
Change Of Authority

and

Thread Safe Interface goes synchronized

Philipp Bachmann. Revision: 1.11 ∗

December 16, 2005

Abstract

Programming languages with deterministic destruction of instances
like C++ allow for an idiom called Resource Acquisition is Initializa-
tion [Str98, pp 388–393], [Str94, pp 495–497]. This technique provides
many advantages. Applications are e.g. the Object as Sole Owner pat-
tern [Car96] and the Scoped Locking idiom [SSRB02d]. Instances of
classes implementing Resource Acquisition is Initialization the way Scoped
Locking does, i.e. referencing a resource they do not own, can neither be
copied nor assigned. This particularly means that they can not be re-
turned by value from functions.

The Change Of Authority idiom is shown in detail in Chapter 1. This
idiom enables instances of these classes to be returned by value from
functions and thus overcomes the above limitation. It also helps reduce
the cost of temporaries generated by the compiler.

The usefulness of this idiom is shown by examples mainly from the
concurrency domain. So one example is an extension to Scoped Locking.

In Java there is the synchronized method qualifier and in C# / .NET
you can set the synchronized attribute in the metadata of a method.
Both add the respective method to the Thread Safe Interface [SSRB02e].
In C++ such a language feature does not exist. The code shown in
Chapter 2 makes the convenience of the Java resp. C# / .NET keywords
mentioned available to C++. It is an application of the idiom shown in
Chapter 1. Thus the implementation of the Thread Safe Interface design
pattern becomes substantially simplified.

∗Copyright c© 2005 Philipp Bachmann <bachlipp@web.de>. Permission is granted to copy
for the 12th Pattern Languages of Programs (PLoP) conference 2005. All other rights reserved.

1

Contents

Contents 2

1 Change Of Authority 4

1.1 Also known as . 4

1.2 Intent . 4

1.3 Example . 4

1.4 Context . 7

1.5 Problem . 9

1.6 Forces . 10

1.7 Solution . 10

1.7.1 Participants . 11

1.7.2 Dynamics . 12

1.7.3 Rationale . 13

1.8 Resulting Context . 13

1.8.1 Pros and Cons . 14

1.8.2 The std::auto ptr<> way of Change of Ownership . . . 16

1.8.3 Exception safety requirements of AbstractResource . . . 18

1.9 Implementation . 18

1.9.1 Example Resolved . 18

1.9.2 Thread Pool Operation 20

1.9.3 The Reset Idiom . 25

1.10 Variants . 26

1.10.1 Change of Authority and Proxy combined 26

1.10.2 Change of Authority and Composite combined 26

1.10.3 Change of Authority and Iterator or Visitor combined . . 26

1.10.4 Change of Ownership . 26

1.11 Known Uses . 27

1.11.1 std::auto ptr<> . 27

1.11.2 The swap() member function 27

1.12 Related Patterns . 27

2

Contents

2 Thread Safe Interface goes synchronized 28

2.1 Context . 28
2.2 Problem . 28
2.3 Forces . 29
2.4 Solution . 29

2.4.1 Rationale . 29
2.5 Resulting Context . 31
2.6 Implementation . 32
2.7 Consequences . 36

Bibliography 39

3

What’s new here is that there’s
nothing new here.

Brian Foote [MRB98, p ix]

Chapter 1

The Change Of Authority

idiom

This chapter describes the Change Of Authority idiom, an enhancement for
classes implementing the Execute–Around Object design pattern [Hen00, pp 4–
7], a common application of the Resource Acquisition is Initialization tech-
nique [Str98, pp 388–393], [Str94, pp 495–497]. The idiom also is a generaliza-
tion of Change of Ownership as implemented e.g. with C++ std::auto_ptr<>.

1.1 Also known as

Move Constructors [Ale03], [HDA02]

1.2 Intent

Resource Acquisition is Initialization–guards usually are not copyassignable and
thus can not be returned by value from functions. This idiom shows, how to
implement guard classes, such that functions can return such guard instances
without destroying guarantees. It is also useful to reduce the cost of temporaries
generated by a compiler.

1.3 Example

Within the community of those who implement concurrent systems in C++
or other programming languages with deterministic destruction of instances the
Scoped Locking idiom [SSRB02d] is well established. This purpose of this idiom
is to couple the period during which a lock is being held to the lifetime of an
automatic variable.

4

1.3. Example

Listing 1.1: The Scoped Locking idiom according to [SSRB02d, pp 361–362]

1 class Thread_Mutex_Guard {

2 Thread_Mutex &lock_;

3 // No copy allowed , therefore private and declared only

4 Thread_Mutex_Guard(const Thread_Mutex_Guard &);

5 // No assignment allowed , therefore private and declared only

6 Thread_Mutex_Guard &operator =(const Thread_Mutex_Guard &);

7 public :

8 explicit Thread_Mutex_Guard(Thread_Mutex &lock) : lock_ (lock) {

9 lock_.acquire ();

10 }

11 ~Thread_Mutex_Guard(void) {

12 lock_.release ();

13 }

14 };

Thus on instantiation of Thread_Mutex_Guard a lock gets acquired, and on
leaving the surrounding block—most often the body of a function—the lock
gets released regardless of how the block is actually being left, be it by return

statements, be it by an exception thrown.
Access to an entity size, which is shared among different threads of execu-

tion, can be serialized as follows:

Listing 1.2: Using Scoped Locking

1 // Shared among multiple threads

2 static Thread_Mutex lock;

3 // Shared among multiple threads and protected by "lock"

4 static size_t size;

5 ...

6 // Potentially called concurrently

7 void setSize (size_t sz) {

8 Thread_Mutex_Guard guard(lock);

9 size=sz;

10 } // On automatic destruction of "guard " "lock" will

11 // reliably be released again.

Because the copy constructor is private, instances of Thread_Mutex_Guard
can not be copied. This prevents bad surprises elaborated on in detail below in
Listing 1.7.

Instances not being copyable can not be returned by value from functions,
however. Therefore e.g. adding the following template member function to
the Thread_Condition Wrapperfacade [SSRB02f, pp 66–67] will not work with
standard Scoped Locking:

Listing 1.3: A convenience member function returning Thread Mutex Guard

1 class Thread_Condition {

2 Thread_Mutex &mutex_ ;

3 ...

4 public :

5 ...

6 // void wait(void); renamed to

5

CHAPTER 1. CHANGE OF AUTHORITY

7 void wait_i (void); // not part of the

8 // Thread Safe Interface

9 // Convenience template member function

10 template < class Predicate >

11 Thread_Mutex_Guard wait_if (Predicate p) {

12 Thread_Mutex_Guard guard(mutex_);

13 while (p())

14 wait_i ();

15 return guard;

16 }

17 };

This convenience member function periodically checks the condition, and if it is
not fulfilled yet, then the simpler overload is being called. Thus this convenience
member function catches the most important Use Case [FS00, pp 35–42] associ-
ated to condition variables and casts this into an Inversion of Control member
function configurable by means of a Strategy [GHJV96m]. This generalizes Con-
venience Method [Hir97]. The class boost::condition of the Boost.Threads
library [Kem] provides a similar convenience member function.

If we could manage Thread_Mutex_Guards to be returned by value from
functions, though still not copyable, the above convenience member function
became possible, and we could use it as follows:

Listing 1.4: Using Thread Condition::wait if<>()

1 class Message_Queue {

2 class IsFull : public std :: unary_function < void ,bool > {

3 const Message_Queue &outer_ ;

4 public :

5 explicit IsFull (const Message_Queue &outer) : outer_ (outer) {}

6 bool operator ()(void) const {

7 return outer_ .full_i ();

8 }

9 };

10 friend class IsFull ;

11 const IsFull isFull_ ;

12 ...

13 size_t max_messages_;

14 mutable Thread_Mutex monitor_lock_;

15 Thread_Condition not_full_ ;

16 Thread_Condition not_empty_ ;

17 public :

18 enum { MAX_MESSAGES = ... };

19 explicit Message_Queue(size_t max_messages =MAX_MESSAGES)

20 : isFull_ (* this),

21 max_messages_(max_messages),

22 not_full_ (monitor_lock_),... {

23 ...

24 }

25 Message_Queue(const Message_Queue &rhs)

26 : isFull_ (* this), // Don’t let the copy of

27 // the predicate refer to

28 // the wrong queue

29 max_messages_(rhs. max_messages_),

30 not_full_ (monitor_lock_), // Condition variables can’t

6

1.4. Context

31 // be copied

32 ... {

33 ...

34 }

35 void put (const Message &msg) {

36 Thread_Mutex_Guard guard (not_full_ .wait_if (isFull_));

37 const bool wasEmpty (empty_i ());

38 put_i(msg);

39 if(wasEmpty)

40 not_empty_ .notify_all ();

41 }

42 ...

43 };

Here an alternative implementation of the Message_Queue class [SSRB02b] was
shown in a sparse way. This code fragment especially shows the notational sim-
plicity of the new implementation of Message_Queue::put(). This simplicity
on usage outweighs the disadvantage of an increased Surface–to–Volume Ratio
of Thread_Condition, which should be kept to a minimum in general [FY98,
pp 459–462], [Mey98, pp 107–111], [Str98, pp 819–821].

The rest of this chapter proposes a safe modification to Thread_Mutex_Guard
and similar classes to do the above stuff.

1.4 Context

Languages with deterministic destruction of instances like C++ allow for a
programming technique called Resource Acquisition is Initialization (RAII). A
common application is the Execute–Around Object. The basic principle is to
call the first member function of a pair of complementary member functions
from the constructor of a utility class and the second one from the destructor.
These classes are often referred to as guards.

Consider for example the following utility class:

Listing 1.5: Resource Acquisition is Initialization

1 class Ofstream_OpenClose_Guard {

2 std :: ofstream &stream_ ;

3 public :

4 Ofstream_OpenClose_Guard (

5 std :: ofstream &stream ,

6 const char fileName [],

7 std :: ios_base :: openmode mode

8 =std :: ios_base ::out | std :: ios_base ::app)

9 : stream_ (stream) {

10 stream_ .open(fileName ,mode);

11 }

12 ~Thread_Mutex_Guard(void) {

13 stream_ .close ();

14 }

15 };

7

CHAPTER 1. CHANGE OF AUTHORITY

Log files are a common tool for both debugging and auditing purposes. It is
advisable to open a log file only for the short period something has to be logged
and to close it right afterwards. This both keeps resource usage to a minimum
and allows log files to be rotated by some external tool. The above class can
facilitate this kind of usage pattern:

Listing 1.6: Using Ofstream OpenClose Guard

1 std :: ofstream stream ;

2 // Indicate certain errors by means of exceptions

3 stream . exceptions (std :: ios_base :: badbit |std :: ios_base :: failbit);

4 ...

5 {

6 Ofstream_OpenClose_Guard guard(stream ,"application .log ");

7 stream <<"a log message "<<std ::endl;

8 } // On automatic destruction of "guard" "stream " will

9 // reliably be closed again .

If appending text to the file fails, an exception will be thrown. Even in this case
the file will reliably be closed though there are no try and catch blocks—RAII
and exceptions work well hand in hand.

Using RAII provides several advantages:

1. It turns explicit release statements into more convenient, implicit ones.
This advantage is present in all examples shown throughout this paper.

