

This design space represents an intermediate stage between the Algorithm Structure
and Implementation Mechanisms design spaces: It is concerned with how the parallel
algorithm is expressed in source code, with the focus on high-level program organiza-
tion rather than low-level and very specific parallel programming constructs. Patterns
in this space include the following.

• Patterns representing approaches to structuring programs:

3

– SPMD: The interactions between the various units of execution (UEs) cause
most of the problems when writing correct and efficient parallel programs.
How can programmers structure their parallel programs to make these in-
teractions more manageable and easier to integrate with the core computa-
tions?

– Master/Worker: How should a program be organized when the design is
dominated by the need to dynamically balance the work on a set of tasks
among the units of execution?

– Loop Parallelism: Given a serial program whose runtime is dominated by
a set of computationally intensive loops, how can it be translated into a
parallel program?

– Fork/Join: In some programs, the number of concurrent tasks varies as the
program executes, and the way these tasks are related prevents the use of
simple control structures such as parallel loops. How can a parallel program
be constructed around such complicated sets of dynamic tasks?

• Patterns representing commonly-used data structures:

– Shared Data: How does one explicitly manage shared data inside a set of
concurrent tasks?

– Shared Queue: How can concurrently-executing units of execution (UEs)
safely share a queue data structure?

– Distributed Array: Arrays often need to be partitioned between multiple
units of execution. How can we do this so as to obtain a program that is
both readable and efficient?

This design space also includes brief discussions of some additional supporting
structures found in the literature, including SIMD (Single Instruction Multiple Data),
MPMD (Multiple Program, Multiple Data), client server, declarative parallel program-
ming languages, and problem solving environments.

1.5 The Implementation Mechanisms Design Space

This design space is concerned with how the patterns of the higher-level spaces are
mapped into particular programming environments. We use it to provide descriptions
of common mechanisms for process/thread management and interaction. The items in
this design space are not presented as patterns since in many cases they map directly
onto elements within particular parallel programming environments. We include them
in our pattern language anyway, however, to provide a complete path from problem
description to code. We discuss the following three categories.

• UE1 management: Concurrent execution by its nature requires multiple entities
that run at the same time. This means that programmers must manage the cre-
ation and destruction of processes and threads in a parallel program

1Units of execution — generic term for processes or threads.

4

• Synchronization: Synchronization is used to enforce a constraint on the order
of events occurring in different UEs. The synchronization constructs described
here include memory fences, barriers, and mutual exclusion.

• Communication: Concurrently executing threads or processes sometimes need to
exchange information. When memory is not shared between them, this exchange
occurs through explicit communication events. The major types of communica-
tion events are message passing and collective communication, though we briefly
describe several other common communication mechanisms as well.

5

2 Reengineering for Parallelism

Problem

How can an existing application be parallelized using PLPP to improve performance
by making use of parallel hardware?

Context

The lifetime of a complex application program is long compared to the lifespan of com-
puter systems. Hence, over time software evolves as it is ported to new architectures
and has new features grafted on to fit changing needs. The result is a large base of
software that is complex, convoluted, and hard to change — so-called legacy code. In
addition to the need to adapt legacy code to run on new architectures, there is often a
demand for continuing increases in performance, either to solve the same problems in
less time or to solve larger problems in the same time.

Previously the conventional-wisdom answer to improving the performance of ex-
isting code was to buy faster hardware; porting the code to take advantage of parallel
hardware (parallelizing it) was viewed as something to be done only when the “buy a
faster computer” solution could not deliver sufficient increases in performance. Recent
advances in hardware, however, seem to be focusing not on making single processors
faster but on making parallel hardware (SMP, multi-core, and clusters) mainstream.
This makes it less and less likely that it will be possible to continue to improve the
performance of existing applications simply by buying faster hardware, since “faster”
in hardware is coming to mean “with more opportunities for parallelism.”

One reason parallelizing existing code has traditionally been a last resort for im-
proving performance is that it is difficult, time-consuming, and error-prone. There is
extensive literature on parallel programming, but it tends to focus on the problem of
developing applications that are intended from the beginning to execute on parallel
hardware; PLPP [MSM04] is a collection of design patterns embodying a methodol-
ogy for such development. Many of the issues affecting a parallel algorithm are the
same whether one starts with a blank slate or with an existing program, however; this
pattern addresses the special concerns introduced when the starting point is a complex
existing application.

Forces

• An existing application, especially one significant enough to parallelize, typ-
ically has a user base. These users have expectations about the application’s
behavior; they may be unwilling to accept any deviation from current behavior,
even when the differences are mathematically valid.

• Existing applications, especially those that best fit the label “legacy code”, are
often complex and difficult to understand. Programmers assigned to parallelize
such code may not be able to invest the time to understand every detail; they
need instead to be able to make progress without full knowledge of the code.

6

• Amdahl’s law pushes programmers to avoid sequential bottlenecks at any cost,
which in turn implies major changes to existing code, even possibly a wholesale
restructuring of the program.

• The starting point of the project is working code that embodies significant pro-
gramming work, bug fixes, and knowledge. Minimizing change to the existing
code is desirable. It is rarely feasible to make sweeping rewrites of the entire
application.

• Concurrency introduces new classes of errors that are hard to detect and make
software difficult to validate.

