
Patterns for Business Object Model Integration in
Process-Driven and Service-Oriented Architectures

Carsten Hentrich
CSC Deutschland Solutions GmbH

Abraham-Lincoln-Park 1
65189 Wiesbaden, Germany

chentrich@csc.com

Uwe Zdun
Distributed Systems Group

Information Systems Institute
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040 Vienna, Austria

zdun@acm.org

ABSTRACT
Service-oriented archi tectures often have the goal to integrate
various systems of one or more organizations in a flexible way to
be able to quickly re act on business changes . Integration bas ed
only on s ervices, however, falls short in rea ching this goal
because the applica tion-specific b usiness object models of
multiple external sy stems (especially legacy systems) need to be
integrated into the s ervice-oriented s ystem. W hen m ultiple
business object models must be integrated into one s ystem,
serious data integration issues might aris e. Exa mples of s uch
problems are incompatible data definitions, inconsistent data
across the enterprise, data redundancy, and update anomalies . We
present patterns that addres s the se is sues and describe h ow to
integrate th e applica tion-specific bus iness object models of
various external s ystems in to a cons istent proce ss-driven and
service-oriented architecture.

1. INTRODUCTION
Service-oriented architectures (SOA) are an architectural concept
in which all functions, or services, are defined us ing a description
language and h ave invokable, p latform-independent interfaces
that are called to perform business processes [1, 2]. Each s ervice
is the endpoint of a connectio n, which can be used to access the
service, and the interactions are r elatively independent from each
other (e.g., stateless services are favoured over stateful services).
On top of the various layers implementing the foundations of a
SOA, we f ind in many SOAs a Ser vice Composi tion Lay er that
deals with s ervice or chestration, coordination, federation, and
business proce sses based on s ervices [8]. In this paper, we
consider architectures in which the Service Compos ition La yer
provides a process engine (or workflow engine) that invokes the
SOA servi ces to realize indi vidual a ctivities in the process (aka
process steps, tasks in the process).

The mos t important goal for us ing a SOA is ofte n to inte grate
heterogeneous systems in a flexible manner s o that o rganizations

can quickly react on changes in the bus iness. One important
aspect in this respect is that usually the S OA is used for
integrating a number of external systems. With this term we refer
to systems that are not y et integr ated into the S OA. Exter nal
systems include systems of the organisation that realizes the SOA
or systems of other organisations. Typically, many of the external
systems are “legacy systems”. But there are many other kinds of
external systems, for instance, standard systems like SAP or other
third party systems. O ne of the key ideas in rece nt SOA
definitions is to save th e investment tha t has been made in
existing IT infra structure and applications and provide flexible
means for integrating them. This, however, is difficult, as most of
these external systems have been independently developed, or at
least there is a certain level of independence in their historical
evolution. For this reason, they often implement heterogeneous
data models.

This is not ne cessarily a problem because this is where stateless
services can h elp. In a SOA, the mos t important conceptual
pattern of i ntegration is to off er S ERVICES [3] that provide the
integration of an e xternal system. To assume that services alone
are sufficient to design a larger SOA, however, is not enough.
When various business object models need to be integrated into a
SOA, often a purely SERVICE-based integr ation is i nfeasible or
impossible because of data integration is sues. Examples are
incompatible data defi nitions, in consistent data across the
enterprise, data redundancy, data incompleteness, data availability
issues, data owners hip iss ues, or update anomalies. All these
problems can only be addressed at a broader scope than a single
service. In practice, often massive hand-coding efforts are used to
resolve these issues, which require a lot of time and are often hard
to maintain in the lo ng ru n. Ins tead of us ing such “ad hoc
solutions” it is advisable to follow a m ore systematic approach –
both in terms of the refactoring processes and the architectur al
solutions.

As a real world example, cons ider an automobile rental company
that has grown in the las t y ears, has merged with two other
companies, and now consists of three independently working
territorial branches. Each br anch repres ents a company being
acquired over the years to serve a terr itorial market. Tr ansparent
business processes shall now be implemented, following a S OA
approach that allows renting ca rs via the Internet, independent of
the terri torial as signment. The data models in t he various
branches are different, as each branch uses independently grown
systems. Moreover, customer data is redundant in these systems:
They us e inconsistent automobi le identification mechanis ms,

Permission to m ake digital or hard copies of all or part of this work f or
personal or classroom use is granted without fee provided that copies are
not made or distribute d for profit or c ommercial a dvantage and that
copies b ear this n otice and the f ull citation on the f irst page. To cop y
otherwise, to r epublish, to pos t on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLoP '06, October 21–23, 2006, Portland, OR, USA.

Copyright 2006 ACM 978-1-60558-372-3/06/10…$5.00.

there is inconsistent formatting of data, and t here are incorrect or
incomplete values in the data f ields. If common business
processes shall b e i mplemented fo r thes e branches, th ese data
issues must be resolved first.

Certainly, the cost for resolving these issues needs to be balanced
with the business ca se associated to improving the business
processes. However, in this paper we assume that this business
case has been made and concentrate on the solutions of resolving
these problems . T he discussion concerning the bus iness case
should be made separately and prior to s tarting an engagement or
project in this direction. For th is reason, we will not consid er
these aspects a ny further. On the other hand, the problems and
solutions provided in this paper can be used to lead such a
discussion and to reason about cost iss ues in relation to a business
case. In this paper we primar ily present how to deal wit h thes e
issues and thus make a project successful.

In this paper, we explain proven practices – in patterns form – for
dealing with these crucial problem s of s ystems integratio n. The
patterns interpret the data models of external systems, as well as
the data m odels defined i n the s ervice architecture, from an
object-oriented (OO) perspective, and henc e we ca ll these data
models business object models . When integr ating s ystems via a
process-driven and service-oriented approach, application-specific
business object models need to be cons olidated s omehow and
integrated via the process flow.

Please note that the process-oriented and s ervice-oriented
perspectives advocate a more behavioural, s tateless view on the
system than objects. However, they usually perform operations on
data. This data can be represented in many diff erent way s. W e
assume the use of an object-oriented model of the access to data
in a process-driven SOA to fo llow the business object conce pt.
This is a pr oven practice, esp ecially for larger process-driven
SOAs (for details see [4]).

Often it is necess ary to adapt or change given data models to
understand them from an object-oriented perspective, for instance,
if a legacy system offers a procedural interface to its data model.
Because th ere are m any different bu ilding blocks used for
representing state a nd/or access of business data, such as objects
or procedures that access data in a database, below we genera lly
use the term entity to ref er to the dif ferent k inds o f buildi ng
blocks of external s ystems (following the ENTITY patte rn from
[3]).

The patterns contained in this paper, offer solutions that allow to
integrating various busine ss obj ect models. W e pr esent t hree
refactoring patterns that explain ba sic altern ative steps for
consolidating two individual business object models. And we also
describe three architectur al patterns that all ow y ou to build a
consistent large scale architecture that is able to conso lidate
multiple business objects.