2. It is a programming style particularly useful, where you were tempted to
explicitly or implicitly call a virtual member function from the construc-
tor or destructor of an Abstract Class [Aue95, Woo00], which would have
resulted in trouble, because the implementation of the base class would
have been called, which is probably not the intended one. Just using con-
structors and destructors in the Abstract Class only, it is not possible to
accomplish such a late initialization and early cleanup behaviour. You will
find an example for this in Listing 1.14 in Section 1.9.2.

3. Even in the advent of an exception the release operation is reliably exe-
cuted. The same holds for multiple return points from functions, which is
a recommended style [sin], [Fow99, pp 250–254]. This advantage is present
in all examples shown throughout this paper.

4. Factoring some initialization and cleanup actions into a separate guard
enables reuse of the instance affected avoiding potentially expensive, re-
peated destruction and construction inbetween. Especially instances rep-
resenting Value Objects [FS00, pp 83–84] are good candidates for this
style, as object identity does not matter with them. Examples for this
advantage look similar to Listing 1.14.

5. Factoring some initialization and cleanup actions into a separate guard is
necessary for states of resources, which are expensive in some sense. The
duration such states persist can be limited to short periods of time this

8

1.5. Problem

way. As the stack provides for deterministic, immediate destruction of
instances, which run out of scope, RAII can release not only memory, but
even resources more limited or critical [NW00]. Garbage collection today,
on the other hand, is primarily designed with memory in mind and could
therefore not serve for this purpose. This fact gave birth to the Dispose
pattern in C# [Mic05] and Java [AGH01, pp 228–230], [rel], see further
[Hen00, pp 6–7].

In this sense limiting resource usage happens in Listings 1.2, 1.4, 1.6 and
1.9 and potentially in Listings 1.3 and 1.8.

The above design of Ofstream_OpenClose_Guard has one flaw, however: It
does not prevent wrong usage as much as it could:

Listing 1.7: Bad things could happen if copy was not prohibited.

1 {

2 Ofstream_OpenClose_Guard guard0 (stream ,"application .log ");

3 // Built in copy constructor called , i.e. bitwise copy

4 Ofstream_OpenClose_Guard guard1 (guard0);

5 stream <<"a log message "<<std ::endl;

6 } // Both "guard1 " and "guard0 " are going to be destroyed here ,

7 // therefore "stream .release()" called twice!

To prevent this scenario, Ofstream_OpenClose_Guard should declare its copy
constructor private and should not define it similarly as shown in Listing 1.1.
This forces the compiler to reject the copy of guards. Compile time errors are
preferred over run time errors. The same reasoning also holds for the assignment
operator.

Using RAII guards therefore normally has the following disadvantage, too,
however:

• You have to prohibit copy and assignment.

1.5 Problem

RAII guards can neither be copied nor assigned. If copy and assignment were
allowed, cleanup would be performed as many times as there were guards re-
ferring to the same resource. From a conceptual point of view RAII guards are
Reference Objects [FS00, pp 83–84], because they internally associate another
instance.

This means in particular, that you can not return guards from functions.
This is a big limitation, as it means, that you can not factor code which ini-
tializes the guard into a separate function. This wish is related to the intent
behind the refactorings Extract Method [Fow99, pp 110–116], Replace Param-
eter with Method [Fow99, pp 292–294], and Replace Constructor with Factory
Method [Fow99, pp 304–307] and can lead to better encapsulation.

9

CHAPTER 1. CHANGE OF AUTHORITY

1.6 Forces

• Initialization and clean up should be factored in a separate class imple-
menting RAII.

• RAII guards are Reference Objects and thus must neither be copied nor
assigned.

• An instance which can not be copied can not be returned by value from a
function.

• Return by value from a function is a very special case of copy as the
instance copied always will run out of scope immediately afterwards.

• Return by value is preferred over non const reference parameters, because
it is more usual.

• The Counted or Detached Counted Body idiom [Cop00, pp 173–179],
[Lak96, pp 429–434], [Str98, pp 841–845] resp. Shared Ownership [Car96]
can be used for resource management and results in relatively cheap copy
and assignment operations. But if we know in advance, that a reference
count was either 0 or 1 at any time, which especially holds for temporaries,
then even this idiom is overkill.

• On return from functions by value the copy operation does not need to be
thread safe with respect to the instance being copied.

• Temporaries are as expensive as the respective copy constructors. There-
fore return by value can be expensive especially if no optimizer jumps
in.

• Function signatures should clearly express guarantees and missing guar-
antees.

1.7 Solution

If you need to forbid copy and assignment, then think twice whether it would be
better to allow for moving copy and moving assignment instead. Moving means
with classes implementing the Resource Acquisition is Initialization technique
in particular to move the authority over the instance referenced from the right
hand– to the left hand–side. After the move on destruction of the right hand–
instance nothing will happen any more. A moving assignment additionally will
first call the same operation as the destructor would have called to the instance
referenced by the left hand–side before the move takes place.

A moving copy and a moving assignment differ from a usual copy and a usual
assignment in so far as the former violate the postcondition that both instances
which participated in copy resp. assignment evaluate as equal afterwards. The

10

1.7. Solution

Table 1.1: Classes, responsibilies, and collaborations

AbstractResource
Set of com-
plementary
member func-
tion interfaces

(a) AbstractResource

Client
Calls GuardGenerator
Moves on stack Guard

(b) Client

ConcreteResource
Implements AbstractResource

(c) ConcreteResource

Guard
Ensures state AbstractResource
Passes authority Guard
Takes authority Guard

(d) Guard

GuardGenerator
Returns by value Guard

(e) GuardGenerator

right hand–side becomes modified and in general remains only destructible af-
terwards [Ale03].

A first sketch of the solution is shown in Table 1.1. The client uses a Guard
to get the promise, that AbstractResource has a certain state during the life-
time of the Guard. As long as the Guard exists, the client can safely access the
AbstractResource. A Guard can pass its authority over the state of the Abstrac-
tResource to another Guard both on moving copy and on moving assignment.

1.7.1 Participants

AbstractResource An instance of a class prescribing a pair of complementary
member functions to be implemented by concrete classes. Such classes are
sometimes referred to as resources. You do not need access to the source
code of this class.

Client Client code ensures that AbstractResource has a certain state. To do
so, it calls GuardGenerator to get a Guard.

ConcreteResource An instance of a class implementing or overwriting the
virtual member functions declared by AbstractResource. You do not
need access to the source code of this class.

Guard A class referencing the AbstractResource instance and applying calls to
its pair of member functions on construction and destruction. This idiom
especially describes the collaboration between two instances of the Guard:

• An instance constructed with AbstractResource as reference param-
eter.

11

CHAPTER 1. CHANGE OF AUTHORITY

Figure 1.1: Class diagram illustrating return by value with moving copy

• Another instance the first one is moving copied or moving assigned
to.

GuardGenerator A class with a member function which returns a Guard by
value.

Figure 1.1 sketches the participants and their relations to each other. The
class diagram basically provides information that this idiom still works, if Guard
does not depend on ConcreteResource, and that AbstractResource is shared
among multiple Clients.

Note that it has been left open, whether a single Client can guard an instance
of AbstractResource multiple times at the same time. Though in most cases N

must not exceed 1, there are AbstractResources, which you can define a Guard
for with arbitrarily large N .

1.7.2 Dynamics

The core of this idiom is its dynamics. Instead of prohibiting copy and assign-
ment of Reference Objects, allow for a moving copy and a moving assignment.

The dynamics of returning by value with moving copy is shown in Fig-
ure 1.2. The period between return from the GuardGenerator::generateGuard()
member function and the point in time when :Guard runs out of scope is the
window during which :Client can safely perform the appropriate actions. This
sequence diagram shows the worst case without help from a clever optimizer.
An optimizer can perform two optimizations here: It is likely, that the instance
[temporary] can be optimized away, because the instance :Guard can be con-
structed with local as an argument, thus taking the role of [temporary] [BM00,
pp 72–75]. This optimization is not possible in case of a moving assignment in-
stead of copy, however, because in this case :Guard has already been constructed
before. The other kind of optimization is known as Return Value Optimization
and means, that local can be skipped, thus constructing the returned instance

12

1.8. Resulting Context

Figure 1.2: Sequence diagram illustrating return by value with moving copy
without any optimization

of the class Guard into [temporary] [BM00, pp 59–65], [HDA02]. This optimiza-
tion is possible both on moving copy and on moving assignment. A compiler
may combine both optimizations and thus construct the returned instance of
Guard directly into :Guard. Following sequence diagrams will contain these
optimizations mainly for readability purposes.

1.7.3 Rationale

This section illustrates, how the Change of Authority idiom solves the problem
stated.

We want to be able to return guards from functions, but as guards are Ref-
erence Objects, there is neither a copy constructor nor an assignment operator.
The basic insight is, that there is no need for the total contract copy and assign-
ment provide. A weaker contract still suffices to return guards from functions.
It suffices to implement only a moving copy resp. a moving assignment instead,
because the right hand side is thrown away right after the return anyway on
leaving the scope given by the function body.

1.8 Resulting Context

The idiom proposed is a way to combine the advantages of the RAII technique
with return by value. It also provides a means to reduce the cost of temporaries.

Consider the following function which uses the example from Listing 1.5.

Listing 1.8: Function which generates an instance of
Ofstream OpenClose Guard

1 Ofstream_OpenClose_Guard generateCurrentOpenClose_Guard (

13

CHAPTER 1. CHANGE OF AUTHORITY

2 std :: ofstream &stream ,

3 const char fileName [],

4 std :: ios_base :: openmode mode

5 = std :: ios_base :: out

6 |std :: ios_base :: app) {

7 const std :: time_t now(std ::time (0));

8 const std ::tm *const timeStruct =std :: gmtime (&now);

9 Ofstream_OpenClose_Guard guard(stream ,fileName ,mode);

10 stream <<timeStruct -> tm_year +1900

11 <<timeStruct ->tm_mon +1

12 <<timeStruct -> tm_mday

13 <<": ";

14 return guard;

15 }

This way we are able now to automatically produce log files prefixing each line
with the current date in the format 20051215: without adding another con-
structor to Ofstream_OpenClose_Guard (which might not be possible anyway
due to the lack of source code):

Listing 1.9: Using generateCurrentOpenClose Guard()

1 {

2 Ofstream_OpenClose_Guard guard(

3 generateCurrentOpenClose_Guard (stream ,"application .log"));

4 stream <<"Paper finally submitted to PLoP."<<std :: endl;

5 } // On automatic destruction of "guard" "stream " will

6 // reliably be closed again .

Some consequences are listed below, that may be given consideration to by
people who apply this idiom.

1.8.1 Pros and Cons

The Change of Authority idiom has the following benefits:

1. Return guards from functions possible. Functionality can be factored into
functions now, even if they should return guards. The context around
the construction of guards can be as complicated as the generation of
any other entity within an application. A guard could model a running
thread pool for example, and the number of threads the pool should consist
of might have to be read from a configuration file first. It was a bad
idea to introduce a new constructor for this special case taking a file
name. Instead the number should be read from the file and then be fed
to an already existing constructor that takes the number as an integral
parameter, and both steps should be grouped together in a function.