Solution

Balancing the above forces requires dealing with two different issues simultaneously:
managing the process of changing a legacy application, and determining what changes
to make in order to exploit parallel hardware. The problem of managing the process
has much in common with any project involving legacy code. Although much of the
work on managing legacy applications using design patterns assumes the use of object-
oriented programming, these ideas and techniques are applicable with any software
development methodology. The problem of determining what changes to make has
much in common with developing a parallel application from scratch. The pattern
language in PLPP provides guidance.

This pattern provides guidance for (1) managing the process and (2) using the pat-
terns in PLPP to determine what changes to make when parallelizing a legacy applica-
tion. The overall approach is based on thinking of the parallelization process as a series
of result-preserving transformations, with testing performed after each transformation.
In the next sections, we describe first some things that need to be done before starting
to modify the code, and then the process of modification (reengineering).

Preparation

There are a number of things that should be done before diving into the details of the
code.

SURVEY THE LANDSCAPE

As preparation for the project, it is a good idea to get a first impression of the scope of
the project by briefly assessing the existing application and the supporting artifacts, and
identifying the available expertise. Some questions that might help are the following.

• Does the code seem to be well structured, or is it a BIG BALL OF MUD [FY00]
(a.k.a. spaghetti code)?

• What libraries does it use? Are parallel version of these libraries available?

• What documentation is available? Does it seem to be up to date?

7

• Who are the local experts on the program? Are any of the original programmers
available?

• Who are the main users of the program?

• What kind of testing was done to validate the program? Are the tests still avail-
able? Are they compatible with the current code?

• What are the new target architectures (a single multi-core machine, a cluster,
etc.)?

• Does the serial application run on the new target architectures, or will work be
needed to port it before starting to parallelize?

• Is the program numerically well behaved and insensitive to effects arising from
the limited precision of floating-point arithmetic? What are the bounds of the
possible error? Can they be calculated? Are they acceptable?

Most of these issues are already familiar to programmers. Issues pertaining to the
numerical properties of the algorithm, however, are much more subtle and require ad-
ditional discussion.

Real numbers in a computer are approximated by floating-point numbers with a
fixed number of bits. Results from a floating-point operation are rounded from the
infinitely precise result to fit into a floating-point number. One consequence of this
is that operations on floating-point values do not necessarily have the same properties
as the corresponding operations on real numbers; in particular, floating-point addition
is not associative. Thus, changing the order of a sequence of operations on floating-
point values can change the final result because of differences caused by rounding of
intermediate results. Parallelizing an algorithm may change the order of a sequence
of operations, not only with respect to the serial algorithm, but even between different
runs of the parallel program. Thus, it is common for parallel algorithms to generate
results that are slightly different from the corresponding serial algorithms and different
between different runs of the parallel algorithm.

In the majority of cases, any order of operations is equally valid. The variation in
the result due to a different order of operations indicates the magnitude of the round-
off error in the algorithm, and usually this round-off error is insignificant relative to the
use of the results of the computation. To pick one order at random, such as the serial
order, and call it “correct” is not justified. In some situations, however, the program-
mer has analyzed the mathematics of the algorithm in detail and used this analysis to
define a specific order. If so, this order must be preserved by the parallel algorithm,
limiting the speedup that can be obtained by parallelizing the algorithm. It might be
a good idea to revisit the plan to parallelize the algorithm, as the anticipated perfor-
mance improvements may be impossible to achieve. Finally, it sometimes happens
that the round-off error is significant, and that this has not been noticed before by the
users of the serial program. This indicates deficiencies in how the computation has
been formulated and the mathematical constructs cast onto their representations with
floating-point arithmetic. In this case, the serial algorithm cannot be parallelized and
needs to be corrected.

8

Level of confidence in the original developers, comments in the code, and simple
tests that reverse the order of iterations in loops can be used to determine whether
numerical issues are likely to be a problem in a specific program. Comments and
examination of the loops will usually reveal whether a specific order has been imposed
that probably should be preserved.

A good source of additional information about these issues is [Gol91].

DEFINE SCOPE AND GET THE USERS’ BUY-IN

Establish targets in the following areas, validating them with the application’s users
and managing their expectations.

• Required precision of result: In the simplest view, a correct parallelization of an
existing serial application gives output that is bit-for-bit identical to the output
of the original code. However, in many cases there will be differences due to
the limitations of floating-point arithmetic, as discussed earlier. Be prepared
to educate users about such differences and work with them to determine the
number of significant figures in the computational results, so that the amount of
allowable variation can be specified.

• Input range: Determine the range of inputs and problem sizes for which the
reengineered program is expected to work.

• Performance: Define performance goals. Sometimes this will be a hard con-
straint (e.g., an application to render 3D models in real time needs to generate a
known number of frames per second). In other cases, it will be an expected level
of scalability as additional processors are added.

• Feasibility: As soon as possible, do back-of-the-envelope calculations to get a
rough idea of whether the users’ expectations seem realistic. Will problems of
the desired size fit into the memory of the parallel machine? What upper bound
on the speedup does Amdahl’s law give? Will that satisfy expectations? (The
latter computation is easy once profiling of the serial computation on the new
architecture has been done.)

