

Drag-And-Dock Design Pattern
Paulo Santos

EFACEC

paulo.santos@efacec.pt

Ademar Aguiar
FEUP

ademar.aguiar@fe.up.pt

ABSTRACT
The Drag-And-Dock design pattern provides a structured solution
for designing graphical software applications with multiple
content views that end users can freely arrange following a
dragging and docking interaction approach.

General Terms
Algorithms, Design, Standardization.

Keywords
Design, pattern, drag, drop, dock, graphic user interface usability.

1. Example
More and more usability concerns are in place when it comes to
develop complex graphical applications that maximize end users’
satisfaction, learnability, and effectiveness while working with
them.
Much of these usability aspects can be achieved by an intuitive
and well laid out graphical user interface. However, many modern
applications aren’t focused on a single content view, but rather on
several other content views interrelated (or not) with a main one.

Integrated Development Environments (IDE), such as NetBeans
[1], Visual Studio .NET [2], or Eclipse [3] (see Figure 1), are just
examples of such kind of applications. Most IDE’s have a main
content view the user is mostly focused on, and simultaneously a
few others the user commutes focus with, such as navigation
views, properties views, or status message views, to mention a
few.
At startup, such applications provide their default content views
arranged in the way considered the best suited for most of the
users. Many times, an easy way to exchange layouts is provided,
so that it’s not too restrictive and let users switch between
predefined content views disposition schemas and order.
However, advanced users often demand even more, expecting
more freedom to organize the views of the software applications
they use everyday as they see as fitting better.
Such user freedom can be accomplish by allowing them to drag
individual (or groups of) content views within the software
application, and docking it to the sides of any other content view,
or even into any other group of content views, thus enabling users
to arrange the application content views, into almost an infinite
number of different layout schemas (see Figure 2).

Figure 1. Eclipse IDE

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 2. Eclipse: four different arrangement layouts

2. Context
Graphical software applications with multiple and distinct content
views displayed at the same time, which end users are able to
freely organize by docking them to each other.
Personal Object Space [5] in general, and in particular Movable
Panels [4], states a Human-Computer Interaction (HCI) pattern to
allow end users organize user interface pieces (content views) at
will, within a graphical application. This is accomplished by
inducing the user to grab an individual content view, drag it
around the application, and drop it wherever they would like
(Drag-And-Drop [6]), forming as many different layouts as
possible.

3. Problem
Movable Panels allows for content views to float within the
application, even superimposing each other. However, restrictions
can be applied to where a content view can be dropped, and how
it behaves by then.
Such restrictions can state that a content view can only be
dropped precisely onto the edges of other content views, or on top
of them. After being dropped onto a valid dropping location
(edge), the dropped content view will set aside the target content
view, with a sliding edge between them that the end user can later
use to resize the surrounding views. If dropped on top of other
content view, the dropped content view will set on top of it, while
the target remains in the same place but now identified by a
special graphical handler (such as a tab).

How to structure the implementation of user interfaces
employing a Movable Panels HCI with docking behaviour and
related restrictions?

4. Forces
A solution to this problem must balance the following forces:
 clear separation between the interaction roles required to

support the dragging, and docking mechanism, and the
specificities of the content views being manipulated

 flexibility to support any type of content views
 versatility to arrange any layout schema
 maintain layout schema consistency
 independency from the design of graphical user interface

libraries

5. Solution
To support a Movable Panels interaction model with docking
restrictions, provide the following four key design elements:
 View, the content view itself;
 Draggable, the content view handler the end user can grab

and drag around the application;
 Dockable, the content view container where content views

can be stacked or docked onto the sides;
 SplitContainer, the border between two content view

containers.
These four elements can then be managed by a Mediator element,
that monitors Draggable elements being dragged hover Dockable
elements, at the same time it checks for an eligible docking area,
and finally to request undock and dock actions onto the two
Dockable elements involved (source and target).
Figure 3 identifies the basic design elements of the solution on
top of their graphical output, whether Figure 4 illustrates the
solution using a possible aggregation of objects.

Figure 3. Basic elements for docking multiple content views

SplitContainer#1

SplitContainer#2 SplitContainer#3

Dockable#1 Dockable#3 Dockable#2 Dockable#4

Draggable#1 Draggable#3 Draggable#2 Draggable#4

View#1 View#2View#3 View#4

Draggable#5

View#5

Figure 4. Object aggregation of basic elements

Draggabl

VieSplitContainer

Dockable

dock onto left dock onto right

dock onto top

dock onto bottom

dock as a tabbed stack

6. Structure
The solution provided defines and relates six major roles to be
played by the solution participants, described in this section:
Draggable, Dockable, Mediator, View, Container, and
SplitContainer. Figure 5 shows an overview of the whole Drag-
And-Dock design pattern structure.

Figure 5. Overview of the Drag-And-Dock structure

6.1 Draggable
A Draggable has the ability to be visually grabbed and dragged
around the application by an end user. It directly represents a
unique View and can be docked onto a Dockable. At all times, a
Draggable resides within a Dockable so it always knows its
current parent.
While being dragged, a Draggable must publish its current
position to a Mediator, as well as when that action ends with a
release event.