2. Information hiding. On return from a function the caller only gets a
guard—the instance the guard refers to can be completely hidden within
the guard. In the case of mutual exclusion locks this might be seen as
an advantage. There are cases, however, where RAII guards are also

14

1.8. Resulting Context

implemented as Proxies (see Section 1.10.1 and [Hen00, pp 8–14]). In this
case access is unified at least.

3. Low runtime overhead. An alternative to Change of Authority was refer-
ence counting as done in the Counted or Detached Counted Body idiom
resp. Shared Ownership. But with the latter a counter has to be managed
and—worse—memory has to be allocated for it on the free store, which is
bad both in terms of runtime overhead and in terms of possible exceptions.

4. Nothrow Guarantee. As also indicated below in Section 1.9 moving copy
and moving assignment fulfill the Nothrow Exception Safety Guarantee
[Sut00a] [Hen00, p 2]. This means, that no exceptions will ever be thrown
on either of these two operations. The reason for this is that these member
functions only operate on data types which do not throw by definition
during copy and assignment. The Nothrow Guarantee is a prerequisite
to implement assignment operators which are Strongly Exception Safe
[Sut00f] [Hen00, p 2].

5. Temporaries made cheaper. This idiom is especially well suited to opti-
mize the cost induced by temporaries. Temporaries are a very special kind
of data different from free store, heap, and stack. This is a recurring topic,
and related solutions have been suggested so far [Ale03], [HDA02]. There
are also idioms especially concerned with temporaries [Lak96, p 621],
[Mey99, pp 114–117], [Sut00g], and more sophisticated tools like Expres-
sion Templates [VJ03b], [CE00, pp 464–465, 680–708] have been proposed
to avoid temporaries. In the special case of return by value from a func-
tion the advantage is, that the usual deep copy performed on returning can
safely be turned into a moving copy, because the local variable becomes
automatically destroyed immediately after the copy anyway.

The Change of Authority idiom has the following liabilities:

1. Two step initialization considered harmful. Advantage 4 on Page 8 means,
that you can use Change of Authority to factor some of the initialization
and cleanup code from the constructor and destructor of a class into a
guard class which accompanies the stripped class. If your class is usable
even without the second initialization step already being performed, this
is a good solution. This is the case, if the class represents a Null Ob-
ject [Woo98] as long as there is no corresponding guard. If it is not possi-
ble to implement two step initialization this way, the advantage has to be
carefully traded against potential errors caused by the usage of instances
only initialized partially before, however.

2. In need for guard classes. For each Abstract Class you want a guard for
you have to implement a companion class. There are classes you may even
want to have multiple guard classes for.

This issue might be solved by generative programming techniques like
C++ templates, though this is far from trivial in the general case, as the

15

CHAPTER 1. CHANGE OF AUTHORITY

configuration effort of such templates can equal the effort to build a RAII
class from scratch. This configuration effort furthermore obfuscates the
generation of the RAII classes, because it means to use some Inversion of
Control / Strategy / Policy. Usage would also become obfuscated by the
fact, that such a template would have a unified constructor signature or
at most a limited set of different constructors, which likely does not match
the needs of a concrete template instantiation exactly. In short, as this
disadvantage can not completely be resolved, it has to be traded against
the advantages.

3. Danger of confusing move with usual copy. Not looking at the signatures
of the respective constructors or assignment operators there is no easy,
natural way to guess what is actually going on. The syntax of using
moving copy resp. assignment does not differ from the syntax of copy
resp. assignment you are used to. This can lead to surprises like [Mey01,
pp 40–43].

1.8.2 The std::auto ptr<> way of Change of Ownership

The following discussion strives for three goals: Firstly it shows another motiva-
tion for Change of Authority. Change of Authority is not only moving copy and
moving assignment, but also a generalization of Change of Ownership. Secondly
it emphasizes the best known example for Change of Authority. After reading
this section the reader thirdly will have seen the consequences of delegating
AbstractResource::init() to the caller.

The C++ standard class template std::auto_ptr<> takes a pointer to an
instance and takes strict ownership over this instance on construction. On de-
struction of the instance delete is called. To protect its users from bad surprises
due to automatic type conversions the constructor is declared explicit, thus
it doesn’t participate in such conversions. Otherwise situations might occur,
where the owning entity is not obvious any more resulting in multiple owners
and multiple destruction of the same instance. In other words, an instance of
std::auto_ptr<> is an Object as Sole Owner [Car96], which is an application
of the Resource Acquisition is Initialization technique. That is the reason for
the first part of the name, auto. Instances of std::auto_ptr<> are primarily
intended to be used as automatic variables and as class attributes.

With std::auto_ptr<> advantage 1 on page 8 means to turn free store
into stack semantics. So even in cases, where you absolutely cannot create
instances on the stack, as is the case e.g. with the Factory family of design pat-
terns [GHJV96a, GHJV96g] or with Virtual Constructors [Cop00, pp 184–185],
[Cop92, pp 140–160, 288–295], [Str98, pp 452–453] and Prototypes [GHJV96k]
resp. Exemplars [Cop92, pp 279–306], which both are special incarnations of
Abstract Factories in fact, std::auto_ptr<> reestablishes the convenience of
stack semantics and lets the use of polymorph pointer types feel like fundamen-
tal types, which is a general goal of the C++ type system [Str94, pp 285–326].
Advantage 3 on page 8 means here, that even if during the usage of this guard

16

1.8. Resulting Context

an exception gets thrown and remains uncaught within the block which defined
the guard before, then the destructor of the guard will reliably be called and no
memory leak will result.

std::auto_ptr<> implements moving copy and moving assignment, i.e. ad-
ditionally to the construction mentioned above it also supports a second kind
of Change of Ownership. This is a specialization of Change of Authority. The
creation of an instance is placed to the responsibility of the client. This makes it
possible to hide the dynamic type of the AbstractResource completely from the
std::auto_ptr<> instance. In other words, an AbstractResource::init()

member function has no relevance to this guard.

This has two consequences for people who want to design classes similar to
std::auto_ptr<>.

Firstly, it has to be decided, what to do with the instance of AbstractRe-
source just created, if on construction of the Change of Ownership–container
an exception gets thrown. With std::auto_ptr<> this is a non–issue, as its
constructor involved here does not throw. But with counting pointers this is
an issue, as they allocate memory within their respective constructor for the
reference counter, which may fail. boost::shared_ptr<> [ACD] takes owner-
ship even in the case of an exception, i.e. after the constructor returns with
an exception the instance given as an argument has already been destroyed.
This is necessary to guard code like boost::shared_ptr< int > i(new int)

against potential memory leaks—otherwise you could not safely create the in-
stance within the argument list of the constructor. But this decision implies,
that even in case of an exception a side effect [Mey97, pp 748–764] will happen,
which somewhat contradicts the goal of Strong Exception Safety.

Secondly, the flexibility gained by delegating the task of AbstractResource::
init() to the client also means, that you may want to provide a way to con-
figure the behaviour of AbstractResource::clear() in a more powerful way
than possible by polymorphism. While std::auto_ptr<> does not allow for
that, boost::shared_ptr<> does. With the latter you can even manage e.g.
fields allocated with new[] or instances placed into shared memory therefore.

The second part of the name, ptr, expresses, that std::auto_ptr<> is a
smart pointer. It is a Proxy [GHJV96l, BMR+00b] [Hen00, pp 8–11] granting
access to the instance aggregated by means of its member operator->(). This
way an instance of std::auto_ptr<> lets the user e.g. call member functions of
AbstractResource as if it was a pointer.

std::auto_ptr<> further more provides templated member functions and
operators which let it reflect potential type relationships between classes pro-
vided at instantiation of the std::auto_ptr<> template. Given that A and B

are classes related to each other—e.g. A inherits from B—, std::auto_ptr< A >

and std::auto_ptr< B > are therefore related, too. This increases the flexi-
bility of moving copy and moving assignment and mimics the object oriented
flexibility with entities of A * and B *.

17

CHAPTER 1. CHANGE OF AUTHORITY

1.8.3 Exception safety requirements of AbstractResource

Destructors must not throw exceptions. One reason for this is, that if an excep-
tion becomes thrown somewhere the stack is being unwound until an appropriate
exception handler catches the exception thrown. Stack unwinding means, that
destructors will be called. If a destructor throws during this procedure, you will
end up with two exceptions in parallel. The second exception basically indi-
cates, that it proved impossible to unwind the stack, which in turn means, that
there is no clean way anymore to terminate the application. Not being able any
more to gracefully react upon exceptions [NW00] or even to cleanly stop your
application if errors have occured should be restricted to really fatal errors, you
cannot write useful exception handlers for anyway [Str98, p 393], [Str94, p 492].

To get the destructor of the guard class proposed non–throwing, the follow-
ing assumption has to be made: AbstractResource::clear() must not throw,
if and only if the last member function of the pair AbstractResource::init;
clear() called was AbstractResource::init(). So there is no need to require
Abstract Object::clear() not to throw at all. This promise can not be ex-
pressed in terms of C++ exception specifications. A way to reliably achieve
this prerequisite is not to declare both the AbstractResource::init() and
AbstractResource:: clear() public and the RAII class to be a friend of the
class it refers to. This requires access to the source code of AbstractResource,
however.

1.9 Implementation

In this section two examples will be presented. First the open example from Sec-
tion 1.3 is going to be solved in depth. The second example illustrates a Change
of Authority guard suitable to solve a potential problem with MQ_Scheduler.

A third subsection proposes an idiom which might accompany the Change
of Authority idiom.

1.9.1 Example Resolved

The example taken from [SSRB02d] and already mentioned in Section 1.3 can be
changed such that instead of prohibiting copy and assignment it fully supports
the ideas layed out throughout this paper.

The original example with moving copy and moving assignment added is
shown below.

Listing 1.10: Change of Authority added to Listing 1.1

15 class Thread_Mutex_Guard {

16 Thread_Mutex *lock_ ;

17 public :

18 explicit Thread_Mutex_Guard(Thread_Mutex &lock) : lock_ (& lock) {

19 lock_ ->acquire ();

20 }

18

1.9. Implementation

21 ~Thread_Mutex_Guard(void) {

22 if(lock_)

23 lock_ ->release ();

24 }

25 // Moving copy

26 Thread_Mutex_Guard(Thread_Mutex_Guard &rhs) throw ()

27 : lock_(rhs.lock_) {

28 rhs .lock_ =0;

29 }

30 // Moving assignment

31 Thread_Mutex_Guard &operator =(Thread_Mutex_Guard &rhs) {

32 if(rhs .lock_ != lock_) {

33 if(lock_)

34 lock_ ->release ();

35 lock_=rhs.lock_;

36 rhs.lock_ =0;

37 }

38 return *this;

39 }

40 };

Both moving copy and moving assignment indicate by their respective sig-
natures, that they only grant a weaker contract to its clients than a usual copy
or assignment would: They do not promise not to modify the right hand side.
In contrast to Listing 1.1 Thread_Mutex_Guard::lock_ is a pointer and not a
reference for two reasons independent from each other here:

• References are copyable, but not assignable—but the latter is necessary
to implement assignment of Thread_Mutex_Guard instances.

• Pointers can point to nothing, i.e. 0. This indicates here, that authority
is lost.