DEFINE A TESTING PROTOCOL

We need a concrete definition of the expected behavior of the application. We create
one by constructing a test suite that can be used throughout the parallelization process.
Test suite construction can be complicated [Mye79]: The test suite must exercise all
portions of the program that will be encountered as the program is used. Furthermore,
the test suite must explore the full range of input that may be encountered as the pro-
gram is used. It is important to pay special attention to difficult or even mathematically
pathological cases. Finally, it is important that both running the test suite and analyzing
the output from the test suite be automated so it can be easily rerun after each step of
transforming the program.

9

Identification of Hot Spots

The first step in reengineering the program for parallelism is to understand it well
enough to determine its hot spots — that is, where it is spending most of its time.
These will be the parts to try to parallelize first. Two approaches can help in finding
hot spots:

• Read the code and try to understand the high-level algorithm — the overall struc-
ture of the computation rather than the details. Often large computations contain
a clear sequence of phases. Once these are identified, it may be possible to deter-
mine where the program is likely to be spending most of its time. Also, identify
the key data structures. Are there large arrays or collections of objects that appear
to be central to the computation?

• Use profiling tools. Time up front learning how to use performance analysis
tools in most cases pays off.

Parallelization

Once the program’s hot spots have been identified, work can begin on parallelizing
them. Focusing first on the hot spots that have the greatest influence on overall per-
formance, use the patterns of PLPP to determine how to introduce parallelism based
on the following sequence of steps. Notice that if the overall process of changing the
code can be broken down into a sequence of small transformations, each followed by a
validation/evaluation step, debugging is likely to be less painful.

Although we present our approach as a linear sequence of steps, first applied to one
hot spot and then to the next, in practice it is a good idea, before committing to any
changes, to look again at the whole program, or at least at the next few major hot spots,
to see whether they have a similar structure. If so, there may be a common strategy that
can deal with all of them.

DIG DEEPER INTO THE CODE

Dig deeper into the code implementing the hot spot chosen for attention. Identify the
main data and control structures, and note how the data flows through the section of
code being analyzed, including its boundaries. Often, in large and computationally
intense programs, one finds that the main control structure is a loop iterating over el-
ements of an array. Recursive control and data structures are also possible. In some
programs, the structure may be complicated by optimizations, for example, loop block-
ing to improve cache behavior. It may be worthwhile to refactor the program to change
the loops back to a simpler, non-optimized form before parallelization, both for clarity
and to allow easier tuning of the parallelized program.

IDENTIFY EXPLOITABLE CONCURRENCY USING Finding Concurrency

Review the patterns in the Finding Concurrency design space to identify exploitable
concurrency — first the decomposition patterns, then the patterns for analyzing de-
pendencies. Although one is more constrained when parallelizing legacy code than

10

when starting with a blank slate, the same approach described in the patterns is ap-
plicable. Sometimes it is easier to find exploitable concurrency by thinking in terms
of the data (i.e., to first define a data decomposition, and then infer from that a task
decomposition). Other times it is easer to focus on the control structure itself (i.e., to
first define a task decomposition, and then infer from that a data decomposition). These
dual decompositions are discussed in Task Decomposition and Data Decomposition. A
common example is a computation that loops over elements of an array — the tasks
correspond to a subset of the loop iterations, while the array is decomposed into groups
of elements, each consisting of elements handled by one task. In a divide-and-conquer
algorithm, it is often effective to associate tasks with the recursive calls. Once the ma-
jor decomposition strategy had been found, identify the dependencies between tasks
and how they can be managed. Data Sharing can be especially helpful here. Look
very closely at how the complexity of managing the dependencies might change if the
decomposition were changed in some way.

Move back and forth between the decomposition and dependency-analysis patterns
until the result seems consistent and effective. Then look at Design Evaluation to make
sure that all the issues it describes have been addressed.

CHOOSE AN OVERALL STRATEGY USING Algorithm Structure

Next, use the results of the analysis from the Finding Concurrency design space to
choose an Algorithm Structure pattern. This is done in much the same way regardless
of whether one is writing a new parallel program or parallelizing a legacy application,
that is, either by using the decision tree presented in [MSM04] or by simply skimming
the descriptions of the patterns looking for ones that fit. The Algorithm Structure pat-
terns most used when parallelizing legacy code are Task Parallelism (when the primary
decomposition principle is a set of tasks), Geometric Decomposition (when the primary
decomposition is the division of data into chunks), and Divide and Conquer (when the
control structure is recursive). The other Algorithm Structure patterns (Pipeline, Event-
Based Coordination, and Recursive Data) are not commonly used when parallelizing
legacy code, since they tend to require large scale restructuring that goes well beyond
changes tolerated in most projects to parallelize legacy applications.

Notice also that it is possible that more than one Algorithm Structure pattern can be
exploited, either combined hierarchically or in sequence.

IMPLEMENT THE STRATEGY USING Supporting Structures

Next, implement the chosen strategy using one or more of the Supporting Structures
patterns, keeping mind the following.

• When choosing a program-structuring pattern, the set of target platforms must be
taken into account. If the target platforms present the programmer with a single
address space, programs typically use multithreading with a shared-memory API
such as OpenMP. This is particularly well suited to the Loop Parallelism pattern.
If the target platforms include ones with distributed memory, a shared-nothing,
multi-process approach based on the SPMD pattern is more common.