In fact, data seems to be a f orgotten chil d in SOA approaches.
One could ask, why we propos e an approac h c onsidering OO
while also being s ervice-oriented. Do these approaches n ot
contradict each other? W e are convinced, th e answer is no, as
services ne ed to dea l with data s tructures to describe and define
the input and output parameters of the services. These parameters
are usually not sim ple da ta ty pes but rather represent complex
structures that can be interpreted as objects. In our opinion, SOA

and OO are, for this reas on, complementar y approaches . W e
apply OO concepts to t ackle the is sues related t o the “ data”
perspective in SOA that is rather a functional than a data-driven
approach. OO offers s uitable concepts for describing data
structures, which fits very well with current programming
languages and technology used in conjunction with SOA, s uch as
J2EE or .NET. Object-oriented languages are still leading edge in
these recent te chnology appr oaches related to SOA. As a result,
we propose an OO approach for tackling the data related iss ues in
SOAs. The patterns in this paper thus contribute to s olving data
issues in SOA.

We present an example at the end of the paper to demonstrate the
application of all patterns and to outline the pattern relationships.
Please note t hat it migh t be useful for the r eader to jump to the
example from time to ti me while reading the patterns to grasp a
concrete example of a pattern that is currently investigated.

2. PATTERNS OVERVIEW
In t his paper, w e first present three refactoring pattern s t hat
explain bas ic alternatives for how to change a system in the
situation that a single business object model of an external system
should be integrated into a process-driven architecture:

• WRAP SERVICE AS ACTIVITY – explains a refactoring
solution that introduces one or more servic es for an
application-specific bus iness object model. The patter n’s
solution is to wrap one or more of these services using a
process activity t ype that can be f lexibly as sembled i n
process models.

• RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL –
explains a refactoring solution that restructures a specific
business object model of an integrated external system.
The external sy stem res tructuring is done in a s tepwise,
minimal manner until the external system meets the new
requirements introduced by the process -oriented
architecture. W RAP SERVICE AS ACTIVITY ca n be used to
offer service interfaces to the restructured system.

• SYNTHESIZE BUSINESS OBJECT MODELS – explains a
refactoring solution that s ynthesizes a specific business
object model of an i ntegrated external s ystem and a
common business object m odel of the process -oriented
architecture.

These three r efactoring patterns explain basic alternatives for
refactoring a single bus iness object model into a “har monized”
model o f a process-oriented architecture. However, i n larg er
systems, i t is necessary to consider multiple refactorings of
business object models and their interdependencies from the
perspective of the whole p rocess-driven SOA. This ca nnot be
explained in terms of a s ingle refactoring proces s, but mus t be
addressed at the architectural level. We present three architectural
patterns that are applied in this context:

• INTEGRATED BUSINESS OBJECT MODEL – explains an
overall architectural solution that allows you to implement
a harmonized bus iness object model. E ach of the three
refactoring pa tterns can be a pplied when it is most
appropriate. But still a consistent architecture is produced.

• DATA TRANSFORMATION FLOW – explains an architectur al
solution based on a process s ubflow for data
transformation that m aps different application-specific
business object models to a comm on bus iness object
model. The goal is to enable flexible integrati on of
various external systems.

• BUSINESS OBJECT POOL – explains an architectural
solution in which a central p ool for the b usiness objects
enables process es that have logical interdependencies.
The processes can hence interact with each ot her without
comprising their technical independence.

Figure 1 shows an overview of the pattern relationships. There are
a number of external patter ns t hat play a role in the patterns
introduced in this paper. We present thumbnails for these patterns
in an appendix at the end of the paper.

3. WRAP SERVICE AS ACTIVITY
External systems, i.e., sy stems that have so far not been par t of
the process-driven SOA, should be integrated in to a pro cess-
driven SOA. In many cases, th e external s ystems are legacy
systems.

Existing interfaces of external systems often do not reflect the
requirements of a process-driven architecture. Loose coupling
– a main goal of any SOA – for instance is often not well
supported because the external system only offers stateful
interfaces. Or, the required communication protocols of a
process-driven system are not supported by the external
system. However, flexible interfaces to external systems are
required to flexibly assemble processes involving external
system invocations from within a process design tool – which
is a central goal of a process-driven SOA.

In a SO A, the most im portant patter n of integration is to offer
SERVICES [3] that provide the integration of an external system. A
SERVICE is an operation offered as an int erface, witho ut
encapsulating state. SERVICE interfaces solve the basic problem of
how to represent loosely coupled interfaces. However, loose
coupling is hard to achieve, if the external system design forces us

to hard-code dependencies to stateful interfaces or communication
protocol details in the process models or integration code. For a
connection to the proces s-oriented lay er, we must also meet the
requirements of the process-oriented S OA, but mos t often the
external sy stem does not fulfil them a priori. Again, we do n ot
want to hard-code them in the process models, which should be
kept flexible, c hangeable, and understandable to the domain
expert.

Typically, a central requirement is that the SERVICES can be us ed
to integrate any kind of system in the same way and allow process
designers to flexibly assemble processes from the S ERVICES
offered by the e xternal sy stems. The S ERVICES should hide all
details of the communication w ith the external system from the
process designer. Consider, for in stance, integrating a mainframe
that on ly supports batch proce ssing. From the perspective of the
process designer this system should be integrated in the same way
as a Web Service that was s pecifically written for this tas k.
However, different service developers use different approaches to
design S ERVICES and integra te them into proc ess m odels. This
means, th e des ired inform ation hiding is hard to achieve, and
process designers must cope with these differences.

An inhous e guideline for SERVICES de velopment c an s olve this
problem only partially . For instance, if services are us ed that are
not developed inhous e (e .g., s ervices offered by an external
standard systems like SAP), guidelines on their design cannot be
imposed.

Refactor the external system and the process-driven SOA
using the following steps: For each entity in the external
systems that needs to be exposed to the process-driven
architecture, define one or more stateless SERVICES on top of
the existing interfaces of the external system. Define a special
SERVICE activity type in the process engine that wraps
invocations to external services. This way, SERVICE
invocations are represented as atomic activities in the process
flow. The SERVICE activity type can be used in business
processes to flexibly assemble services, because all details of
the communication with the external system are hidden in the
wrapper activity. Instantiate and use the SERVICE activity type
in process models whenever an external system needs to be
invoked.

The main task of th e SERVICE is to trans late a s ervice-based
invocation into the interface of the e xternal system and translate
the responses back into a service-based reply. Hence, the relevant
interfaces of external systems are i ntegrated i nto t he SOA using
SERVICES, expos ing a view on the external s ystems that reflects
the requirements of the process-driven SOA.

The goa l of decoupling processes and individual process
activities, realized as S ERVICES, is to introduce a higher level of
flexibility into the SO A: Pre- defined s ervices ca n be flexibl y
assembled in a process des ign tool. The technical processes
should reflect and perh aps optimize the b usiness processes of the
organization. Thus the flexible assembly of servic es in processes
enables developers to cope with required changes to the
organizational proces ses, w hile s till maintaining a stable over all
architecture.

Figure 1. Patterns overview

In cases , where a s ervice e xists or can be built t hat equals the
required meaning of a process activity, an activity can be mapped
to exactly one s ervice. H owever, in r eality thi s is not always
possible. For instance, an activity in a process might need to wrap
a whole set o f application s ervices beca use eac h servi ce on ly
fulfils a part of the overall f unctionality reques ted by the more
coarse-grained process activity . The main dr iving factor f or the
integration of services and process activities should always be that
the process activity type needs to be understandable in the context
of the process models . A one-to-one integration between service
and activity is very easy to build and maintain. Hence it should be
chosen if possible, but on ly if its m eaning f its w ell into the
context of the process model. There are other driving fac tors for
the integration of servi ces and pr ocess activities, such as
reusability of serv ices in dif ferent activ ity ty pes or des ign for
foreseeable future changes.