The implementation of a moving assignment has to guard against self as-
signment, because the right hand side in the general case would also have been
changed, which has to be handled as a special case here, therefore. The im-
plementation simply returns the unchanged instance then. The same branch is
going to be executed if both instances affected already lost authority—but this
is just an optimization.

The constructor taking the reference to the lock is declared explicit not
to contribute to automatic type conversions. This protects the user from bad
surprises with locks acquired by accident and reflects the fact, that a guard is a
different kind of thing than the instance it refers to.

Later versions of the C++ standard prohibit rvalues and thus temporaries
from being bound to non const references [Str94, pp 105–106]. This means,
that the usage of the näıve implementation shown on Page 18 will be rejected
by a conforming compiler and therefore not work as expected. It needs to be
slightly extended as shown below:

Listing 1.11: Adding a helper class to make Thread Mutex Guard compile

41 class Thread_Mutex_Guard {

19

CHAPTER 1. CHANGE OF AUTHORITY

42 ...

43 protected :

44 struct self_ref {

45 Thread_Mutex_Guard &guard_ ;

46 explicit self_ref (Thread_Mutex_Guard &guard) throw ()

47 : guard_ (guard) {}

48 };

49 public :

50 ...

51 // Another moving copy

52 Thread_Mutex_Guard(self_ref rhs) throw ()

53 : lock_(rhs .guard_ .lock_) {

54 rhs.guard_ .lock_ =0;

55 }

56 ...

57 operator self_ref (void) throw () {

58 return self_ref (* this);

59 }

60 };

The trick here is to encapsulate the reference by an instance which is returned
and copied by value. This implementation is well known from
std::auto_ptr<> from the C++ standard library.

One might ask why not to take the usual signature of copy construction and
assignment and to cast the const of the argument away to implement the move.
This was a bad alternative to the solution proposed as the moving character
of these operations remains hidden from the interface (compare with [Lak96,
p 612]). Further more casting away const can lead to undefined behaviour.

1.9.2 Thread Pool Operation: Change of Authority, Com-

posite, and Iterator combined

Change of Authority can be combined with other idioms and patterns. This
implementation example suggests a simple thread pool, thus also implement-
ing the Composite pattern [GHJV96i]. The Iterator pattern [GHJV96h] is used
to enable clients to access the threads the pool consists of. The code is as follows.

Listing 1.12: A pool of threads executing a function object each shared among
them

1 extern "C" {

2 void *svc_run (void *);

3 }

4

5 class Thread_Pool_Operation {

6 public :

7 typedef std ::vector < thread_type > pool_type ;

8 typedef typename pool_type :: const_iterator const_iterator;

9 typedef typename pool_type :: size_type size_type ;

10 struct command_adapter

11 : public std :: unary_function < void ,void > {

12 virtual ~command_adapter(void) {}

13 virtual void operator ()(void) =0;

20

1.9. Implementation

14 };

15 private :

16 template < class Command > class command_proxy

17 : public command_adapter {

18 Command &command_ ;

19 public :

20 explicit command_proxy(Command &command) : command_ (command) {}

21 void operator ()(void) {

22 command_ ();

23 }

24 };

25 std :: auto_ptr < command_adapter > command_ ;

26 pool_type pool_;

27 void joinPool_ (void) throw () {

28 for (pool_type :: reverse_iterator in(pool_.rbegin ());

29 pool_ .rend ()!= in;

30 ++in)

31 joinThread (*in);

32 }

33 public :

34 template < class Command >

35 Thread_Pool_Operation (size_type number_of_threads ,

36 Command &command)

37 : command_ (new command_proxy < Command >(command)) {

38 pool_.reserve (number_of_threads);

39 try {

40 for(size_type i(0); number_of_threads >i;++i)

41 pool_ .push_back (createThread(svc_run ,* command_));

42 }

43 catch (...) {

44 joinPool_ ();

45 throw;

46 }

47 }

48 ~Thread_Pool_Operation (void) {

49 joinPool_ ();

50 }

51 Thread_Pool_Operation (Thread_Pool_Operation &rhs) throw ()

52 : command_ (rhs.command_) {

53 pool_.swap(rhs.pool_);

54 }

55 Thread_Pool_Operation &operator =(Thread_Pool_Operation &rhs) {

56 if(rhs .command_ .get ()!= command_ .get ()) {

57 joinPool_ ();

58 pool_.clear ();

59 pool_.swap(rhs.pool_);

60 }

61 command_ =rhs .command_ ;

62 return *this;

63 }

64 const_iterator begin (void) const {

65 return pool_ .begin ();

66 }

67 const_iterator end(void) const {

68 return pool_ .end ();

69 }

70 ...

21

CHAPTER 1. CHANGE OF AUTHORITY

71 };

72

73 void *svc_run (void *arg) {

74 assert (arg);

75 (static_cast < Thread_Pool_Operation :: command_adapter >(arg))();

76 return 0;

77 }

Note some details of this implementation:

• The Command does not need to support polymorphism. The injection
of the Command is being performed statically. This differs e.g. from
java.lang.Runnable and java.lang.Thread in Java, where the code is
injected by subclassing implementing resp. overwriting the run() method
[AGH01, pp 253–259].

• Thread_Pool_Operation::joinPool_() is incomplete in that it does not
call pool_.clear(). It is an implementation helper only and is therefore
declared private.

• The templated constructor calls std::vector<>::reserve() to prevent
std::vector<>::push_back() to throw an exception.

• The existance of std::vector<>::swap() throw() is a true sign, that
std::vector<> implements the Handle / Body idiom [Cop92, pp 58–62],
[Lak96, pp 352–353], also known as the Pimpl idiom [Sut00b] and the
Bridge pattern [GHJV96e].

• std::auto_ptr<> and std::vector<>, the template classes of both at-
tributes, support Change of Authority out of the box. The first one does
so exactly as proposed in this paper while with the second one an arbitrary
instance can be swap()ped for an empty one [HDA02]. Thus the imple-
mentations of both moving copy and moving assignment of Thread_Pool_
Operation can simply delegate their jobs. std::auto_ptr<> especially
guards itself against self assignment.

• The thread Command remains a reference; each thread refers to the
same instance. This design decision lets the client easily share data
among the threads of a pool simply by adding attributes to the ap-
propriate Command. Access to these may need to be serialized within
Command::operator()(), however.

• Thread Pool Operation::command adapter is an Adapter [GHJV96b],
that serves for the purpose to provide a non templated way to apply the
Command. This is necessary because it is assumed that the multithreading
library of the operating system has a C programming interface and thus
is agnostic about C++ templates. The Adapter has an arbitrarily large
number of implementations. To each Command corresponds exactly one
template instantiation of Thread_Pool_Operation::command_proxy<>,

22

1.9. Implementation

which is a Proxy. This idea is similar to the idea behind the imple-
mentation of the External Polymorphism pattern [CSH98]. The mapping
of a Command to its Proxy is performed by the templated constructor of
Thread_Pool_Operation within its initialization list.

From a more abstract point of view the interaction between the constructor
and the adapter mentioned bewares the class Thread_Pool_Operation

from being a template class with Command as its parameter. Similarly to
the deleter argument on construction of boost::shared ptr<> instances
this keeps the type relationship between thread pools intact even if they
execute different Commands.

• thread_type, createThread(), and joinThread() wrap the respective
operating system specific types and functions. createThread() translates
error codes into exceptions. joinThread() must not throw if applied to a
valid thread identifier not to let Thread_Pool_Operation::joinPool_()
throw, which in turn ensures that Thread_Pool_Operation::Thread_

Pool_Operation() does not throw.

From a design point of view thread_type is a Future type, and the role
of the Rendezvous function is taken by joinThread() [SSRB02a, pp 413,
417,423–430,435–436]. Thread_Pool_Operation::pool_ is a Composite
Future instance, and Thread_Pool_Operation::joinPool_() is the ap-
propriate Rendezvous member function. Thus Thread_Pool_Operation

turns asynchrony into synchrony.

• The destructor of Thread_Pool_Operation joins the threads. This en-
sures that no data is still being referenced by some threads after de-
struction of the instance of Thread_Pool_Operation simply as there are
no such threads at that time anymore. This is especially important in
the case of exceptions thrown by the thread that created an instance of
Thread_Pool_Operation which still has not run out of scope. Related is-
sues are known as the Orphaned Thread bug pattern [All02b]. This item
corresponds to advantage 3 on page 8.

• The technical self_ref stuff has been skipped here as in Listing 1.10. It
was almost the same as in Listing 1.11.

An application example for this thread pool is the MQ_Scheduler class pro-
posed by [SSRB02a, pp 425–427]. MQ_Scheduler implements the Command
design pattern [GHJV96c]: The code to be executed is the default implemen-
tation of the virtual member function MQ_Scheduler::dispatch(), the des-
tination instance the command is applied to is the instance of MQ_Scheduler
itself. Because the MQ_Scheduler must rely on the procedural multithreading
library of the operating system, the Command pattern is indirectly implemented
using the Strategy design pattern: The extern "C" function1 svc_run() is the

1In the original paper it is a static member function of MQ_Scheduler. This decision was
better in terms of encapsulation, but does not work with all multithreading libraries. POSIX
Threads’ pthread_create() e.g. requires the Strategy to be extern "C".

23

CHAPTER 1. CHANGE OF AUTHORITY

Strategy, which turns itself into a Command by executing object oriented code
supplied as its argument. As thread creation is performed by the constructor
of MQ_Scheduler, the Command will be executed indirectly multiple times on
construction of MQ_Scheduler. You might run into trouble, if you inherit from
and overwrite its MQ_Scheduler::dispatch() member function. It is likely
that the default implementation of this member function will be executed at
least by some threads, which start “too fast”, and not the implementation of
the specialization; so by means of the keyword virtual configurability is be-
ing announced which actually does not exist. There are no timing problems,
there are programming errors only, however. A RAII guard, which will start
the threads in its constructor and may also join them in its destructor, will fix
this.

With the help of our new class Thread_Pool_Operation thread pool man-
agement can be factored out of MQ_Scheduler for example. Doing so results in
an example for a guard, where N of Figure 1.1 can be arbitrarily large. This
also serves as an example, where two step initialization is not dangerous because
an instance of MQ_Scheduler without any guards reduces to Null Object. The
modified MQ_Scheduler is shown below.

Listing 1.13: Reengineering the constructor of MQ Scheduler from [SSRB02a,
p 425]

1 class MQ_Scheduler : public std :: unary_function < void ,void > {

2 Activation_List act_queue_ ;

3 public :

4 explicit MQ_Scheduler(size_t high_water_mark)

5 : act_queue_ (high_water_mark) {}

6 void insert (Method_Request *);

7 // virtual void dispatch(void); renamed to

8 virtual void operator ()(void);

9 Thread_Pool_Operation generateThread_Pool_Operation (

10 Thread_Pool_Operation :: size_type number_of_threads) {

11 return Thread_Pool_Operation (number_of_threads ,*this);

12 }

13 };

The constructor does not spawn any worker threads any more.
A client now can safely derive from MQ_Scheduler and overwrite even its

MQ_Scheduler::operator()() without resulting in trouble. Let us say, there
is such a child class called Specialized_Scheduler. Then usage is as follows:

Listing 1.14: Using MQ Scheduler

1 Specialized_Scheduler scheduler ;

2 // Let’s go

3 const Thread_Pool_Operation

4 gasoline0 (scheduler .generateThread_Pool_Operation (42));

5 ...