11

Note that even when the system provides a single address space, it may still be
preferable to use a distributed memory approach and SPMD for the program.
This happens most commonly when the program’s control structure is compli-
cated and not dominated by loops. This approach is also used when the pro-
gram’s data access patterns are complicated and unintended sharing of data (and
hence race conditions) is a serious concern.

• SPMD is the most broadly applicable of the program-structuring patterns. It
often, however, requires more-sweeping program changes than, say, Loop Paral-
lelism, and it may not be obvious how to organize these changes into a sequence
of small transformations. This is particularly the case if the target platform does
not support shared memory, thereby requiring all shared data structures to be
explicitly distributed among UEs. A key aspect of parallelizing existing code
using SPMD is to decide which data should be replicated (so each UE has its
own copy) and which should be distributed among UEs. Once a decision has
been made that a particular data structure should be distributed, eventually every
computation that involves this data structure must be modified (typically using
an owner-computes rule). Modifying all of these computations at once, however,
does not fit well with the overall strategy of making changes in small steps, test-
ing as one goes. To work around this, begin by replicating the data structure and
having all UEs perform all the calculations concurrently, and then parallelize one
computation at a time. Notice that if a parallelized calculation (in which each UE
operates only on its own data) is followed by a serial calculation (in which all
UEs perform the calculation on replicated data), the serial calculation must be
preceded by communication operations to copy the results of the parallel cal-
culation to other UEs. Once all computations have been parallelized, the data
structure can be converted into its final distributed form.

EVALUATE AND DEBUG

Evaluate how well the changed code meets the correctness and performance targets.
Debug as needed.

REPEAT AS NEEDED

Repeat the preceding steps (identify concurrency, make changes to exploit it, evaluate
the result) for the program’s other hot spots.

Evaluate the final result in terms of the original correctness and performance tar-
gets. At this point, more is known about the application, so it is worthwhile to review
the targets themselves. A point made in several of the patterns of PLPP is that design is
an iterative process, in which backtracking and reworking may be needed to achieve a
good result. This applies to the process of parallelizing existing code as much as to the
development of a new application. Many of the relevant issues are addressed in Design
Evaluation.

12

Example

As an example of applying the patterns of PLPP to existing code, we consider par-
allelizing an electromagnetics application that uses the finite-difference time-domain
(FDTD) technique to model transient electromagnetic scattering and interactions with
objects of arbitrary shape and composition. The application is described in more detail
in [KL93]; an earlier experiment with parallelizing it is described in [Mas99].

In the serial program, the object and surrounding space are represented by a 3D grid
of computational cells. An initial excitation is specified; the rest of the computation
consists of a time-stepped simulation of the electric and magnetic fields over the grid.
At each time step, the program first calculates the electric field in each cell based on the
magnetic fields in the cell and in neighboring cells, and then similarly calculates the
magnetic fields based on the electric fields. Fig. 1 shows pseudocode for the algorithm.

// global variables

// grid dimensions
Int const NX, NY, NZ

// properties of grid (representation of object and space)
Array of Properties :: prop (NX, NY, NZ)

// x, y, z components of electric fields
Array of Real :: elec_x (NX, NY, NZ)
Array of Real :: elec_y (NX, NY, NZ)
Array of Real :: elec_z (NX, NY, NZ)

// x, y, z components of magnetic fields
Array of Real :: mag_x (NX, NY, NZ)
Array of Real :: mag_y (NX, NY, NZ)
Array of Real :: mag_z (NX, NY, NZ)

// other variables (more details later)

// code

initialize()

loop over time steps

update_elec_fields()
adjust_elec_field_boundaries()
update_mag_fields()
output_selected_values()

end loop

Figure 1: Simplified pseudocode for electromagnetics application.

13

Preparation

SURVEY THE LANDSCAPE

We start by working through the list of questions posed in the Solution section above.

• Does the code seem to be well structured, or is it a BIG BALL OF MUD (a.k.a.
spaghetti code)?

The serial program is written in FORTRAN 77. It is reasonably well structured,
with a clean separation into subroutines, but nearly all data is global (i.e., kept
in COMMON blocks), which makes it more difficult to identify which subroutines
affect which variables.

• What libraries does it use? Are parallel version of these libraries available?

It uses no outside libraries.

• What documentation is available? Does it seem to be up to date?

The program contains fairly extensive comments, which appear to be consistent
with the code.

• Who are the local experts on the program? Are any of the original programmers
available?

At the time the program was first parallelized (as described in [Mas99]), a local
expert familiar with the code was available.

• What kind of testing was done to validate the program? Are the tests still avail-
able?

The program’s input is hard-wired into the code itself, so the program is a self-
contained test. Comments in the code indicate how to in effect vary the input by
changing the code, but we do not have access to domain experts who could help
with this, beyond very simple changes such as varying the number of time steps
and the number of cells in the grid. Reportedly, the output of the program was
compared with an analytic solution of the problem and found to be correct.

• What are the new target architectures (a single multi-core machine, a cluster,
etc.)?

The target platform is a small cluster of workstations; the target parallel pro-
gramming environment is MPI.