Very often more than one application needs to be wrapped to
fulfil the goal of the activity (as shown on the right hand s ide of
Figure 2). Consequently , designing and implementing the
integration of the activity w ith application ser vices is not tri vial
and introduces a whole new s et of problems. These problems are
addressed in more detail by the PROCESS BASE D INT EGRATION
ARCHITECTURE pattern [4]. This pattern provides an architectural
concept for achieving tha t inte gration. Especially, the
MACROFLOW INTEGRATION SERVICE pattern [4] – a typical part of
the P ROCESS BA SED INT EGRATION ARCHITECTURE – is very
important in this respect, as it depicts the f unctionality requested
by a process activity as a one service, which is composed of more
fine grained service s. These patterns th us allo w developers to
solve issues th at aris e when the s ervices cannot be direc tly
designed and implemented ac cording to the requirements of
process activities and directly invoked via the process flow.

Figure 2 illustrates the refactoring fro m a proces s m odel and
applications that offer only stateful interfaces to a process model
that wraps services of those applications in its activities. There are
two possible options for the mapping:

• Services c an be designed and implemented to represent
requirements of process activities directly.

• Application serv ices can only be designed and
implemented to fulfil parts of the process activities.

Actually, this wrapping implies important design decisions, as the
process activities will be designed in dependency w ith the
services. Ideally, the application serv ices can be des igned
according to the requirements of a process activity. However, on
the other hand, processes might change and thus the requirements
might change. For th is reas on, it is often better to provide the
services in terms of self-contained functions of an application that
are based on the entities of the application. That is, the services
are des igned according to the specific business object model
applied by an application. The consequence is that processes and
application s ervices are m ore loos ely couple d and thus more
flexible. There is the trade-off, however , t hat l arger integration
effort and greater complexity for im plementing the integration is
required.

In this respect, the MACRO-MICROFLOW pattern [4] can be used to
conceptually de couple the fine gra ined application services that
are required within the inte gration conte xt from long-running
processes. Following M ACRO-MICROFLOW, the fine grained
application services are orchestrated in a microf low, i.e., a mor e
fine gra ined te chnical integration proce ss. T he PROCESS BA SED
INTEGRATION ARCHITECTURE p attern provides flexible means for
implementing both the one-to-one and the one-to-many
relationship between process activities and application services.

4. RESTRUCTURE SPECIFIC BUSINESS
OBJECT MODEL
External systems, i.e., sy stems that have so far not been part of
the process-driven SOA, should be integrated into a proces s-
driven SOA. In many cases, the external s ystems are legacy
systems.

When integrating systems into a process-driven architecture,
the first choice should be to follow WRAP SERVICE AS
ACTIVITY. This, however, might fail because the external
system is a legacy system that is not structured in a suitable
way to allow for offering an object-oriented business object
model via SERVICES. Or the business processes might require
an integration of data from two or more application-specific
business object models, and service-based access to the data is
not enough to deal with the data integration problems. Or the
external system does not even allow services to access the
data.

Some legacy systems only offer unsuitable interfaces that are hard
to map to an (object-oriented) b usiness object model design or to
a service-oriented design. Consider, for instance, a legacy system
has a proce dural des ign that can be understood a s an object-
oriented bus iness m odel. Or the legacy s ystem does not offer
session abs tractions that can be used for aligning interdependent
stateless service invocations , a nd hence the perfor mance of
interdependent invocations is weak.

If the data ty pes of tw o e xternal sy stems a re incompatible and
cannot (easily) be mapped, it might be necessary to think about a
better s olution than performing in dividual mappings within
wrapper S ERVICES (maybe over and over again). In addition to
data mapping problems , it m ight be pos sible that an external
system does not offer appropriate interfaces to access the relevant
data at all via a pure wrapper SERVICE. So metimes th e data is Figure 2. Refactoring to services that are wrapped by

activities

accessible, but not in a s uitable way . Cons ider f or in stance a
legacy system that offers only a batch interface. It might be
possible that the perf ormance of this interface is not good enough
for an integrati on tas k. O r t he data m odel and t he interfaces
require repetitiv e invocations via t he wrapper SERVICE whi ch
downgrades the perfor mance of the overall s ystem. I n oth er
words, often the external system was designed without having the
requirements of inte gration in a SOA in mind, and thus cannot
fulfil the requirements of the SOA.

Such da ta integration issues ca n arise even when the developers
only need to integrate two in terfaces. Consider a s imple point-to-
point integra tion between two systems is needed. In this simple
case, the interfaces between the two integrated systems need to be
mapped to exchange data. This is only possible in simple wrapper
SERVICES if the mapping of (data) ty pes can be com pletely
performed in the service implementation.

In a larger S OA with a dedicated service orchestration layer
things get even more complicated. The reason for this is that the
different business object models of the involved external systems
need to be consolidated somehow to achieve a fle xible
orchestration within the process flow.

Refactor the external system and the process-driven SOA
using the following steps: First assess whether a restructuring
is possible according to the following criteria. The system
evolution should be as non-intrusive and minimal as possible.
It should not break existing client code. Substantial portions
of the system should remain unchanged. If the assessment is
positive, restructure the application-specific business model of
an integrated external system by evolving the system to meet
the new requirements introduced by the process-oriented
architecture. Next, offer service interfaces so that the business
process can access the evolved external system following
WRAP SERVICE AS ACTIVITY.

Before applying a restructuring of an application-specific business
model it is necessary to consider that it may not be possible at all
or with acceptable effort to restructure the business object models
of legacy applications such that they work consistently together.
The requirements of the business processes need to be considered
by a bus iness object model designer s o that th e business object
model is suitable for representing the domain architecture of the
business proces ses. Als o, it is necess ary to consider changing
requirements, e.g., in case another legacy application needs to be
integrated in a process flow. It is important to consider whether a
restructuring can be done with minimal changes so that existing
assets are preserved and existing client code is not broken. That
is, existing external interfaces should remain compatible.

A restructurin g s hould only be performed, if all these
considerations lead to the conclus ion that it is pos sible to
restru

Application AProcess 1

Application A

Entity

Process Activity

Process Activity

Process Activity

Process 1

Entity

Process Activity

Process Activity

Process Activity

Entity

Entity

Se
rv

ic
e

Se
rv

ic
e

Entity

Se
rv

ic
e

Entity

BEFORE AFTER

R
EF

A
C

TO
R

IN
G

cture the application-specific business object model of an external
system. If additionally the restructuring is pos sible with
acceptable e ffort, it s hould be cons idered bef ore cons idering
integration following SYNTHESIZE BUSINESS OBJECT MODELS. This
is because RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS will
be quite effective: Most often it is easier to make local changes to
a system’s data in the s ystem itself then to evolve t he data in an
external mapping c omponent (which is part of the business
process).

Figure 3 illustrates a refactoring process based on a restructuring
of an application-specific business object model: One monolithic
entity is split into a number of entities. Some of them are exposed
as servi ces. These servi ces ar e then int egrated f ollowing the
WRAP SERVICE AS ACTIVITY pattern. Please note that this is just an
example of a res tructuring. M any other restructurings are also
possible. The goal is to pr eserve the exis ting as sets as far as
possible and not break existing client code.