6 // Increase size of the worker pool

7 const Thread_Pool_Operation

8 gasoline1 (scheduler .generateThread_Pool_Operation (10));

24

1.9. Implementation

9 ...

10 // Decrease size of the worker pool

11 for(Thread_Pool_Operation :: const_iterator ci(gasoline1 .begin ());

12 gasoline1 .end ()!=ci;

13 ++ci)

14 cancelThread(*ci);

15 ...

16 // Shut down the worker pool

17 for(Thread_Pool_Operation :: const_iterator ci(gasoline0 .begin ());

18 gasoline0 .end ()!=ci;

19 ++ci)

20 cancelThread(*ci);

21 // Now "Thread_Pool_Operation ::~ Thread_Pool_Operation ()"

22 // won’t block infinitely

The flexibility to dynamically increase and decrease the size of the thread pool
is possible only because a single instance of MQ_Scheduler can be associated
with an arbitrary number of instances of Thread_Pool_Operation.

Thread cancellation is used here only as an example to illustrate the Iterator
interface.

Thread cancellation is not discussed in detail here because it is not portable.
The cancelThread() placeholder works here only satisfactory if the platform
provides a function similar to POSIX’ pthread_cancel(), which has two im-
portant properties: The cancellation points where the target thread is about to
finish at are well defined, configurable and extensible, and resource management
can be performed on cancellation [Ste99, pp 187–192]. Both does not hold e.g.
for MS Win32 TerminateThread().

1.9.3 The Reset Idiom

Sometimes a way is needed to reset the Change of Authority guard. Either
a reset() member function is introduced for this purpose as it exists with
std::auto_ptr<>, or the following idiom can be used.

Listing 1.15: The Reset idiom

1 Guard guard(abstractResource);

2 const GuardedType cp(proto);

3 {

4 const Guard reset (guard);

5 }

6 // no need for protection any more here ,

7 // as "proto" not used any longer

8 cp.doSomething ();

9 ...

The purpose of this idiom is to allow the instance of guardedType to be copied
(and not default constructed and then assigned) during the lifetime of the guard,
but to use the copy later without the guard. Resetting authority can be dan-
gerous, therefore this idiom looks so ugly. That is the same design principle as
with the new *_cast<>() operators in C++: Dangerous actions should still be

25

CHAPTER 1. CHANGE OF AUTHORITY

possible, but they should syntactically be that complex that they are unlikely
to be used thoughtless [Str94, pp 395–398]. This is an advantage of the Reset
idiom over a simple reset().

1.10 Variants

Change of Authority can be combined with other idioms and patterns. Some of
these cases are documented in this section.

1.10.1 Change of Authority and Proxy combined

If the class implementing Change of Authority also implements the Proxy design
pattern, then the user must use the instance with caution after it participated
in a move on the right hand–side as the object reference is invalid afterwards.
Proxy behaviour should be assumed only for the period the Change of Authority
guard also holds authority over the instance referenced, therefore. In other
words, the only guarantee granted to the Change of Authority instance after it
lost authority is that it is still destructible.

1.10.2 Change of Authority and Composite combined

Combining Change of Authority and Composite lets the guard manage more
than one resource at a time and occasionally pass the authority over all resources
to another guard. An example for this case has been layed out in Section 1.9.2.

1.10.3 Change of Authority and Iterator or Visitor com-

bined

Change of Authority and Iterator or Visitor [GHJV96d] combined is to guards
implemeted as Composites (see Section 1.10.2), what Change of Authority and
Proxy combined (see Section 1.10.1) is to guards managing a single resource.
The example presented in Section 1.9.2 also applies for this case. As with the
combination with Proxy care must be taken not to let guards return Iterators
resp. to let guards accept Visitors after loss of authority over the items stored
in the Composite.

1.10.4 Change of Ownership

As discussed in Section 1.8.2, Change of Ownership sometimes is implemented
as a special case of Change of Authority.

26

1.11. Known Uses

1.11 Known Uses

1.11.1 std::auto ptr<>

The template class std::auto_ptr<> implements Change of Authority and
combines this idiom with Proxy. It is an example for the variants described
in Sections 1.10.1 and 1.10.4. std::auto_ptr<> is a good choice for the return
of functions which belong to the Factory family of design patterns.

1.11.2 The swap() member function

The C++ standard Composites implemented by means of the Bridge design
pattern declare a swap() member function each. This bidirectionally changes
authority over the implementation. Strong Exception Safety in general is ex-
pensive with Composites, because the Memento design pattern [GHJV96j] likely
needs to be applied, which in turn requires a deep copy. Therefore the standard
C++ algorithms operating on the Composites of the C++ standard library only
provide for the Basic Exception Safety Guarantee [Sut00e, pp 47–48] [Hen00, p
2]. With help of the swap() member function the user still has the freedom to
turn this guarantee into the Strong Guarantee [Abr00], though. To syntactically
come closer to the symmetry inherent in swap(), the algorithm std::swap<>()

can be used instead of the swap() member function.
To really support moving copy and moving assignment for all classes sup-

porting swap(), a templated Proxy can be built similarly to the example shown
in Section 1.9.2.

1.12 Related Patterns

Many design patterns have already been mentioned in this paper. The patterns
most related to Change of Authority are repeated here.

Abstract Class is controlled by the Change of Authority guard.
Bridges sometimes are equipped with Change of Authority by means of a

swap() member function.
Composite, Iterator, Proxy, and Visitor can help with the implementation

of Change of Authority as shown in Section 1.10.
The reference counting employed in Counted or Detached Counted Body can

be an alternative for Change of Authority. While with Change of Authority the
authority of the guard instance over a certain state the AbstractResource can
take is strict and exclusive and therefore like the Composition relationship in
UML, reference counting leads to a relationship similar to Aggregation, i.e. the
state of AbstractResource persists until the last guard runs out of scope then.

Resource Acquisition is Initialization is the foundation of Change of Author-
ity.

27

Simplicity is not an end in art,
but we usually arrive at
simplicity as we approach the
true sense of things.

Constantin Brancusi

Chapter 2

The Thread Safe Interface

design pattern goes

synchronized

After reading this chapter, you will have seen an application of the Change of
Authority idiom introduced in Chapter 1. An alternative and general imple-
mentation of the Thread Safe Interface design pattern [SSRB02e] [Hen00, pp
21–22] will be the result.

2.1 Context

You are about to design an application from your own and foreign libraries.
The application design prescribes multiple concurrent control flows to be imple-
mented by means of threads or processes.

2.2 Problem

Access to an instance shared among different concurrent control flows should be
made threadsafe1, i.e. the observable state of the instance must not be corrupted
by any means during concurrent access. In other words, serial equivalence must
be guaranteed. How to turn the interfaces of classes, especially of legacy classes
which are not threadsafe, into threadsafe ones?

1For simplicity of description only threads are talked about here—the same applies to
processes, too.

28

2.3. Forces

2.3 Forces

• Programmers take two roles: They use existing code and they provide
their work as a library (compare to [Str02, Ven04]). Your code will get
old, older than you imagine today [FY98]. Therefore it is not enough that
its inventors know how to safely use their code—in the long run the code
will be used by others like a library and should meet the quality criteria
demanded on libraries.

• The compiler is programmer’s friend. Libraries should use the capabilities
of the programming language and the compiler to guide users of the library
to correct usage.

• Locking is expensive. The appropriate pair of calls is expensive, and lock-
ing limits scalability.

• You may need serialization, you may need synchronization, too.

• Though turning an unsafe class into a threadsafe one is straightforward,
it still has to be done for each class in question. synchronized is nice in
Java—is there an equivalent in other programming languages, too?

• Threadsafe Interfaces are related to their unsafe counterparts in a non–
symmetrical way. A Thread Safe Interface can be used as an unsafe one,
but not vice versa.

• Serialization and synchronization can be thought of as concerns which
crosscut business logic [KLM+97].

• Simplicity matters.

2.4 Solution

Add Change of Authority to Alexandrescu’s LockingPtr<> [Ale01]. Add
an instance of Thread_Mutex and a member function to your class A declared
volatile, which otherwise only has non–volatile member functions. Let
this new member function return an instance of LockingPtr< A > by value
which refers to both *this and the lock just added. Declare each instance of A
volatile which is to be shared among different threads.

2.4.1 Rationale

The LockingPtr<> combines Scoped Locking [SSRB02d] with Proxy [GHJV96l,
BMR+00b] [Hen00, pp 8–14], but differently from Section 1.10.1: The Proxy
does not provide access to the instance of Thread_Mutex it refers to, but instead
it also references the instance access should be made threadsafe to, and this is
given access to by the Proxy while casting away volatile.

29

CHAPTER 2. THREAD SAFE INTERFACE GOES SYNCHRONIZED

Listing 2.1: LockingPtr<> according to [Ale01]

1 template < class T > class LockingPtr {

2 T &t_;

3 Thread_Mutex &lock_ ;

4 // No copy allowed , therefore private and declared only

5 LockingPtr (const Thread_Mutex_Guard &);

6 // No assignment allowed , therefore private and declared only

7 LockingPtr &operator =(const LockingPtr &);

8 public :

9 LockingPtr (volatile T &,Thread_Mutex &lock)

10 : t_(const_cast < T & >(t)), // As there ’s no "volatile_cast <>"

11 // in C++, "const_cast <>" casts

12 // away both cv -qualifiers "const"

13 // and "volatile".

14 lock_(lock) {

15 lock_ .acquire ();

16 }

17 ~LockingPtr (void) {

18 lock_ .release ();

19 }

20 T &operator *(void) const volatile throw () {

21 return t_;

22 }

23 T *operator ->(void) const volatile throw () {

24 return &t_;

25 }

26 };

LockingPtr<> can be equipped with Change of Authority semantics exactly
as shown in Section 1.9.1. The recipe of Section 2.4 then results in the following
code:

Listing 2.2: Thread Safe Interface restructured

1 class ThreadSafeInterface {

2 mutable volatile Thread_Mutex lock_;

3 // Some data , e.g.

4 size_t size_;

5 public :

6 typedef LockingPtr < ThreadSafeInterface > locking_ptr ;

7 typedef LockingPtr < const ThreadSafeInterface > const_locking_ptr;

8 ...

9 void incrementSizeBy(size_t s) { // not part of the

10 size_ +=s; // Thread Safe Interface

11 }

12 size_t getSize (void) const { // not part of the

13 return size_; // Thread Safe Interface

14 }

15 locking_ptr generateLockingPtr(void) volatile {

16 return locking_ptr (*this ,lock_);

17 }

18 const_locking_ptr generateConstLockingPtr (void) const volatile {

19 return const_locking_ptr (*this ,lock_);

20 }

21 };

30

2.5. Resulting Context

As an instance should be declared volatile if it is intended to be potentially
accessed by multiple threads at the same time according to Alexandrescu’s
idea, these threads can only access its volatilemember function, which returns
a reflexive LockingPtr<>. Because this is a specialization of Scoped Lock-
ing, the acquisition of the lock member is coupled to the construction of the
LockingPtr<>, while destruction implies that the lock will be released immedi-
ately. During the lifetime of the instance of LockingPtr<> the access even of
the unsafe interface of A can be considered safe therefore, which is manifested
in the cast done by the LockingPtr<>. So the client now has the full view on
the interface of A. See [Cop92, pp 26–28], [Lak96, pp 605–606].