• Does the serial application run on the new target architectures, or will work be
needed to port it before starting to parallelize?

Yes, the serial code runs without problems on a single workstation.

• Is the program numerically well behaved and insensitive to effects arising from
the limited precision of floating-point arithmetic?

The most common cause of differences in output due to rearranged computations
(as described in the Solution section above) is a reduction operation involving an

14

operation that is not quite associative. This program does not appear to involve
any such calculations, so it is reasonable to hope for bit-for-bit equivalence of
output.

DEFINE SCOPE AND GET THE USERS’ BUY-IN

In some sense the serial code is not so much an application with an established user
base as a proof of concept for the algorithm it embodies. Parallelizing will similarly be
a proof of concept; the goal will be bit-for-bit equivalent output and better performance.
Again, working through the list of topics described in the Solution section above:

• Required precision of result:

As discussed earlier, we believe that none of the calculations will be subject to
reordering that could change the results, so we believe it is reasonable to aim for
output that is bit-for-bit equivalent to that of the serial program.

• Input range:

This is not really an issue; aside from varying the number of time steps and/or
grid cells, the input is always the same (what is hard-coded in the program).

• Performance:

We set a modest goal here: We want the parallelized algorithm to be not sig-
nificantly slower than the original code on a single workstation and to show
reasonable speedups as we increase the number of processors.

• Feasibility:

Since the performance goal is modest, it does not seem to make sense to spend
much time considering feasibility, beyond an observation that the calculations
seem to mostly involve the kind of operations on large grids that are generally
amenable to parallelization.

DEFINE A TESTING PROTOCOL

The testing protocol is simple: Run the program and compare its output to that of the
original code.

Identification of Hot Spots

This program is simple enough that its hot spots can be identified via a basic under-
standing of the computation: Most of the work of the computation consists of the
alternating updates of the electric and magnetic fields, so those will be the target of
parallelization efforts.

Parallelization

Following the steps outlined earlier:

15

DIG DEEPER INTO THE CODE

The code making up the program’s hot spots is straightforward — nested loops over
the arrays that represent the electric and magnetic fields in the grid. Most of the rest
of the code is similarly organized around loops over grid-based arrays. The program’s
variables fall into three categories:

• Grid-based arrays; that is, arrays with one element per grid cell. These arrays
include the elec_*, mag_*, and props arrays of Fig. 1.

• Grid-related arrays; that is, arrays whose sizes are related to the grid size, but
which do not fit into the previous group. This category includes work arrays
used in the adjust_elec_field_boundaries() step; these are 3D ar-
rays, where two of the dimensions are the same as the grid and the third dimen-
sion is constant. (So, one might think of each of these arrays as being the right
size and shape to match up with one of the faces of the grid.)

• Non-grid-related variables; that is, miscellaneous constants and small arrays
(with dimensions unrelated to the grid size).

Digging further into the code, we can make the following observations.

• initialize() consists of several subroutines that initialize all the variables
(grid-based and otherwise). There is some error checking built in (not important
for the current hard-coded input, since it presumably is error-free, but useful if
the program were changed to embody different input); some of the subroutines
also print informational data (such as the number of time steps).

• update_elec_fields() consists of three nearly-identical subroutines, one
for each component of the field. Each subroutine updates one component of
the field, looping over all cells in the grid and computing a new value in that
cell based on its previous value, the values of other arrays in the same cell and
nearby cells, and its position in the grid. For example, the pseudocode in Fig. 2
illustrates the calculation for elec_x.

• update_mag_fields() consists of three nearly-identical subroutines, one
for each component of the field. Each subroutine updates one component of
the field, looping over all cells in the grid and computing a new value in that
cell based on its previous value and the values of other arrays in the same cell
and nearby cells; the overall structure is similar to the subroutines that make up
update_elec_fields(), but the calculations are simpler. For example, the
pseudocode in Fig. 3 illustrates the calculation for mag_x.

• adjust_elec_field_boundaries() consists of six nearly-identical sub-
routines, two for each component of the field. These subroutines make use of 12
additional arrays that fit the description of grid-related (but not grid-based) vari-
ables given earlier; for example, the ones used in updating elec_x have the
form shown in Fig. 4.

16

loop over k in 1 .. NZ
loop over j in 1 .. NY
loop over i in 1 .. NX

elec_x(i, j, k) = complicated_function(
elec_x(i, j, k),
mag_y(i, j, k), mag_y(i, j, k-1),
mag_z(i, j, k), mag_z(i, j-1, k),
props(i, j, k),
i, j, k,
....) // miscellaneous non-grid-related variables

end loop
end loop
end loop

Figure 2: Simplified pseudocode for update of elec_x.

loop over k in 1 .. NZ
loop over j in 1 .. NY
loop over i in 1 .. NX

mag_x(i, j, k) = not_so_complicated_function(
mag_x(i, j, k),
elec_y(i, j, k), elec_y(i, j, k+1),
elec_z(i, j, k), elec_z(i, j+1, k),
....) // miscellaneous non-grid-related variables

end loop
end loop
end loop

Figure 3: Simplified pseudocode for update of mag_x.

.