Applying R ESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS is
often the only way to be able to integrate two business object
models. In some cases, it is relativ ely easy and not much work.
However, the restructuring might also be infea sible or
inapplicable. The e valuation whether the patter n is infeasi ble or
inapplicable might be non-trivial. In some cases, to RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODELS might be a big effort and
sometimes the effort is underestimated.

5. SYNTHESIZE BUSINESS OBJECT
MODELS
External systems, i.e., sy stems that have so far not been part of
the process-driven SOA, should be integrated into a proces s-
driven SOA. In many cases, the external s ystems are legacy
systems.

Consider integrating systems into a process-driven
architecture using WRAP SERVICE AS ACTIVITY fails because of
data integration issues, and RESTRUCTURE SPECIFIC BUSINESS
OBJECT MODELS proves to be difficult, infeasible, or even
impossible, because the external systems cannot or should not
be changed or adapted. Local, independent changes in the
application-specific business object models are often not
enough to resolve data integration issues, such as incompatible
data definitions, inconsistent data across the enterprise, data
redundancy, and update anomalies.

Figure 3. Refactoring by restructuring an application-specific
business object model

Data integrati on is sues, su ch as incom patible data defin itions,
inconsistent data across the enterprise, da ta redundancy , and
update anomalies, can occur when integrating data or interfaces of
two or mo re sy stems into a pro cess-driven ar chitecture. These
issues can often not be res olved in a suitable wa y using only
wrapper SERVICES. Usually, in such cases one should try to apply
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS next. But
consider a legacy system where the source code is not available.
Or no experts for the languages or platforms used by a legacy
system are working f or the c ompany anymore. Or a s ignificant
investment is needed to make changes to the legacy system, and
the extra cos ts s hould be avoided. Such situations are highly
unwanted, but nonetheless they occur.

Let us consider the other case; to apply R ESTRUCTURE SPECIFIC
BUSINESS OBJECT MODELS is pos sible a nd feasible. The patter n
might, however, be still not applicable, if a “global” perspective is
needed f or data integration . Consider fo r ins tance tw o or m ore
application-specific business object models need to be integrated
in a process flow. Sometimes data integration issues cannot be
(effectively) solved by only changing the local a pplications. For
instance, if one data model depicts an address as a cus tom data
record, and the other one as a string, we n eed to write conversion
code between the two incom patible data ty pes at the “ global”
level. That is, we create a “global” view based on the combination
of the information in th e different applic ation-specific bus iness
object models.

Refactor the system using the following steps: Design a
synthesized business object model that consolidates the
structures of the involved business object models. Map the
relevant parts of the application-specific business object
models into the synthesized business object model, and
perform the data integration tasks at the global level. The
synthesized business object model depicts the requirements of
the related business processes, i.e., it provides a process-
related, global view on the application-specific business object
models.

The parts of the application-specific bus iness object models that
are subject to exposed servic es a re mapped into the s ynthesized
business object model. The expo sed s ervices are usually
integrated into the pro cess flow using wrapper S ERVICES that are
invoked by activities in the process flow.

The application-specific business object models can be mapped to
the s ynthesized bus iness object mod el by some well-defined
mapping rule s to automate the mapping, for instance following
the DATA TRANSFORMATION FLOW pattern.

Figure 4 s hows a business process design and two applications
that can be access ed via service interfaces (e.g., external wrapper
services). C onsider that the tw o applications cannot b e changed
and da ta i ntegration is sues aris e. The fi gure illus trates the
refactoring proces s from this s ituation to the introductio n of a
synthesized business object model. T he sy nthesized bus iness
object mo del provides a cons olidated m odel of the two
application-specific models. It especially fulfils the requirements
of the business processes.

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

R
EF

A
C

TO
R

IN
G

The synthesized business object model design has to consider all
requirements of the process domain, in terms of the services that
the processes need to expose. The model must be consistent with
all integrated applications and with the service requirements of
the processes.

6. INTEGRATED BUSINESS OBJECT
MODEL
External systems, i.e., sy stems that have so far not been part of
the process-driven SOA, should be integrated into a proces s-
driven SOA. In many cases, th e external s ystems are legacy
systems.

The three refactoring patterns WRAP SERVICE AS ACTIVITY,
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL, and
SYNTHESIZE BUSINESS OBJECT MODELS explain alternatives
and considerations for integrating a single business object
model interface into a process-oriented SOA. If multiple
external applications and business object models need to be
considered, often none of the three alternatives alone provides
a suitable solution. Also, the process flow might be offered
itself as a service and needs to provide a harmonized,
consistent view on the integrated application-specific business
object models. The different integration solutions must be
managed and offered in way that they can be flexibly
assembled from a process design tool.

The process flow needs to operate with a b usiness object model,
i.e., the business objects being associated to the process and being
manipulated by the proces s. M oreover, often th e process is a
function itself and represents a s ervice. T he input and output
parameters of this service re late to the bus iness object model of
the process. The requirements on the business object model of a
process a nd the bus iness object models of external systems
integrated in the process usually vary. That means all the business
object models under consideration are usually not consistent – and
need to be harmonized.

The various bus iness obje ct models imple mented by external
systems will thus be reflected by the parameters of the application
services that are used to access them. Thes e ser vices s imply
reflect the interfaces in terms of the business objects used as input
and output.

Figure 4. Refactoring to a synthesized business object model

As a result, one has to deal with the problem of harmonizing the
business object models of the vario us applicatio ns to in tegrate
them via a configurable process in some way. The problem even
gets worse if multiple processes need to be integrated. In this case
many requirements of these proces ses need to be repre sented in
the corresponding business object models. Consequently , greater
conflicts will be ob served between the business object models of
the processes and those of the external systems.

Provide an INTEGRATED BUSINESS OBJECT MODEL for a
process-oriented SOA as an architectural solution. In the
design of the INTEGRATED BUSINESS OBJECT MODEL use the
following guideline: For each application-specific business
object model first try to WRAP SERVICE AS ACTIVITIES. If this
does not work for an interface of an application-specific
business object model because of data integration issues,
assess whether an integration solution based on RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODEL or SYNTHESIZE BUSINESS
OBJECT MODELS (or both) would work better, and then follow
the chosen refactoring pattern. Integrate the result of the
refactoring using WRAP SERVICE AS ACTIVITIES into the
process model. The INTEGRATED BUSINESS OBJECT MODEL
uses appropriate metadata description mechanisms to keep
the model flexible concerning changing requirements.

The I NTEGRATED BUSINESS OBJECT MODEL pattern int roduces an
architecture wh ich allows developer to use ea ch of the t hree
refactoring patterns when it is mos t a ppropriate. The “standard”
solution of a SOA, to use the SERVICES pattern and to wrap it with
an activity in the process flow, should always be the first choice,
because this s olution is simple and offers loose coupling. When
WRAP SERVICE A S ACTIVITIES alone is not sufficient, one has to
check whether SYNTHESIZE BUSINESS OBJECT MODELS can be
achieved and is of less e ffort than res tructuring. T he m apping
between applic ation-specific and synthesized bus iness object
models takes computatio nal tim e and thus may imply a
performance issue. Performance in this respect is often the driving
factor to cons ider following R ESTRUCTURE SPECIFIC BUSINESS
OBJECT MODEL.