6.2 Dockable
A Dockable contains multiple Draggables piled altogether (only
one content visible at a time), distinguished normally by
individual tabs.
A Dockable is able to accept docking actions of a Draggable,
required by a Mediator, to one of its four edges or to add it to its
stack of Draggables. It is also capable of undocking a specific
Draggable from its stack.
Furthermore, a Dockable provides visual feedback of docking
possibilities, given a set of coordinates within its boundaries.

6.3 Mediator
A Mediator monitors when and where a Draggable is being
dragged, at the same time it verifies which Dockable is directly
under the dragging position, calling for docking validation onto
the target Dockable.
Moreover, it monitors when and where a Draggable being
dragged is released, calling for undocking and docking actions
(onto source and target Dockables, respectively), once docking
possibility is confirmed by the Dockable directly under the
release position.

6.4 View
A View is in fact a unique content view integrated within the
multiple content view application environment. It is part of a
single Draggable so it can take advantage of Drag-And-Dock
capabilities.
When desired, it is the View responsibility to define integration
restrictions, such as preferred dimensions, maximize and
minimize permission, display name, etc.

Role

Mediator

Responsabilities

 Monitor drag and drop events from
Draggables

 Assess which Dockable is the target of
a drag hover and docking action

 Request docking and undocking
actions

Collaborations

 Draggable

 Dockable

Role

Dockable

Responsabilities

 Containing Draggables

 Docking Draggable onto its sides

 Adding Draggables to its stack

 Undocking Draggables from its stack

 Validate docking possibility

Collaborations

 Draggable

 Mediator

Role

Draggable

Responsabilities

 Wrap an individual View with the
ability to be dragged and docked onto
a Dockable

 Knows which Dockable it is docked
onto

 Triggers drag and drop events, into a
Mediator

Collaborations

 View

 Dockable

 Mediator

6.5 Container
The Container role is an abstraction representing a generic
container in the layout hierarchy of the Drag-And-Dock design
pattern. Its only duty is to retain a reference to a Container
parent, a SplitContainer.

6.6 SplitContainer
A SplitContainer main purpose is to provide a visual sliding edge
between two other Containers, in a vertical or horizontal manner.
Furthermore, it is able to set and remove its Containers, as well as
to replace one Container with another. Thus, allowing for any
layout schema, based on rectangular Views.

7. Dynamics
There are four main actions in this pattern: dragging a Draggable
hover a Dockable; dropping a Draggable on a Dockable; docking
a Draggable onto a Dockable specific location; and undocking a
Draggable from a Dockable.

7.1 Dragging
A Mediator gets notified whenever a Draggable is being dragged
over some coordinates. It then assesses which Dockable is
directly under those coordinates, reporting to it that there is a
Draggable hover. The target Dockable, then verifies if it’s
possible to dock the Draggable, providing some visual feedback
to the end user (mouse pointer indication, or drawing the target
docking area), and returns the possible docking location (left, top,
right, bottom, or stack), if any (see Figure 6).

7.2 Dropping
When a Draggable ends a dragging action, by being released, a
Mediator gets notified. It then assesses which Dockable is
directly under those coordinates, reporting to it that there is a
Draggable hover. If a valid docking location was returned, it then
starts by undocking the released Draggable from its parent, and
finishes by docking it onto the target Dockable specific location
(see Figure 7).

7.3 Undocking
Undocking a Draggable from its parent Dockable is as
straightforward as unsetting its parent.
However, there’s more to it if the Dockable has no more
Draggables stacked on. In this case the Dockable itself must be
destroyed, while the layout structure remains coherent. The
Dockable removes itself from its parent Container
(SplitContainer), which in turn replaces itself with the remaining
Container on its own parent Container (SplitContainer). In the
end, both Dockable and its parent get destroyed (see Figure 8).

7.4 Docking
Docking a Draggable occurs on one of several docking locations,
usually five, in a Dockable.
Docking onto stack requires setting the Draggable parent to the
new Dockable one and adding the Draggable to the Dockable pile
of Draggables. Graphically, only one of the Dockable stack of
Draggables is visible, but all are graphically accessible and
identified, frequently through tabs.
Docking onto top or left edges, requires the creation of a new
Dockable to hold (stack) the Draggable, and the creation of a new
SplitContainer (vertical fashion, if top location, horizontal
otherwise). Then there’s the need for the new SplitContainer, to
take the place of the Dockable on its parent SplitContainer.
Finally the new Dockable must be set as the first element
(top/left) on the new SplitContainer, and the Dockable the second
element (bottom/right).
Docking onto bottom or right edges is like docking onto top or
left, it has the same steps, except for setting the first and second
elements on the new SplitContainer. In this case, the first element
(top/left) must be the Dockable, and the second (bottom/right) the
new Dockable (see Figure 9).