Array of Real :: workx_1 (NX-1, 4, NZ-1)
Array of Real :: workx_2 (NX-1, 4, NZ-1)
Array of Real :: workx_3 (NX-1, NY-1, 4)
Array of Real :: workx_4 (NX-1, NY-1, 4)

Figure 4: Simplified example of grid-related (but not grid-based) work arrays.

17

Each subroutine updates one component of the field (e.g., elec_x), looping
over all cells on the boundary of the grid and computing a new value for elec_x
based its old value, the value of elec_x in nearby cells, and the values of
workx_* in nearby cells.

• output_selected_values() consists of a single subroutine. The first
time this subroutine is called, it initializes arrays representing sampling points
— indices of selected cells for which output is desired. On that and subsequent
calls, it computes and prints values for the specified sampling points (based on
the values of the electric and magnetic fields in the selected cells and nearby
cells). The pseudocode in Fig. 5 outlines the calculation.

// global variables
Int const NPOINTS

Array of Coordinates :: sample_points (NPOINTS)
Array of Real :: values (NPOINTS)

// code
if first time step

initialize sample_points
end if

loop over m in NPOINTS
values(m) = collect_data(sample_points(m))

end loop

write values to output file

Figure 5: Simplified pseudocode for output_selected_values.
collect_data() obtains data from global variables, including electric and
magnetic fields, using the coordinates in sample_points(m).

IDENTIFY EXPLOITABLE CONCURRENCY USING Finding Concurrency

Working through the patterns in Finding Concurrency, it seems fairly clear that this
problem is best approached by decomposing its major data structures, namely the ar-
rays representing the grid-based variables (electric and magnetic fields and grid prop-
erties). Since most of the calculations for a particular cell involve values in the same
and nearby cells, a decomposition in contiguous subarrays seems to make sense. We
can similar decompose the work arrays used in updating boundary points. We can then
infer task decompositions for grid-based calculations (the ones involved in updating
the electric and magnetic fields); for each such calculation, there will be one task for
each subarray, consisting of updating the elements in that subarray.

Referring again to the previous discussion of how the variables in the program fall
into three categories, we observe that the decomposition so far tells us something about
what to do with the variables we described as grid-based and grid-related, but it tells us

18

nothing about what to do with the variables not related to the grid (constants and small
arrays), so we must continue.

With regard to how data is shared among tasks, we can make a few observations:
Most of the non-grid-related variables are set once, at the beginning of the program,
and not changed thereafter, except for the ones used to collect data for output. In
the terminology of Data Sharing: The grid-based and grid-related variables consist of
effectively-local data (elements in the interior of one of the contiguous subarrays) and
multiple-read/single-write data (elements on the boundary of one of the subarrays),
and the decomposition strategy we have so far seems reasonable. The non-grid-related
variables are either read-only data or accumulate data, which suggests that an appro-
priate strategy for dealing with these variables is to replicate them (one copy per UE)
and periodically recombine the ones that represent accumulate data.

CHOOSE AN OVERALL STRATEGY USING Algorithm Structure

The applicable Algorithm Structure pattern, given this analysis, is Geometric Decom-
position, which is based on partitioning grid(s) into regular contiguous subgrids (local
sections) and distributing them among processes. This partitioning and distribution is
described in more detail in Distributed Array (a Supporting Structures pattern).

The calculations that make up the program’s hot spots (the grid updates) are a clas-
sic example of Geometric Decomposition; the other calculations (initializing, adjusting
boundary values, and writing output) are also fairly typical of this pattern. The details
of the parallelization are somewhat involved, but the underlying ideas are straightfor-
ward:

• The strategy is based on decomposing the 3D grid (consisting of what we have
described as grid-based and grid-related variables) into contiguous subgrids, one
per UE. Each element of a grid-based or grid-related array corresponds to one
cell in the 3D grid; from this idea follows the strategy for distributing these arrays
among UEs. Non-grid-related variables are replicated, with each UE getting its
own copy.

• Updates to variables that have been distributed will be split up among UEs using
an owner-computes strategy: Wherever there is a loop over all cells in the grid,
rewrite the loop to address only cells in the local section; if the loop is over
selected cells, rewrite so that each UE operates on the selected cells that are part
of its local section. If these updates need data owned by another UE (as will
happen with updates of some values in cells near the boundary of a subgrid),
synchronization or communication is needed to make this data (from other UEs)
available without race conditions.

• Updates to variables that have been replicated can either be performed simulta-
neously by all UEs or using some type of reduction (e.g., checking for errors by
having each UE compute a local value for number of errors and then taking the
sum or maximum of all these local values). The exception to this general princi-
ple is the program’s output files; it is simplest (and will work for this program)
to delegate all operations on output files to a single UE.

19

• Each cell in the grid has both global coordinates (with respect to the original
grid) and coordinates in the decomposition (a combination of UE ID and local
coordinates). In the serial program, these are identical, so coordinates can be
used both for locating a cell’s variables and also for purposes such as comput-
ing a distance from a fixed point. In the parallel program, we will need to use
local coordinates for the locating variables but global coordinates for computing
distances and similar calculations.

Most of these ideas are discussed in more detail in Geometric Decomposition and Dis-
tributed Array.

IMPLEMENT THE STRATEGY USING Supporting Structures

Since the target platform is one without shared memory, the obvious choice of program
structure is SPMD. Geometric Decomposition and Distributed Array map well onto this
program structure; it is mostly a matter of getting the many details right.