Flexible a spects of the I NTEGRATED BUSINESS OBJECT MODEL
should be des cribed by metadata mechanisms. An abstraction
from concrete structures to mor e abs tract str uctures, defined by
metadata, helps to manage a synthesized business object m odel
centrally. F or ins tance, flexible data s tructures within business
objects can be defined via XML. What areas are subject to change
is detected by an analy sis of application-specific bus iness object
models and design is sues detected in the busines s process
requirements.

Figure 5 illustrates ho w an INTEGRATED BUSINESS OBJECT MODEL
is designed. The INTEGRATED BUSINESS OBJECT MODEL integrates
all involved business object models, and the bus iness processes
are defined on top this model. T he integrated object model – if
designed using appropriate metadata mechanisms – is open for
integrating additional external business object models.

Integrated Business
Object Model

Application Specific
Business Object Model1 1..n

maps to

- process requirements
- metadata restructuring

Figure 5. Integrated business object model

Unanticipated cha nges to the I NTEGRATED BUSINESS OBJECT
MODEL might oc cur during the evolution and lead to s ome
restructuring. In fac t, taking the right level of des ign abstraction
with metadata that anticipates futur e changes and, at th e s ame
time, provides enough concrete structures is still rather an art than
a science.

The D ATA TRANSFORMATION FLOW pattern provides an
architecture design approach for designing and im plementing the
necessary mapping from application-specific busine ss object
models to INTEGRATED BUSINESS OBJECT MODEL.

When the model is implemented, the actual business objects will
be stored in a CENTRAL BUSINESS OBJECTPOOL.

The CANONICAL DATA MODEL [6] represents a similar approach to
designing a data model that is indepe ndent fro m specific
applications. The INTEGRATED BUSINESS OBJECT MODEL can be
viewed as a specialisation of it wit hin a pro cess-driven SOA
context. SERVICES a re used to access the external system f rom a
SOA.

7. DATA TRANSFORMATION FLOW
Systems need to be i ntegrated via a b usiness-process driven and
service-oriented approach, and the s ystems have heterogeneous
business object models.

Consider a transformation between the business object models
of two systems integrated into a SOA is needed. Major goals
of a SOA are loose coupling and flexibility. These properties
should not be compromised by hard-coding data integration
details. In a process-oriented SOA, it is additionally necessary
to map the data integration steps conceptually to the process
flow to be able to easily configure data integration changes
from process design tools.

In SOAs, the systems have usually been independently developed
and have changed over time. As a result it is usually not trivial to
depict the business objects provided as inpu t and outpu t
parameters of one system onto the business object model used by
the targe t s ystem. Consequent ly, s ome kind of mapping and
transformation will be necessary. The structures and the semantics
of the business object models must map somehow.

In this context mapping means that bus iness ob jects and the
attributes of them need to be projected onto business objects and
corresponding attributes of the targe t model. This mapping must
be maintainable, and the mapping architecture must be extensible.
It should be possible to react on typical change requirements, such
as an increased workload, a business object model change, or that
a new application needs to be integrated with minimum effort.

This m eans es pecially that no programming effort should be
necessary to change (m inor) details o f the data integration.
Somehow we need to depict and configure data integration
between business ob ject m odels i n the process s o that it is
possible to use process design tools for the mapping process and
for rapidly changing the mapping.

Implement the data transformation as a process subflow (a
microflow) that uses mapping components that are based on
configurable transformation rules to project one business
object model on another. Technology that supports rule-based
data transformation is used to change the transformation
rules at runtime. Perform the mapping steps as activities of a
process subflow to make the data transformations
configurable from the process design tool.

The mapping logic to project one bus iness object model onto
another is enca psulated in a compo nent that perfo rms the
transformation. T he mapping logic is implemented by
configurable mapping rules associated to a component. There may
be several of these components in the D ATA TRANSFORMATION
FLOW.

In a process -driven and servi ce-oriented architectur e, t he DATA
TRANSFORMATION FLOW is actually depicted by a M ICROFLOW
ENGINE [4], and the mapping compo nents are repre sented as
(reusable) process flows in the engine. The process flows perform
the transformation of the business object models. The individual
activities in the process flow represent transformation steps. As a
result, the str uctural mod el of a D ATA TRANSFORMATION FLOW
can be defined a s shown in Figure 6. The actual conce ptual
mapping is done by s pecialized microflows that are in voked as
sub-microflows to realize the transformation.

 Microflow

+ add(in mf: Microflow)
+ remove(in microflowID)
+ execute(in microflowID)

*1

- microflowID

+ getID()
1..*1 Microflow

Stephas

Microflow Engine

Conceptual
Mapping Flow

Conceptual
Mapping Step

Projection/
transformation
process

Projection/
transformation
step

Figure 7 illus trates one possible realization in a flow m odel: A
MICROFLOW EXECUTION SERVICE [4] expos es an integra tion
microflow as a service that can be invoked by process activities.
All data transformation is done in data transformation sub-flows.
The M ICROFLOW EXECUTION SERVICE thus realizes the
composition of the m apping fun ctionality according to the
requirements of the integration process.

This D ATA TRANSFORMATION FLOW patter n realizes the
transformations from application-specific to sy nthesized models ,
when SYNTHESIZE BUSINESS OBJECT MODELS is applied.

When realizing the transformation in a mappin g flow, message
transformation patterns will be applied, e .g., MESSAGE
TRANSLATOR, CONTENT ENRICHER, and CANONICAL DATA MODEL
[6]. A conce ptual mapping microflow represents a mapping
component in the sp irit of M ESSAGING MAPPER [6]. T he DATA
TRANSFORMATION FLOW pattern can be realized as part of an
ENTERPRISE SERVICE BUS [8]. The MACRO-MICROFLOW pattern [4]
can be used for structuring processes: In the context of this pattern
the mapping flows refer to the microflow level.

The D ATA TRANSFORMATION FLOW pattern leads to an
architecture in which the mapping flows are enca psulated i n
maintainable units that can be flexibly composed.

Appropriate technology is re quired to implement the mapping
flows. For ins tance a mess age broker with t ransformation
functionality c an be used to ac hieve this, or another integration
middleware. T he mapping may ca use pe rformance is sues, if the
logic gets complicated and/or storage functions are required to
keep the transformed objects in databases . Thus, this pattern may
only be suitable in larger S OA contexts, where th is kind of
flexibility is actually required.

8. BUSINESS OBJECT POOL
Business processes are executed on a process engine.

Business processes are very often interdependent in their flow
logic. That is, a running process may have effects on other
processes being executed in parallel. Technically each process
has its own data space that carries the control data for
executing a business process and is thus independent of other
processes. On the one hand, we need to implement the logical
interdependencies between processes, but on the other hand,
we need to retain the technical independence – which means
interdependences should be avoided.

Business proces ses in execution have their own data space, i.e.,
the data s paces of bus iness proce sses running in parallel are
disjoint. Actually, this is necessary to provide a business process
instance with full control over the execution of the ins tance –

Figure 7. Conceptual mapping flows as sub-microflows.