2.5 Resulting Context

Now your class A exposes two interfaces: A threadsafe one and an unsafe one.
The latter is only visible if A is not shared among different threads. The Thread
Safe Interface is visible regardless of whether A requires threadsafe handling or
not. So threadsafety is a static property of a class, and thread unsafe access
will be rejected by the compiler.

A limitation of the solution proposed results from the fact that there is only
one volatile keyword, and therefore this solution can only manage one mutex
lock per instance. If your classes to add a Threadsafe Interface to allow for finer
grained locking, then the original implementation applies.

Furthermore only such classes could be treated as proposed where serializa-
tion suffices and no changes of the interface are required to gain threadsafety.
For all other cases refer to e.g. the Monitor Object design pattern [SSRB02b].
Synchronized queues for example need both mutual exclusion locks, i.e. serial-
ization, and condition variables, i.e. synchronization, must not expose front()

and pop() in two separate functions to its clients and can not let pop() return
by value for the sake of Exception Safety [Sut00c, pp 47–48], see further [Hen02],
thus must publish an interface different from single threaded queues like C++
std::queue<> [Sut00c].

Classes granting access to their implementation to a client by means of
member functions returning by reference are not very suitable for the solu-
tion proposed, too, as indirect access through a LockingPtr<> can not change
the return type of member functions. These member functions would have to
return volatile references on threadsafe access not to indirectly cut holes into
threadsafety. Compare with [Lak96, pp 607–612].

As a special case of this issue it should be considered to support Visi-
tors [GHJV96d] instead of Iterators [GHJV96h] with Thread Safe Compos-
ites [GHJV96i] because then the Composite has full control over the traversal
due to the Strategy [GHJV96m] resp. Inversion of Control nature of the Visitor
design pattern. An Iterator is a vehicle to access or modify the internal state
of a Composite during the whole lifetime of the Iterator. Once the Composite
issued an Iterator, it has no control over it any more. Different from Visitors,
in a concurrent environment Iterators therefore can lead to race conditions.

31

CHAPTER 2. THREAD SAFE INTERFACE GOES SYNCHRONIZED

2.6 Implementation

The solution proposed in Section 2.4 can be cast into a single class template
Serialized<>, thus adding a Thread Safe Interface to the whole series of classes
characterized in Section 2.5.

Here an additional generalization is being proposed: To further reduce the
impact of locking on scalability, readers / writer locking is used. While
ReadLockingPtr<> calls ReadersWriter_Mutex::readAcquire() on construc-
tion and takes the instance of ThreadUnsafeInterface const,
WriteLockingPtr<> calls ReadersWriter_Mutex::writeAcquire() and takes
the instance of ThreadUnsafeInterfacenon const. Note that Serialized<>::
generateConstLockingPtr() and Serialized<>::generateLockingPtr() dif-
fer by name and not only by the const qualification. Clients can explicitly as-
sume the role of readers even if they could have non const access to the instance
of Serialized<>.

The statics is shown in Figure 2.1, the dynamics in Figure 2.2. Example
code is as follows:

Listing 2.3: Combining Change of Authority and LockingPtr<>

1 template < class ThreadUnsafeInterface > class Serialized

2 : public ThreadUnsafeInterface {

3 public :

4 typedef ThreadUnsafeInterface value_type ;

5 typedef WriteLockingPtr < Serialized > locking_ptr ;

6 typedef ReadLockingPtr < const Serialized > const_locking_ptr;

7 private :

8 mutable volatile ReadersWriter_Mutex lock_;

9 Serialized &assign_ (const Serialized &rhs) {

10 value_type :: operator =(rhs);

11 return *this;

12 }

13 Serialized &assign_ (const volatile Serialized &rhs) {

14 const_locking_ptr lptrrhs (rhs .generateConstLockingPtr ());

15 return assign_ (* lptrrhs);

16 }

17 public :

18 Serialized (void) {}

19 Serialized (const Serialized &rhs) : value_type (rhs) {}

20 Serialized (const volatile Serialized &rhs)

21 : value_type (*rhs .generateConstLockingPtr ()) {}

22 // Intentionally not "explicit"

23 Serialized (const value_type &tui) : value_type (rhs) {}

24 Serialized &operator =(const Serialized &rhs) {

25 if(&rhs == this)

26 return *this;

27 return assign_ (rhs);

28 }

29 Serialized &operator =(const volatile Serialized &rhs) {

30 if(&rhs == this)

31 return *this;

32 return assign_ (rhs);

33 }

32

2.6. Implementation

Figure 2.1: Class diagram illustrating the Serialized<> class template

33

CHAPTER 2. THREAD SAFE INTERFACE GOES SYNCHRONIZED

(a) One atomic call to multiple { sequential,query } member functions

(b) The usage of the convenience member operator->()

Figure 2.2: Sequence diagrams illustrating the Serialized<> class template

34

2.6. Implementation

34 volatile Serialized &operator =(const Serialized &rhs) volatile {

35 if(& rhs == this)

36 return *this;

37 locking_ptr lptr(generateLockingPtr ());

38 return lptr -> assign_ (rhs);

39 }

40 volatile Serialized &

41 operator =(const volatile Serialized &rhs) volatile {

42 if(& rhs == this)

43 return *this;

44 locking_ptr lptr(generateLockingPtr ());

45 return lptr -> assign_ (rhs);

46 }

47 locking_ptr generateLockingPtr(void) volatile {

48 return locking_ptr (*this ,lock_);

49 }

50 const_locking_ptr generateConstLockingPtr (void) const volatile {

51 return const_locking_ptr (*this ,lock_);

52 }

53 // Convenience functions

54 locking_ptr operator ->(void) volatile {

55 return generateLockingPtr ();

56 }

57 const_locking_ptr operator ->(void) const volatile {

58 return generateConstLockingPtr ();

59 }

60 };

The main two member functions of this class template are Serialized<>::

generateLockingPtr() and Serialized<>::generateConstLockingPtr(). If
readers / writer locks are available, their difference will pay off.

This implementation contains two different copy constructors and four dif-
ferent assignment operators, which provide different guarantees to the instance
assigned resp. copied and the instance assigned to. The way these copy construc-
tors and assignment operators are implemented is the reason for the difference
between the definition of Serialized<>::[const_]locking_ptr and the Fig-
ures 2.2a and 2.2b, where the Proxy grants access to the ThreadUnsafeInter-

face only instead of Serialized< ThreadUnsafe Interface >.
Implementing Serialized<> by means of the inheritance approach pro-

posed has one disadvantage, however: As you can not inherit from funda-
mental types in C++, you can not serialize access e.g. to an int this way.
This can be achieved by modifying the implementation using composition in-
stead of inheritance, but then the relation between ThreadUnsafeInterface

and Serialized< ThreadUnsafeInterface > is not represented as natural as
it is with inheritance. A solution was to provide conversion operators then.

The usage is as follows:

Listing 2.4: Using Serialized<>

1 class Message_Queue {

2 typedef Serialized < std ::queue < Message > > thread_safe_queue;

3 volatile thread_safe_queue impl_ ;

35

CHAPTER 2. THREAD SAFE INTERFACE GOES SYNCHRONIZED

4 ...

5 public :

6 bool tryget (Message &msg) volatile {

7 thread_safe_queue :: locking_ptr lptr(impl_ .generateLockingPtr ());

8 if(lptr ->empty ())

9 return false ;

10 msg=lptr ->front ();

11 lptr ->pop ();

12 return true;

13 }

14 ...

15 };

The Message_Queue was taken from [SSRB02b] and already used as an example
on Page 6. This scenario corresponds to Figure 2.2a.

The convenience member functions can be used to nearly hide the complex-
ity of getting thread safe access if the client only wants to call a single member
function of ThreadUnsafeInterface:

Listing 2.5: Using the conveneince member function

1 volatile Serialized < std ::queue < Message > > q;

2 ...

3 q->clear ();

This scenario corresponds to Figure 2.2b.
The convenience member functions depend on a special property of the user

defined element access operator, operator->(), in C++ similarly to [Hen00,
pp 12–14]: The compiler applies operator->() to the return value of a user de-
fined operator->(). In this case both Serialized<>::operator->()s return
by value and not by pointer. Therefore a call to either of them triggers a call to
{Read;Write}LockingPtr<> ::operator->(), which in turn return a pointer
to the (potentially const) non volatile instance of Serialized<>, which the
built in operator->() finally applies to. Returning from an operator->()

by value always results in a temporary. Therefore Change of Authority is an
implementation technique well suited for this case to gain efficiency or even
correctness.

Note that different compilers treat the temporary differently. Though the
current standard limits the lifetime of the temporary until the next sequence
point, some compilers still generate code which destroys the temporary not until
the surrounding block was left. Subsequent calls to the convenience member
functions proposed can result in deadlock then because with locks the N of
Figure 1.1 is 1 if the locks are not recursive. If this is the case, introducing
additional blocks will fix this issue.

2.7 Consequences

That is a notational simplicity close to methods declared synchronized in
Java [AGH01, pp 262–266] and to methods attributed synchronized in C# /

36

2.7. Consequences

.NET.
Alexandrescu’s proposed use of the volatile cv–qualifier provoked some

criticism, though. With the current C++ standard, which is agnostic about
threads, the ideas layed out are a misuse of volatile. For a discussion see
e.g. [MA04]. The assistance by the compiler gained by qualifying member func-
tions const or volatile remains unquestioned, however. Therefore there is a
proposal to adapt the C++ standard such that it is aware of multithreading
[ABH+04].

37

Acknowledgements

Without the invaluable feedback of Berna Massingill who was the PLoP shep-
herd of this work this paper would not have been the way it is now.

The author would like to thank all the participants of PLoP 2005 for their
contributions. Special thanks go to the members of the Writers’ Workshop
[Gab02] the author participated in: Paul Adamczyk, Tanya Crenshaw, Arvind
Krishna, Jeffrey Overbey, Douglas Schmidt, John Sinnott, Tami Sorgente, and
Joel Jones, its moderator. Their feedback had a significant impact on the current
version of the paper.

38

Bibliography

[ABH+04] Alexandrescu, Andrei, Hans Boehm, Kevlin Henney,
Doug Lea, and Bill Pugh: Memory model for multithreaded
C++. Technical Report WG21/N1680 = J16/04-0120, ISO IEC
JTC1 / SC22 / WG21—The C++ Standards Committee, Herb
Sutter · Microsoft Corp. · 1 Microsoft Way · Redmond WA USA
98052-6399, September 2004.

[Abr00] Abrahams, David: Exception safety in generic components. In
Jazayeri, Mehdi, Rüdiger G. K. Loos, and David R. Musser
(editors): Generic Programming. International Seminar on
Generic Programming, Dagstuhl Castle, Germany, April 27–May
1, 1998, Selected Papers, number 1766 in Lecture Notes in Com-
puter Science. Springer, October 2000. <http://www.boost.org/-
more/generic exception safety.html>.