Role

Container

Responsabilities

 Keep track of its parent
SplitContainer

Collaborations

 Dockable

 SplitContainer

Role

SplitContainer

Responsabilities

 Separate vertically or horizontally two
other Containers

 Resize Containers immediately within

 Exchange Containers immediately
within

Collaborations

 Container

Role

View

Responsabilities

 Display contents

 Define integration restrictions

Collaborations

 Draggable

Figure 6. Dragging action

Figure 7. Dropping action

Figure 8. Undocking action

Figure 9. Docking action

8. Implementation
A possible implementation of the Drag-And-Dock design pattern
using Java and Swing can be like the following:
 SplitContainer, a specialization of a javax.swing.JSplitPane

class.
 Dockable, a specialization of a javax.swing.JTabbedPane

class, which implements a hover listener triggered by a
Mediator, and a dock listener also triggered by a Mediator
object.

 Draggable, a JTabbedPane tab that triggers
java.awt.event.MouseEvent when it is being dragged or
released.

 View, any kind of java.awt.Component class, e.g. a
javax.swing.JPanel.

 Mediator, a listener for Draggable objects’ drag and drop
events that assesses which Dockable object has the mouse
cursor within its boundaries and triggers a hover or dock
event onto it.

9. Variants
One slight variant of Drag-And-Dock design pattern is for a
Dockable to be itself a Draggable also. This means, a stack of
Draggables within a Dockable could be dragged as a whole, and
docked onto some other Dockable.
Also, depending on the programming language capabilities, the
Mediator role can be directly carried out by each Dockable, thus
ceasing to exist in the design structure. For that a Dockable has to
recognize itself, if it has a Draggable dragged hover it, or
dropped onto.

10. Known Uses
Commercial applications/solutions tend not to disclose their
internal architecture or source code, so is quite hard to ascertain
their use of Drag-And-Dock design pattern, unless they recognize
so.
The exception are open source applications/solutions, in
particular Java based solutions. Among them, three well known
docking frameworks can be traced as having their core based on
Drag-And-Dock design pattern. They are: VLDocking
Framework [8]; FlexDock [9]; and JDock [10].
A few other solutions are expected to use Drag-And-Dock design
pattern, but due to the lack of available architecture
documentation it wasn’t possible to confirm: Eclipse [3];
LidorSystems Collector [11]; SandDock [12]; DotNetMagic [13].

11. Consequences
 Independency from graphical libraries and programming

languages is easy to achieve, considering that beyond
minimal support for mouse events (positioning, button state),
and graphical tabbed components, there’s no additional
restrictions/requirements on programming languages and
graphical libraries.

 Flexibility to assemble any layout schema and integrate any
type of content view. The five docking areas, in conjunction
with the SplitContainer, provides broad options to assemble
any rectangular based layout schema. Also, as long as each
content view shares a common type of graphical component,
it is guaranteed their integration.

 Consistency of layout schema upon drag and dock actions.
Removing and replacing an empty Dockable within its
parent assures the layout schema integrity because it can be
ruled consistently by the mediator participant.

12. See Also
Decorator, Composite, Mediator, Observer, Personal Object
Space [4], Movable Panels [5], Drag-And-Drop [6][7].

13. Credits
The authors would like to thank our shepherd Tim Wellhausen for
the valuable comments, discussion promoted and feedback
provided during the shepherding of this pattern. We thank also
Rebecca Wirfs-Brock, Kyle Brown, Uwe Zdun, Tobias
Windbrake, Christian Kohls, Ayman Mahfouz, Kay Odeyemi,
and all the other participants of the writer’s workshops at
PLoP’2006, for the motivation, comments and suggestions for
improvement they provided.

14. References
[1] Sun Microsystems, NetBeans

http://www.netbeans.org

[2] Microsoft, Visual Studio .NET
http://msdn.microsoft.com/vstudio

[3] The Eclipse Foundation, Eclipse
http://www.eclipse.org

[4] Jenifer Tidwell, Personal Object Space
http://www.mit.edu/~jtidwell/language/personal_object_space.html

[5] Jenifer Tidwell, Movable Panels
http://designinginterfaces.com/Movable_Panels

[6] AjaxPatterns, Drag-And-Drop
http://ajaxpatterns.org/Drag-And-Drop

[7] Yahoo! Design Pattern Library, Drag and Drop Modules
Pattern
http://developer.yahoo.com/ypatterns/pattern.php?pattern=dragdrop
modules

[8] VLSolutions, VLDocking Framework
http://www.vlsolutions.com/en/products/docking/index.php

[9] FlexDock
https://flexdock.dev.java.net

[10] JAPISoft, JDock
http://www.swingall.com/jdock.html

[11] LidorSystems, LidorSystems.Collector
http://www.lidorsystems.com/products/collector/default.html

[12] Divelements, SandDock
http://www.divil.co.uk/net/controls/sanddockwpf/

[13] Crownwood Software, DotNetMagic
http://www.crownwood.net/features_docking.html

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides
Design Patterns – Elements of Reusable Object-Oriented
Software
Addison-Wesley, 1995

[15] Eric Freeman, Elizabeth Freeman
Head First - Design Patterns
O’Reilly, 2004

Responsabilities

 Keep track of
its parent
SplitContainer
r