Figure 6. Conceptual mapping as special sub-microflows

from a technical point of view. Logically , however, bus iness
processes are interdependent. That means proces ses are of ten
depending on the results of other processes – or even on events
being generated by other processes. For insta nce, consider a
business process handles an order and durin g this process, the
customer decides to cance l the ord er. Th is i s an event being
generated outside the control of the actual order fulfilment
process, but the order fulfilment should react accordingly to this
event, i.e., by stopping t he fulfilment o r r olling back cer tain
things that have already been done.

The other way round, one might c onsider a point in the ord er
fulfilment proces s which is a point of no return. That means at
some point in the fulfilment process, the order cannot be
cancelled any more. Consequently , the ord er fulf ilment pr ocess
generates the respective status of the order. If the customer wants
to cancel the or der, t he order cancellation process needs to
consider this point of no return, for instance, by inform ing the
customer that the order cannot be cancelled anymore.

It is nec essary a nd useful that the data s paces of each pr ocess
instance are disjoint – to keep the processes instances as separate
and autonomous entities. But this makes it hard to depict the
interdependencies of the processes. In any case the behaviour of
the process must be deterministic. The process logic ha s to
consider all po ssible events that may occur and depict those
events by s ome decis ion logic and the corresponding paths of
execution.

Keep the business objects in a central pool which can be
accessed in parallel by all processes of the process domain.
Attribute changes to objects in the pool can then be used as
triggers to corresponding behaviour in interrelated business
processes. The processes can access the central pool during
their execution and react on those attribute values.

Treating the business obje cts as central res ources a nd allo wing
access to those centralized business objects enables, in principle,
parallel processes to read and write th e data of the bus iness
objects. One process might write ce rtain attributes o f a business
object, e.g., a change in the status of the object. Another parallel
process might then read the st atus inf ormation and react to the
attribute values correspondingly . Often, the pool of business
objects is realized as a central REPOSITORY [3].

Process ins tances can use their disjoint data spaces to store
information tha t is only releva nt for the proce ss ins tance but
which is of no interest for other proc ess instances, such as data to
implement the decision points in control flow logic . This data is
generally of no relevanc e to other processes but only the instance
itself. Inf ormation that has central r elevance w ill be s tored in a
central business object kept in the BUSINESS OBJECT POOL.

Concurrency iss ues may occur in c ase s everal process instances
have write a ccess on the same business objec t, for ins tance.
Traditional locking m echanisms ca n be us ed to s olve some of
these issues. Accessing the business objects takes some additional
computational time, and, in case large amounts of data need to be
read, caching mechanisms might be suitable.

The access to business objects in the BUSINESS OBJECT POOL from
the data space of a process instance can be realized via BUSINESS
OBJECT REFERENCES [5] that poi nt to objects in a centr al
REPOSITORY [3]. The REPOSITORY is often necessary for revision
and reporting purposes to store the business objects manipulated
in bus iness proc esses for his torical rea sons. T o allow for
controlled modifications of central business objects, the PRIVATE-
PUBLIC BUSINESS OBJECT pattern [7] can be used. This patter n
offers a solution to the problem of hidin g modifications to
business objects as long as the process activit ies that manipulate
the objects are not yet finished. The business object pool may be a
representation of an INTEGRATED BUSINESS OBJECT MODEL.

By accessing the BUSINESS OBJECT POOL and observing attribute
values of those objects, a process instance may react in its control
logic on an attribute value. T he a ttribute value might ha ve been
set by another p rocess run ning in parallel. H ence the patter n
allows the proces s logic and i ts data s paces to be def ined
independently from other process, but still logical
interdependencies can be depicted.

However, the process model must exactly define on what events it
is able to react, and the busines s objects mus t be accessed via
process activities. S ometimes r epresenting process
interdependencies only by usin g central busines s objects is n ot
enough. Then us ually new services or processes must be defined
to realize the (more complex) interdependent behaviour.

9. EXAMPLE AND KNOWN USES
The patterns ha ve been a pplied in various inte gration and SOA
projects within the project scope of IBM. For instance, in a S OA
project f or a t elecommunications cust omer in Germany, these

Figure 8. Central business object pool

patterns have been a pplied to build a lar ger SO A archit ecture
based on an ENTERPRISE SERVICE BUS [8]. The architectur e has
been based on IBM WebSphere technology. WebSphere Business
Integration M essage Broke r has been us ed as th e MICROFLOW
ENGINE [4] to de pict the c onceptual mapping flows and the
service bus.

The project has focus ed on restructuring the business model for
order management and depicting rede signed bus iness processes
on the SOA platform. We have fo llowed the S YNTHESIZE
BUSINESS OBJECT MODELS pattern to f orm a sy nthesized object
model to process various ty pes of orders. For historical reasons
many diffe rent sy stems have been involved in the ordering and
fulfilment of products, as new products have been developed over
time and quick tool support has been imp lemented. T here has
been redundant data in these various systems.

An integrated and business process orie nted approac h needs to
take the overall proces s p erspective of ordering products and
integrating the various systems involved in the business processes
into account. Hence, the data models of thes e sy stems to be
integrated have been mapped to bus iness object models and a
synthesized bus iness object model for the overa ll bus iness
processes has been developed.

In order to a chieve this , the redundancies of data in the systems
have been identified by looking for the s ame conceptual entities
in each sy stem. For ins tance, t he cus tomer, or inf ormation on
related contracts to the customers could be found in many of these
systems. However, the data associated to these conceptual entities
have not been the same in all the s ystems. There was s ome
overlap, and this overlap needed to be identified to define a
representation in t he I NTEGRATED BUSINESS OBJECT MODEL. The
second step was thus to identify the overlaps and to depict the
commonalities in the INTEGRATED BUSINESS OBJECT MODEL. The
common representation had to be chosen in a way that allows to
integrating the sy stems by DATA TRANSFORMATION FLOWS.
Following the S YNTHESIZE BUSINESS OBJECT MODELS patter n it
was thus poss ible to extract the redundancies and to develop a
synthesized object m odel for the business processes
systematically. The sy nthesized bus iness object model thus did
not contain redundant d ata but cons olidates the views of the
systems involve d in the business processes. This INTEGRATED
BUSINESS OBJECT MODEL has been im plemented in a separate
DB/2 datastore, us ed by the executed business process th at als o
represented a B USINESS OBJECT POOL. That means, t he DB/2
database s erved as the technolo gy for realizing the BUSINESS
OBJECT POOL. The various business processes running in parallel
were thus able to access the business objects concurrently, and the
objects were realizing all r equirements of the over all bus iness
processes.

One critical factor of flexibility regarding the object model was
the products being o rdered by cus tomers. To prov ide reduced
time to market, the processes needed to be designed in a way that
products being ordered and processed are easy to change. For this
reason, the notion of product has been des igned in the
INTEGRATED BUSINESS OBJECT MODEL via metada ta des cription
mechanisms in XML. The mandatory and optional attributes of a
product could be flexibly s pecified us ing an XML-based
language.

The D ATA TRANSFORMATION FLOWS have been im plemented
using message trans formation mechanis ms of the W ebSphere
Business In tegration M essage Broker. This broker offers
functionality for defining reus able message transformation flows
that served as the DATA TRANSFORMATION FLOWS to map object
models. The messages have been transported via WebSphere MQ.