[ACD] Adler, Darin, Greg Colvin, and Beman Dawes: Boost
smart pointers. <http://www.boost.org/libs/smart ptr/-

smart ptr.htm>.

[AGH01] Arnold, Ken, James Gosling und David Holmes: Die Pro-
grammiersprache Java. Deutsche Übersetzung von RederTrans-
lations, Dorothea Reder und Gabi Zöttl. Programmer’s
Choice. Addison–Wesley. An Imprint of Pearson Education,
München · Boston · San Francisco · Harlow, England · Don Mills,
Ontario · Sydney · Mexico City · Madrid · Amsterdam, 2001. Ger-
man translation of “The Java Programming Language. Third Edi-
tion”.

[Ale01] Alexandrescu, Andrei: Generic<programming>: volatile—
multithreaded programmer’s best friend. volatile–correctness or
how to have your compiler detect race conditions for you. The
C/C++ Users Journal. Advanced Solutions for C/C++ Pro-
grammers, February 2001. <http://www.cuj.com/documents/-

s=7998/cujcexp1902alexandr/alexandr.htm>.

[Ale03] Alexandrescu, Andrei: Generic<programming>: Move con-
structors. The C/C++ Users Journal. Advanced Solutions for

39

BIBLIOGRAPHY

C/C++ Programmers, February 2003. <http://www.cuj.com/-

documents/s=8246/cujcexp2102alexandr/alexandr.htm>.

[All02a] Allen, Eric: Bug Patterns in Java. apress, Berkeley, California,
2002.

[All02b] Allen, Eric: The Orphaned Thread, chapter 18, pages 151–159.
In [All02a], 2002. <http://www-106.ibm.com/developerworks/-
java/library/j-diag0830.html>.

[Aue95] Auer, Ken: Reusability through self–encapsulation. In Coplien,
James O. and Douglas C. Schmidt [CS95], chapter 27, pages
505–516.

[BM00] Bulka, Dov and David Mayhew: Efficient C++. Performance
Programming Techniques. Addison–Wesley. An imprint of Addi-
son Wesley Longman, Inc., Reading, Massachusetts · Menlo Park,
California · New York · Don Mills, Ontario · Harlow, England ·
Amsterdam · Bonn · Sydney · Singapore · Tokyo · Madrid · San
Juan · Paris · Seoul · Milan · Mexico City · Taipei, 2000.

[BMR+00a] Buschmann, Frank, Regine Meunier, Hans Rohnert, Pe-
ter Sommerlad und Michael Stal: Pattern–orientierte Soft-
warearchitektur. Ein Pattern–System, deutsche Übersetzung von
Christiane Löckenhoff. Addison–Wesley. An Imprint of Pear-
son Education, München · Boston · San Francisco · Harlow, Eng-
land · Don Mills, Ontario · Sydney · Mexico City · Madrid · Am-
sterdam, 1998, 1. korr. Nachdruck Auflage, 2000. German trans-
lation of “Pattern–Oriented Software Architecture. A System of
Patterns”.

[BMR+00b] Buschmann, Frank, Regine Meunier, Hans Rohnert, Pe-
ter Sommerlad und Michael Stal: Proxy, Kapitel 3: Ent-
wurfsmuster, Seiten 263–275. In: [BMR+00a], 1998, 1. korr. Nach-
druck Auflage, 2000. German translation of “Proxy”.

[Car96] Cargill, Tom: Localized ownership: Managing dynamic objects
in C++. In Vlissides, John M. et al. [VCK96], chapter 1, pages
5–18.

[CE00] Czarnecki, Krzysztof and Ulrich W. Eisenecker: Gener-
ative Programming. Methods, Tools, and Applications. Addison–
Wesley, Boston · San Francisco · New York · Toronto · Montreal ·
London · Munich · Paris · Madrid · Capetown · Sydney · Tokyo ·
Singapore · Mexico City, first printing, may 2000 edition, 2000.

[Cop92] Coplien, James O.: Advanced C++ Programming Styles and
Idioms. Addison–Wesley Publishing Company, Reading, Mas-
sachusetts · Menlo Park, California · New York · Don Mills, On-

40

Bibliography

tario · Workingham, England · Amsterdam · Bonn · Sydney · Sin-
gapore · Tokyo · Madrid · San Juan · Milan · Paris, reprinted with
corrections december 1994 edition, 1992.

[Cop00] Coplien, James: C++ idioms patterns. In Harrison, Neil et al.
[HFR00], chapter 10, pages 167–197.

[CS95] Coplien, James O. and Douglas C. Schmidt (editors): Pat-
tern Languages of Program Design, volume 1 of The Software Pat-
terns Series; ed. by John Vlissides. Addison–Wesley, Boston ·
San Francisco · New York · Toronto · Montreal · London · Munich ·
Paris · Madrid · Capetown · Sydney · Tokyo · Singapore · Mexico
City, 1995.

[CSH98] Cleeland, Chris, Douglas C. Schmidt, and Tim Harrison:
External polymorphism. In Martin, Robert C. et al. [MRB98],
chapter 1, pages 377–390.

[Fow99] Fowler, Martin: Refactoring. Improving the Design of Existing
Code, with contributions by Kent Beck, John Brant, William
Opdyke, and Don Roberts. The Addison–Wesley Object Tech-
nology Series; Grady Booch, Ivar Jacobson, and James Rum-
baugh, Series Editors. Addison–Wesley. An imprint of Addison
Wesley Longman, Inc., Reading, Massachusetts · Harlow, England ·
Menlo Park, California · Berkeley, California · Don Mills, Ontario ·
Sydney · Bonn · Amsterdam · Tokyo · Mexico City, 1999.

[FS00] Fowler, Martin und Kendall Scott: UML kon-
zentriert. Eine strukturierte Einführung in die Standard-
Objektmodellierungssprache, deutsche Übersetzung von Arnulf
Mester, Michael Sczittnick und Günter Graw. Profes-
sionelle Softwareentwicklung. Addison–Wesley. An Imprint of
Pearson Education, München · Boston · San Francisco · Harlow,
England · Don Mills, Ontario · Sydney · Mexico City · Madrid ·
Amsterdam, 2., aktualisierte Auflage, 2000. German translation
of “UML Distilled”.

[FY98] Foote, Brian and Joseph Yoder: The selfish class. In Martin,
Robert C. et al. [MRB98], chapter 25, pages 451–470.

[Gab02] Gabriel, Richard P.: Writers’ Workshops & the Work of Mak-
ing Things. Patterns, Poetry. . . . Addison–Wesley, Boston · San
Francisco · New York · Toronto · Montreal · London · Munich ·
Paris · Madrid · Capetown · Sydney · Tokyo · Singapore · Mexico
City, 2002.

[GHJV96a] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Abstrakte Fabrik, Kapitel 3: Erzeugungsmuster, Seiten

41

BIBLIOGRAPHY

107–118. In: Professionelle Softwareentwicklung [GHJV96f], drit-
ter, unveränderter Nachdruck Auflage, 1996. German translation
of “Abstract Factory”.

[GHJV96b] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Adapter, Kapitel 4: Strukturmuster, Seiten 171–
185. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Adapter”.

[GHJV96c] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Befehl, Kapitel 5: Verhaltensmuster, Seiten 273–
286. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Command”.

[GHJV96d] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Besucher, Kapitel 5: Verhaltensmuster, Seiten 301–
318. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Visitor”.

[GHJV96e] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Brücke, Kapitel 4: Strukturmuster, Seiten 186–198.
In: Professionelle Softwareentwicklung [GHJV96f], dritter, un-
veränderter Nachdruck Auflage, 1996. German translation of
“Bridge”.

[GHJV96f] Gamma, Erich, Richard Helm, Ralph Johnson und
John Vlissides: Entwurfsmuster. Elemente wiederverwendba-
rer objektorientierter Software, deutsche Übersetzung von Dirk
Riehle. Professionelle Softwareentwicklung. Addison–Wesley–
Longman, Bonn · Reading, Massachusetts · Menlo Park, Califor-
nia · New York · Harlow, England · Don Mills, Ontario · Sydney ·
Mexico City · Madrid · Amsterdam, dritter, unveränderter Nach-
druck Auflage, 1996. German translation of “Design Patterns. El-
ements of Reusable Object–Oriented Software”.

[GHJV96g] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Fabrikmethode, Kapitel 3: Erzeugungsmuster, Seiten
131–143. In: Professionelle Softwareentwicklung [GHJV96f], drit-
ter, unveränderter Nachdruck Auflage, 1996. German translation
of “Factory Method”.

[GHJV96h] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Iterator, Kapitel 5: Verhaltensmuster, Seiten 335–
353. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Iterator”.

42

Bibliography

[GHJV96i] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Kompositum, Kapitel 4: Strukturmuster, Seiten 239–
253. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Composite”.

[GHJV96j] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Memento, Kapitel 5: Verhaltensmuster, Seiten 354–
365. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Memento”.

[GHJV96k] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Prototyp, Kapitel 3: Erzeugungsmuster, Seiten 144–
156. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Prototype”.

[GHJV96l] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Proxy, Kapitel 4: Strukturmuster, Seiten 254–267.
In: Professionelle Softwareentwicklung [GHJV96f], dritter, un-
veränderter Nachdruck Auflage, 1996. German translation of
“Proxy”.

[GHJV96m] Gamma, Erich, Richard Helm, Ralph Johnson und John
Vlissides: Strategie, Kapitel 5: Verhaltensmuster, Seiten 373–
384. In: Professionelle Softwareentwicklung [GHJV96f], dritter,
unveränderter Nachdruck Auflage, 1996. German translation of
“Strategy”.

[HDA02] Hinnant, Howard E., Peter Dimov, and Dave Abra-
hams: A proposal to add move semantics support to the C++
language. <http://www.open-std.org/jtc1/sc22/wg21/docs/-

papers/2002/n1377.htm>, September 2002.

[Hen00] Henney, Kevlin: Executing around sequences. In Pro-
ceedings of the 5th European Conference on Pattern Lan-
guages of Programs (EuroPLoP) 2000, Irsee, Germany, July
2000. <http://hillside.net/europlop/HillsideEurope/-

Papers/ExecutingAroundSequences.pdf>.

[Hen02] Henney, Kevlin: From mechanism to method: The safe stack-
ing of cats. The C/C++ Users Journal. Advanced Solutions for
C/C++ Programmers, February 2002. <http://www.cuj.com/-

documents/s=7986/cujcexp2002henney/>.

[HFR00] Harrison, Neil, Brian Foote, and Hans Rohnert (editors):
Pattern Languages of Program Design, volume 4 of The Software

43

BIBLIOGRAPHY

Patterns Series; ed. by John Vlissides. Addison–Wesley. An im-
print of Addison Wesley Longman, Inc., Reading, Massachusetts ·
Harlow, England · Menlo Park, California · Berkeley, California ·
Don Mills, Ontario · Sydney · Bonn · Amsterdam · Tokyo · Mexico
City, 2000.

[Hir97] Hirschfeld, Robert: Convenience method. In Preliminary Con-
ference Proceedings of EuroPLoP ’96 [wuc97].

[Kem] Kempf, William E.: Boost.threads. <http://www.boost.org/-

doc/html/threads.html>.