As a first step, we review the program code again, asking the following questions:

• For each variable, is it grid-based, grid-related, or non-grid-related? This will
tell us whether it will be duplicated or replicated.

• For each of the major loops in the program, what variables does it use as input
and what as output?

If it uses grid-based or grid-related variables as output, we need to split up the
computation based on the owner-computes strategy. If it uses such variables as
input, and some values used for one cell come from other cells, we will need to
insert code to communicate these values, preferably before starting the loop. A
library function that performs a standard exchange of boundary functions will
probably be helpful.

If it uses other variables, very often the calculation can simply be replicated (i.e.,
performed in all UEs). Some calculations, however, need to either be limited to
a single UE (e.g., writing to output files) or require some type of reduction (e.g.,
checking for errors).

• For each use of cell coordinates, are the coordinates used only to find elements
of related arrays, or are they being used as global coordinates (e.g., in computing
a distance)?

Once all of this has been analyzed, the actual work of parallelizing the program can
begin. A few examples may help give a sense of how the strategy plays out.

First, some of the global variables need to be changed to reflect the strategy of
distributing data. Fig. 6 sketches some of the needed changes.

Next, consider parallelizing the code that updates one component of the electric
field. Pseudocode for the serial version was shown in Fig. 2; pseudocode sketching a
parallelization is shown in Fig. 7.

Finally, consider parallelizing the code that collects and writes out the output data.
Pseudocode for the serial version was shown in Fig. 5; pseudocode sketching a paral-
lelization is shown in Fig. 8.

20

// grid dimensions
Int const NX, NY, NZ
// dimensions of local section (excluding ghost boundary)
Int const NXlocal, NYlocal, NZlocal
// low/high indices for local section (including ghost boundary)
Int const IXLO, IXHI IYLO, IYHI, IZLO, IZHI

// properties of grid (representation of object and space)
Array of Properties :: prop(IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)

// x, y, z components of electric fields
Array of Real :: elec_x (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)
Array of Real :: elec_y (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)
Array of Real :: elec_z (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)

// x, y, z components of magnetic fields
Array of Real :: mag_x (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)
Array of Real :: mag_y (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)
Array of Real :: mag_z (IXLO:IXHI, IYLO:IYHI, IZLO:IZHI)

Figure 6: Revised global variables.

loop over k in 1 .. NZlocal
loop over j in 1 .. NYlocal
loop over i in 1 .. NXlocal

elec_x(i, j, k) = complicated_function(
elec_x(i, j, k),
mag_y(i, j, k), mag_y(i, j, k-1),
mag_z(i, j, k), mag_z(i, j-1, k),
props(i, j, k),
local_to_global_x(i),
local_to_global_y(j),
local_to_global_z(k),
....) // miscellaneous non-grid-related variables

end loop
end loop
end loop

Figure 7: Parallelization of pseudocode in Fig. 2 (update of elec_x). Fig. 6 shows
changes to variables. Notice the changes to loop limits and also the use of functions
local_to_global_x, etc., to transform local coordinates to global coordinates.

21

// global variables
Int const NPOINTS

Array of Coordinates :: sample_points (NPOINTS)
Array of Real :: values (NPOINTS)

// local variable
Array of Real :: values_local (NPOINTS)

if first time step
initialize sample_points

end if

loop over m in NPOINTS
if (in_local_section(sample_points(m))

values_local(m) = collect_data(sample_points(m))
else

values_local(m) = 0
endif

end loop

reduce(values_local, values, NPOINTS, SUM)

if output process
write values to output file

endif

Figure 8: Parallelization of pseudocode in Fig. 5 (output_selected_values().
Notice that all UEs replicate the initialization, each collects data for sampling points in
its local section, and the results of these collections are reduced into an array that can
be printed by the single UE responsible for writing to output files.

22

These examples, as noted, should give a sense of how the strategy plays out. There
are many details to consider, far too many to list, but some observations may be useful:

• Sometimes it can help to rearrange some of the original computation before be-
ginning to parallelize. In the code for this program, there are many instances
of loops in which different statements in the loop body require slightly differ-
ent parallelization strategies. It can be helpful to first partition the loop into two
loops and treat them individually; Fig. 9 sketches an example.

// original code
loop over i in 1 .. NX-1

var1(i) = f(i)
var2(i+1) = g(i)

end loop

// modified code
loop over i in 1 .. NX-1

var1(i) = f(i)
end loop
loop over i in 2 .. NX

var2(i) = g(i-1)
end loop

Figure 9: Example of loop transformation useful before beginning parallelization.
var1 and var2 are arrays that will be distributed. In the original form, the loop
bounds do not match which elements of var2 are being changed, which will make
it more complicated to apply the owner-computes strategy. Converting to two loops
avoids this problem.

• Other rearrangements may also help. For example, each of the subroutines that
make up what is called adjust_elec_field_boundaries() in the pseu-
docode consists of two phases, one that updates one of the components of the
electric field and another that uses the updated component to update work ar-
rays. Based on an analysis of exactly which elements are used as input and out-
put, it is apparent that between these two phases there needs to be an exchange
of boundary values on the updated component. It turns out to be simpler and
more efficient to rearrange the code so that we first do the first phase in each of
the six subroutines, then do all the exchanges of boundary values, and then do
the second phase in each subroutine.