The WRAP SERVICE AS ACTIVITY pattern has been applied as well.
In some c ases it was even possible to directly integrate the
application servic e in the process flow, as bo th mapped one-on-
one. One example is the integration of a legacy customer
application. This application basically is a database containing a
customer table and s ome related tables . In cas e of a larg er
business cus tomer ther e is a who le hier archy of sub-customers,
for instance, r epresenting diff erent geographical lo cations. The
customer table as an entity has been wrapped by services offering
read/write acce ss to the customer r epository. Additionally, m ore
simple services have been implem ented, such as chec king
whether a customer already exists in the customer repository. This
is a simple service that jus t returned a Boolean value. However,
no persistent data needed to be s tored in a business object in this
case, as the process logic depicts the corresponding path of
execution for the Boolean values true or false.

As WebSphere MQ Workflow and the integrated application had
MQ mes saging int erfaces only s ome simp le transformation was
necessary in terms of DATA TRANSFORMATION FLOWS. The D ATA
TRANSFORMATION FLOWS ba sically performed the mapping of
different data structures a nd ty pes between the c ustomer
application and the services.

A concrete example for these data transformations can be found in
the context of a s ervice that allows retrieving customer data. The
customer repos itory had inf ormation sp lit across many tables,
such as the basic custo mer data like name a nd addr ess in one
table, contract data of the cus tomers in anoth er table, and the
customers account data in separate table, as a customer may have
several accounts . The servic e repre sents the retrieval of all this
data in a cons olidated way as th is was the requirement of the
corresponding bus iness proces s activity . For this reason,
transformation flows im plement the cons olidation of the basic
customer data, the contract data, and the a ccount data to make
them available by a s ingle service . The c onsolidated data have
been put in a n XML message representing the output of the
service.

Figure 9 provides an overview of the I NTEGRATED BUSINESS
OBJECT MODEL. The mod el represents the order domain and the
product domain and the relatio ns between products and orders .
Moreover, the model shows that no specialized classes have been
designed for dedicated products . The s pecial products have been
configured in XML – the example below shows the definition of
the product DSL/ISDN.

The XM L pr oduct defi nitions have been sto red in terms of a
product catalogue. An order only references the products by their
product code, as we can see in Figure 9 – the Product class
contains th e product code a s an a ttribute. The product code is
basically an ID of a product to identify it in the product catalogue.
The product ca talogue and the products may thus be easily
changed without modifying the I NTEGRATED BUSINESS OBJECT
MODEL where the business objects themselves have been stored in
a BUSINESS OBJECT POOL represented by a DB/2 database.

The corresponding us er interfaces for data entry and for
processing the products could thus be designed generically, as the
metadata structure could be interpreted and the us er interfa ces
were c onstructed generica lly. Implementing a new or improved
product was thus basically an act of configuration. T hough, some
amendments and enhance ments in the business processes also
needed to be designed and implemented in this c ase. The SOA
approach provided an effective means to do that. However, the
effort was minimised as the design has cons idered the notion of
product to be variable construct and changes have been limited to
a minimum. The INTEGRATED BUSINESS OBJECT MODEL thus had
to depict the domain of orders considering the requirements of the
redesigned business processes and the integrated applications.

Furthermore, recent technologies directly support these patterns.
For insta nce, IBM WebS phere InterChange Server and
WebSphere Proces s Serve r c onceptually support the c oncept of
synthesized object models. Application s pecific o bject models
addressed by application adapters can be mapped via tool support
to the synthesized object model. Consequently, the patte rns have
shown much relevance as they are more and more supported by
development tools . However, the patterns a re not res tricted to
WebSphere tec hnology. T hey are also applicable with oth er
platforms that support proce ss-driven and service-oriented
approaches, such as Staf fware. Th e pr oblems addressed by the
patterns actually do not depend on any particular platform.

There are other known us es of the p atterns in the banking
industry. In finance we us ually deal with old legacy systems,

<ProductType name="BundleDSLOnline" id="ProductBundleDSLOnline" sellable="true">

 <Documentation>

 <ShortDescription>This is the product bundle ISDN / DSL and Online </ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <ProductRef name="ISDN/DSL" ref="ProductIsdnDSL" />

 <ProductRef name="Online" ref="ProductOnline" />

 <AttributeRef name="Customer class" type="CustomerClass" />

 <AttributeRef name="Installation price" type="Number" />

 <AttributeRef name="Tariff" type="Tariff" />

</ProductType>

<ProductType name="ISDN/DSL" id="ProductIsdnDSL" sellable="false" marketingName="-">

 <Documentation>

 <ShortDescription>This is the type definition of the product ISDN / DSL</ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <AttributeRef name="Tariff" type="Tariff" />

 <AttributeRef name="Upstream bandwidth" type="Bandwidth" />

 <AttributeRef name="Downstream bandwith" type="Bandwidth" />

 <AttributeRef name="Damping" type="Damping" />

 <RuleRef name=" UpDownBandwidthConstraint " ref="UpDownBandwidthConstraint" />

</ProductType>

<ProductType name="Online" id="ProductOnline" sellable="false" marketingName="Online">

 <Documentation>

 <ShortDescription>This ist the type definition of the product Online</ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <AttributeRef name="Tariff" type="Tariff" />

 <AttributeRef name="ImDSLBundle" type="Boolean" />

implemented in Cobol, running on large mainframe c omputers.
These s ystems repres ent a huge investment that needs to be
protected, not at least because of their reliability and stability. The
SOA approach is very in teresting for the financ ial indus try,
because most of the processes are rather strongly formalised and
SOA promises an approach for integration and flexibility.

Moreover, there are other known us es in the automotive industry,
especially in su pply c hain management, where we will find the
problems addressed in this paper. In supply chain management we
usually deal with business proces ses that run across different
departments, involving various s takeholders, and even across
companies (suppliers). In s uch supply chain contexts,
heterogeneity of the s ystem landscape involved in the business
processes is rather the norm than the exception.

The patterns in this paper address common problems a rising in
SOA projects that are built considering existing and his torically
grown legacy sy stems, or – more generally speaking – systems
being developed independently . Often these legacy sy stems
represent is land s olutions for requirements that needed to be
implemented q uickly and in an evolutionary context. The
problems also occur in s ituations where no broader IT strategy is
defined and where s ystems grow independently . W hen taking a
business process driven and s ervice-oriented perspective, some of
the data integration is sues, discussed in this paper, arise, s uch as
data redundancies. This is due to the broader and integrated view
taken by the SOA approach. SOA often forces developers to solve
these – sometimes long known – issues in a systematic way. The
problems addres sed by the patterns are often inherent and most
probably predictable in projects that extend s ystem boundaries
and take an enterprise-wide view.

For this reaso n, SOA r ather of fers a s ystematic approach for
tackling data integration issues that are often very well known and
existing for y ears. SOA, as an architectural concept, is not the
solution to these well known integration problems, but it provides

a m eans to approach them s ystematically and effectively. It is
rather the systematic detection and the s olutions aligned w ith
business goals repres ented by the bus iness process oriented
approach that makes these patterns valuable.