[KLM+97] Kiczales, Gregor, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin: Aspect–oriented programming. In Pro-
ceedings of the European Conference on Object–Oriented Program-
ming (ECOOP), Finland, number 1241 in Lecture Notes in Com-
puter Science. Springer, June 1997.

[Lak96] Lakos, John: Large–Scale C++ Software Design. Addison–
Wesley Professional Computing Series; ed. by Brian W.
Kernighan. Addison–Wesley, Boston · San Francisco · New York ·
Toronto · Montreal · London · Munich · Paris · Madrid · Capetown ·
Sydney · Tokyo · Singapore · Mexico City, 11th printing may 2002
edition, 1996.

[MA04] Meyers, Scott and Andrei Alexandrescu: C++ and the per-
ils of double–checked locking. <http://moderncppdesign.com/-

publications/DDJ Jul Aug 2004 revised.pdf>, September
2004.

[Mey97] Meyer, Bertrand: Object–Oriented Software Construction.
Prentice Hall, Upper Saddle River, New Jersey, second edition,
1997.

[Mey98] Meyers, Scott: Effektiv C++ programmieren. 50 Wege zur Ver-
besserung Ihrer Programme und Entwürfe, Deutsche Übersetzung
von Michael Tamm. Professionelle Programmierung. Addison–
Wesley. An Imprint of Pearson Education, München · Boston · San
Francisco · Harlow, England · Don Mills, Ontario · Sydney · Mexico
City · Madrid · Amsterdam, 3., aktualisierte Auflage, 1998. Ger-
man translation of “Effective C++. 50 Specific Ways to Improve
Your Programs and Designs”.

[Mey99] Meyers, Scott: Mehr Effektiv C++ programmieren. 35 neue
Wege zur Verbesserung Ihrer Programme und Entwürfe, Deut-
sche Übersetzung von Markus Beringmeier. Professionelle Pro-
grammierung. Addison–Wesley. An Imprint of Pearson Education,
München · Boston · San Francisco · Harlow, England · Don Mills,

44

Bibliography

Ontario · Sydney · Mexico City · Madrid · Amsterdam, 1999. Ger-
man translation of “More Effective C++. 35 New Ways to Improve
Your Programs and Designs”.

[Mey01] Meyers, Scott: Effektive STL. 50 Specific Ways to Improve
Your Use of the Standard Template Library. Addison–Wesley
Professional Computing Series; ed. by Brian W. Kernighan.
Addison–Wesley, Boston · San Francisco · New York · Toronto ·
Montreal · London · Munich · Paris · Madrid · Capetown · Syd-
ney · Tokyo · Singapore · Mexico City, July 2001.

[Mic05] Microsoft Developer Network (MSDN): .NET frame-
work general reference: Common design patterns. implement-
ing finalize and dispose to clean up unmanaged resources.
<http://msdn.microsoft.com/library/en-us/cpgenref/-

html/cpconfinalizedispose.asp>, 2005.

[MRB98] Martin, Robert C., Dirk Riehle, and Frank Buschmann
(editors): Pattern Languages of Program Design, volume 3 of
The Software Patterns Series; ed. by John Vlissides. Addison–
Wesley. An imprint of Addison Wesley Longman, Inc., Reading,
Massachusetts · Harlow, England · Menlo Park, California · Berke-
ley, California · Don Mills, Ontario · Sydney · Bonn · Amsterdam ·
Tokyo · Mexico City, 1998.

[NW00] Noble, James and Charles Weir: High–level and process pat-
terns from the memory preservation society: Patterns for manag-
ing limited memory. In Harrison, Neil et al. [HFR00], chap-
ter 12, pages 221–238.

[rel] Releasing resources in Java. <http://www.c2.com/cgi/wiki?-

ReleasingResourcesInJava>.

[sin] Single function exit point–antipattern. <http://www.c2.com/-

cgi/wiki?SingleFunctionExitPoint>.

[SSRB02a] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Active Object, Kapitel 5: Nebenläufigkeit,
Seiten 411–443. In: [SSRB02c], 2002. German translation of “Ac-
tive Object”.

[SSRB02b] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Monitor Object, Kapitel 5: Nebenläufigkeit,
Seiten 445–471. In: [SSRB02c], 2002. German translation of “Mon-
itor Object”.

[SSRB02c] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Pattern–orientierte Software-Architektur.
Muster für nebenläufige und vernetzte Objekte, übersetzt aus dem

45

BIBLIOGRAPHY

Amerikanischen von Martina Buschmann. dpunkt.verlag, Hei-
delberg, 2002. German translation of “Pattern–Oriented Software
Architecture. Volume 2: Patterns for Concurrent and Networked
Objects”.

[SSRB02d] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Scoped Locking, Kapitel 4: Synchronisati-
on, Seiten 359–367. In: [SSRB02c], 2002. German translation of
“Scoped Locking”.

[SSRB02e] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Thread–Safe Interface, Kapitel 4: Synchro-
nisation, Seiten 383–391. In: [SSRB02c], 2002. German translation
of “Thread Safe Interface”.

[SSRB02f] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Wrapper–Facade, Kapitel 2: Dienstzugriff
und Konfiguration, Seiten 53–84. In: [SSRB02c], 2002. German
translation of “Wrapper Facade”.

[Ste99] Stevens, W. Richard: UNIX Network Programming, volume 2.
Interprocess Communications. Prentice Hall PTR, Upper Saddle
River, NJ, second edition, 1999.

[Str94] Stroustrup, Bjarne: Design und Entwicklung von C++.
Addison–Wesley, Bonn · Paris · Reading, Massachusetts · Menlo
Park, California · New York · Don Mills, Ontario · Workingham,
England · Amsterdam · Milan · Sydney · Tokyo Singapore · Ma-
drid · San Juan · Seoul · Mexico City · Taipei, Taiwan, 1994. Ger-
man translation of “The Design and Evolution of C++”.

[Str98] Stroustrup, Bjarne: Die C++–Programmiersprache. Deutsche
Übersetzung von Nicolai Josuttis und Achim Lörke. Addison–
Wesley–Longman, Bonn · Reading, Massachusetts · Menlo Park,
California · New York · Harlow, England · Don Mills, Ontario ·
Sydney · Mexico City · Madrid · Amsterdam, dritte, aktualisierte
und erweiterte Auflage, 1998. German translation of “The C++
Programming Language, Third Edition”.

[Str02] Stroustrup, Bjarne: C++ programming styles
and libraries. <http://www.research.att.com/~bs/-

style and libraries.pdf>, January 2002. InformIt.com.

[Sut00a] Sutter, Herb: Absolute Garantie, Kapitel 3, Seite 48.
In: Professionelle Softwareentwicklung [Sut00d], 2000.
<http://www.gotw.ca/gotw/061.htm>. German translation
of “Nothrow Guarantee”.

46

Bibliography

[Sut00b] Sutter, Herb: Compiler–Firewalls und das Pimpl–Idiom, Ka-
pitel 5, Seiten 119–141. In: Professionelle Softwareentwicklung
[Sut00d], 2000. <http://www.gotw.ca/gotw/{007,015,024,-
025,028,059}.htm>. German translation of “Compiler Firewalls
and the Pimpl Idiom”.

[Sut00c] Sutter, Herb: Exception–Sicherheit, Kapitel 3, Seiten 33–
82. In: Professionelle Softwareentwicklung [Sut00d], 2000.
<http://www.gotw.ca/gotw/008.htm>. German translation of
“Exception Safety”.

[Sut00d] Sutter, Herb: Exceptional C++. 47 technische Denkaufgaben,
Programmierprobleme und ihre Lösungen, deutsche Übersetzung
von Mathias Born und Michael Tamm. Professionelle Soft-
wareentwicklung. Addison–Wesley. An imprint of Pearson Educa-
tion, München · Boston · San Francisco · Harlow, England · Don
Mills, Ontario · Sydney · Mexico City · Madrid · Amsterdam, 2000.
German translation of “Exceptional C++. 47 Engineering Puzzles,
Programming Problems, and Solutions”.

[Sut00e] Sutter, Herb: Grundlegende Garantie, Kapitel 3, Sei-
te 47. In: Professionelle Softwareentwicklung [Sut00d], 2000.
<http://www.gotw.ca/gotw/061.htm>. German translation of
“Basic Guarantee”.

[Sut00f] Sutter, Herb: Hohe Garantie, Kapitel 3, Seiten 47–
48. In: Professionelle Softwareentwicklung [Sut00d], 2000.
<http://www.gotw.ca/gotw/061.htm>. German translation of
“Strong Guarantee”.

[Sut00g] Sutter, Herb: Temporäre Objekte, Kapitel 2: Generische
Programmierung und die Standard–C++–Bibliothek, Seiten 23–
29. In: Professionelle Softwareentwicklung [Sut00d], 2000.
<http://www.gotw.ca/gotw/002.htm>. German translation of
“Temporary Objects”.

[VCK96] Vlissides, John M., James O. Coplien, and Norman L.
Kerth (editors): Pattern Languages of Program Design, volume 2.
Addison–Wesley. An imprint of Addison Wesley Longman, Inc.,
Reading, Massachusetts · Harlow, England · Menlo Park, Califor-
nia · Berkeley, California · Don Mills, Ontario · Sydney · Bonn ·
Amsterdam · Tokyo · Mexico City, 1996.

[Ven04] Venners, Bill: Elegance and other design ideals. a conversa-
tion with Bjarne Stroustrup, part IV. <http://www.artima.com/-
intv/elegance.html>, February 2004.

47

BIBLIOGRAPHY

[VJ03a] Vandevoorde, David and Nicolai M. Josuttis: C++ Tem-
plates. The Complete Guide. Addison–Wesley, Boston · San Fran-
cisco · New York · Toronto · Montreal · London · Munich · Paris ·
Madrid · Capetown · Sydney · Tokyo · Singapore · Mexico City,
June 2003.

[VJ03b] Vandevoorde, David and Nicolai M. Josuttis: Expression
Templates, chapter 18, pages 321–343. In [VJ03a], June 2003.

[Woo98] Woolf, Bobby: Null object. In Martin, Robert C. et al.
[MRB98], chapter 1, pages 5–18.

[Woo00] Woolf, Bobby: Abstract class. In Harrison, Neil et al.
[HFR00], chapter 1, pages 5–14.

[wuc97] Preliminary conference proceedings of EuroPLoP ’96. Technical
Report wucs-97-07, Washington University, Department of Com-
puter Science, 1997.

48

	Contents
	Change Of Authority
	Also known as
	Intent
	Example
	Context
	Problem
	Forces
	Solution
	Participants
	Dynamics
	Rationale

	Resulting Context
	Pros and Cons
	The std::auto_ptr<> way of Change of Ownership
	Exception safety requirements of AbstractResource

	Implementation
	Example Resolved
	Thread_Pool_Operation
	The Reset Idiom

	Variants
	Change of Authority and Proxy combined
	Change of Authority and Composite combined
	Change of Authority and Iterator or Visitor combined
	Change of Ownership

	Known Uses
	std::auto_ptr<>
	The swap() member function

	Related Patterns

	Thread Safe Interface goes synchronized
	Context
	Problem
	Forces
	Solution
	Rationale

	Resulting Context
	Implementation
	Consequences

	Bibliography