• A well-chosen set of utility routines can be a great help. For this program, help-
ful routines include a routine to exchange boundary values between UEs con-
taining neighboring subgrids, transformations between local and global indices,
and routines to determine whether a given range of global indices overlaps the
local section. Such routines might already be available as a result of parallelizing
other programs using a similar strategy.

23

• While a strategy of incremental parallelism is very attractive in general, there
are difficulties in applying this strategy to SPMD programs, as described earlier
(in the Solution section). However, with this program it is possible to at least
make the rearrangements discussed above (loop rearrangements, restructuring of
adjust_elec_field_boundaries()) and confirm that they preserve re-
sults before starting the changes related to decomposing and distributing arrays.
It is also easy and somewhat helpful to take the first step into the MPI world (the
target platform for this program) by transforming the program into one in which
all processes execute the original code (plus performing the usual MPI setup and
shutdown), except that only one opens the output file and writes results.

EVALUATE AND DEBUG

The parallelized code (produced using the analysis and techniques described in this
paper, plus the code developed for [Mas99]) meets the correctness targets: Output
on a cluster of workstations is bit-for-bit identical to the output of the serial program
executed on one workstation. Performance meets the modest goals we set: Execution
time of the parallel program on a single workstation is only slightly more than that
of the original code (reflecting a small amount of added overhead), and for nontrivial
problem sizes the parallel code shows continuing decreases in execution time as the
number of processes increases.

Related Patterns

Parallelizing a legacy serial application requires solving many of the same problems,
both social and technical, as working with any legacy code, plus additional issues spe-
cific to parallelization. Pattern languages that address some of the social and techni-
cal issues of working with legacy code that are likely to be useful for parallel pro-
grammers are [DDN02, FY00]. Other work dealing with refactoring legacy programs
[Fow99,Fea04,Ker04] employs the same overall approach as advocated in this pattern:
define tests and then perform small modifications, testing after each change. The focus,
however, is on improving the structure of object-oriented programs, and the individual
patterns are at a fairly low level.

Help with the parallelization itself can be found, as mentioned earlier, in [MSM04],
and also in [BMR+96, SSRB00, Lea00].

24

Acknowledgments

We gratefully acknowledge the help of our shepherd for this paper, Brian Foote.

References

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. John Wiley & Son Ltd, 1996.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object Oriented
Reengineering Patterns. Morgan Kaufmann, 1st edition, 2002.

[Fea04] Michael Feathers. Working Effectively with Legacy Code. Prentice Hall
PTR, 2004.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1st edition, 1999. With contributions by
Kent Beck, John Brant, William Opdyke, and Don Roberts.

[FY00] Brian Foote and Joseph Yoder. Big ball of mud. In Neal Harrison, Brian
Foote, and Hans Rohnert, editors, Pattern Languages of Program De-
sign 4. Addison-Wesley, 2000.

[Gol91] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, March 1991.

[Ker04] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley Signature
Series. Addison-Wesley Professional, 2004.

[KL93] K. S. Kunz and R. J. Luebbers. The Finite Difference Time Domain Method
for Electromagnetics. CRC Press, 1993.

[Lea00] Doug Lea. Concurrent Programming in Java: Design Principles and Pat-
terns. Addison-Wesley, 2nd edition, 2000.

[Mas99] Berna L. Massingill. Experiments with program parallelization us-
ing archetypes and stepwise refinement. Parallel Processing Let-
ters, 9(4):487–488, 1999. Also in Parallel and Distributed Process-
ing (Lecture Notes in Computer Science, vol. 1388), 1998, edited by
José Rolim, and in Proceedings of the Third International Workshop
on Formal Methods for Parallel Programming: Theory and Applica-
tions (FMPPTA’98 / IPPS’98). Extended version available as UF CISE
TR 98-012 (ftp://ftp.cise.ufl.edu/cis/tech-reports/
tr98/tr98-012.ps).

[MMS99] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Pat-
terns for parallel application programs. In Proceedings of the Sixth Pattern
Languages of Programs Workshop (PLoP 1999), August 1999.

25

[MMS00] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Pat-
terns for finding concurrency for parallel application programs. In Pro-
ceedings of the Seventh Pattern Languages of Programs Workshop (PLoP
2000), August 2000.

[MMS01] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. More
patterns for parallel application programs. In Proceedings of the Eighth
Pattern Languages of Programs Workshop (PLoP 2001), September 2001.

[MMS02] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Some
algorithm structure and support patterns for parallel application programs.
In Proceedings of the Ninth Pattern Languages of Programs Workshop
(PLoP 2002), September 2002.

[MMS03] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Ad-
ditional patterns for parallel application programs. In Proceedings of the
Tenth Pattern Languages of Programs Workshop (PLoP 2003), September
2003.

[MSM04] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill.
Patterns for Parallel Programming. Addison-Wesley, 2004. See
also our Web site at http://www.cise.ufl.edu/research/
ParallelPatterns.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley and Sons,
1979.

[SSRB00] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concur-
rent and Networked Objects. John Wiley & Son Ltd, 2000.

26