10. CONCLUSION
In this paper, we have presented patterns in the re alm of data
integration in p rocess-oriented SO As. The first three patterns
offer alternatives for single refactoring design decisions about the
integration of specific business object models: WRAP SERVICE AS
ACTIVITY, R ESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL, and
SYNTHESIZE BUSINESS OBJECT MODELS. Besides the description of
these patterns in the process -oriented SO A dom ain, this pa per
describes architectur al patter ns to use t hese patterns i n a larger
context. An a rchitecture which sup ports the use of each of the
refactoring patterns, when it is most appropriate, is introduced by
the I NTEGRATED BUSINESS OBJECT MODEL patte rn. Additionally
we have de scribed a process-oriented solution for data mapping
and transformation, the D ATA TRANSFORMATION FLOW patter n.
Finally, the B USISNESS OBJECT POOL pa ttern supports the
harmonization of business object models, as the pattern introduces
a ce ntral pool for busin ess objects which can be acc essed in
parallel by independent processes.

11. ACKNOWLEDGEMENTS
We like to thank Wolfgang Keller, our PLoP 2006 shepherd, for
his very valuable comments on this paper. Further tha nks go to
Axel Emmer for helping with the revision of the paper for ACM
DL.

12. REFERENCES
[1] D. K. Barry. Web Services and Service-oriented

Architectures, Morgan Kaufmann Publishers, 2003
[2] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating

to Service-oriented architecture – part 1, http://www-
106.ibm.com/developerworks/webservices/library/ws-
migratesoa/, IBM developerWorks, 2003

[3] E. Evans. Domain-Driven Design – Tackling Complexity in
the Heart of Software”, Addison-Wesley, 2004.

[4] C. Hentrich, U. Zdun. Patterns for Process-Oriented
Integration in Service-Oriented Architectures, Proceedings of
EuroPLoP 2006, Universitätsverlag Konstanz, 2006.

[5] C. Hentrich. Six Patterns for Process-Driven Architectures,
Proceedings of EuroPLoP 2004, Universitätsverlag
Konstanz, 2004

[6] G. Hohpe and B. Woolf. Enterprise Integration Patterns.
Addison-Wesley, 2003.

[7] T. Köllmann, C. Hentrich. Synchronization Patterns for
Process-Driven and Service-Oriented Architectures.
Proceedings of EuroPLoP 2006, Universitätsverlag
Konstanz, 2006.

[8] U. Zdun, C. Hentrich, and W. van der Aalst. A survey of
patterns for service-oriented architectures. International
Journal of Internet Protocol Technology, 1(3):132-143, 2006.

Figure 9. Example of an Integrated Business Object Model

13. APPENDIX: OVERVIEW OF
REFERENCED RELATED PATTERNS
There are several i mportant r elated patterns ref erenced in this
paper, which are described in other papers , as indicated by the

corresponding references in the text. Table 1 gives an overview of
thumbnails of these patterns in order to prov ide a brief
introduction to the m for the reade r. For detailed descriptions of
these patterns please refer to the referenced articles.

Table 1. Thumbnails of referenced patterns.

Pattern Problem Solution

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of business objects be
achieved in a business process, as far as
concurrent access and changes to these
business objects is concerned?

Only store references to business objects in the process
control data structure and keep the actual business objects in
an external container.

CANONICAL DATA MODEL

[Hohpe et al. 2003]

How to minimize dependencies when
integrating applications that use different data
formats?

Design a CANONICAL DATA MODEL that is independent from
any specific application. Require each application to
produce and consume messages in this common format.

CONTENT ENRICHER

[Hohpe et al. 2003]

How do we communicate with another system
if the message originator does not have all the
required data items available?

Use a specialised transformer, a CONTENT ENRICHER, to
access an external data source in order to augment a
message with missing information.

ENTERPRISE SERVICE BUS

[Zdun et al. 2006]

How is it possible in a large business
architecture to integrate various applications
and backends in a comprehensive, flexible and
consistent way?

Unify the access to applications and backends using services
and service adapters, and use message-oriented, event-
driven communication between these services to enable
flexible integration.

ENVELOPE WRAPPER

[Hohpe et al. 2003]

How can existing systems participate in a
messaging exchange that places specific
requirements, such as message header fields or
encryption, on that message format?

Use an Envelope Wrapper to wrap application data inside an
envelope that is compliant with the messaging
infrastructure. Unwrap the message when it arrives t the

MACROFLOW
INTEGRATION SERVICE

[Hentrich et al. 2006]

How can the functionality and implementation
of process activities at the macroflow level be
decoupled from the process logic that
orchestrates them, in order to achieve
flexibility, as far as the design and
implementation of these automatic functions
are concerned?

The automatic functions required by macroflow activities
from external systems are designed and exposed as
dedicated MACROFLOW INTEGRATION SERVICE with well-
defined service interfaces.

MACRO-MICROFLOW

[Hentrich et al. 2006]

How is it possible to conceptually structure
process models in a way that makes clear
which parts will be depicted on a process
engine as long running business process flows
and which parts of the process will be depicted
inside of higher-level business activities as
rather short running technical flows?

Structure a process model into macroflow and microflow.

MESSAGE TRANSLATOR

[Hohpe et al. 2003]

How can systems using different data formats
communicate with each other using
messaging?

Use a special filter, a MESSAGE TRANSLATOR, between other
filter or applications to translate one data format into
another.

MESSAGING MAPPER

[Hohpe et al. 2003]

How do you move data between domain
objects and the messaging infrastructure while
keeping the two independent of each other?

Create a separate MESSAGING MAPPER that contains the
mapping logic between the infrastructure and the domain
objects.

MICROFLOW ENGINE

[Hentrich et al. 2006]

How is it possible to flexibly configure IT
systems integration processes in a dynamic
environment, where IT process changes are
regular practice, in order to reduce
implementation time and effort?

Delegate the microflow aspects of the business process
definition and execution to a dedicated MICROFLOW ENGINE
that allows to configuring microflows by flexibly
orchestrating execution of microflow activities.

MICROFLOW EXECUTION How to expose a microflow as a coherent Expose a microflow as a MICROFLOW EXECUTION SERVICE

Pattern Problem Solution

SERVICE

[Hentrich et al. 2006]

function with defined in- and output
parameters without having to consider the
technology specifics of the MICROFLOW
ENGINE being used, in order to decouple the
engine’s technology specifics from the actual
functionality that is has to offer to execute
concrete microflows?

that abstracts the technology specific API of the
MICROFLOW ENGINE to a standardised well-defined service
interface and encapsulates the functionality of the
microflow.

PRIVATE-PUBLIC
BUSINESS OBJECT

[Köllmann et al. 2006]

How can business object modifications be
hidden from other users as long as the process
activity during which the changes are made is
not finished?

Introduce private-public business objects, which expose two
separate images, a private and a public image of the
contained data.

PROCESS-BASED
INTEGRATION
ARCHITECTURE

[Hentrich et al. 2006]

What architecture design concepts for process-
driven backend systems integration are
necessary, in order for the architecture to be
scalable, flexible, and maintainable?

Provide a multi-layered PROCESS-BASED INTEGRATION
ARCHITECTURE to connect macroflow business processes
and the backend systems that need to be used in those
macroflows.

REPOSITORY

[Evans 2004]

Exposure of technical infrastructure and
database access mechanisms complicates the
client.

Delegate all object storage and access to a REPOSITORY.

SERVICE

[Evans 2004]
Some domain concepts are hard to model as
objects because they have no state.

Define one or more related operations as a standalone
interface declared as a SERVICE and make the SERVICE
stateless.

