
Even more patterns for secure operating systems
Eduardo B. Fernandez
Florida Atlantic University

Dept. of Computer Science & Eng.
PO Box 9091, Boca Raton, FL 33431

+1 561 297-3466

ed@cse.fau.edu

Tami Sorgente
Florida Atlantic University

Dept. of Computer Science & Eng.
PO Box 9091, Boca Raton, FL 33431

+1 561 297-1392

tami@cse.fau.edu

Maria M. Larrondo-Petrie
Florida Atlantic University

Dept. of Computer Science & Eng.
PO Box 9091, Boca Raton, FL 33431

+1 561 297-3899

petrie@fau.edu

ABSTRACT
An operating system (OS) interacts with the hardware and
supports the execution of all the applications. As a result, its
security is very critical. Many of the reported attacks to Internet-
based systems have occurred through the OS (kernel and utilities).
The security of individual execution time actions such as process
creation, memory protection, and the general architecture of the
OS are very important and we have previously presented patterns
for these functions. We present here patterns for the
representation of processes and threads, emphasizing their
security aspects. Another pattern considers the selection of virtual
address space structure. We finally present a pattern to control the
power of administrators, a common source of security problems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
patterns; D4.6 [Operating Systems]: Security and Protection –
access control, authentication, information flow controls.

General Terms
Documentation, Design, Security.

Keywords
Software Architectures, Patterns, Security, Operating Systems.

1. INTRODUCTION
The operating system (OS) acts as an intermediary between the
user of a computer and the hardware. Its main purpose is to
provide an environment in which users can execute programs in
convenient and efficient manner, i.e. a high-level abstract
machine. OSs also control and coordinate the available resources.
Clearly, the security of operating systems is very critical since the
OS supports the execution of all the applications as well as access
to persistent data.

We have presented several patterns for different aspects of the
security of operating systems [1, 2, 3, 4, 5]. These are patterns
intended for designers of such systems. OS designers are usually
experts on systems programming but know little about security,
the use of patterns may help them build secure systems. These
patterns are also useful for teaching security, we use them in our
security courses and in a coming textbook [6]. Our previous
patterns covered a range of security problems but there are still
some aspects that we did not consider and we present here
security patterns for three additional aspects. We assume the
reader to be familiar with operating systems and with basic
security concepts [6, 7, 8]. Figure 1 shows the relationships of the
new patterns with respect to each other and with respect to some
of our previous patterns (the patterns presented here are shown
with double lines). Their thumbnail descriptions are given below,
starting with the three new patterns:

Secure Process /Thread. How do we make sure that a process
does not interfere with other processes or misuse shared
resources? A process is a program in execution, a secure process
is also a unit of execution isolation as well as a holder of rights to
access resources. A secure process has a separate virtual address
space and a set of rights to access resources. A thread is a
lightweight process. A variant, called secure thread is a thread
with controlled access to resources.

Virtual Address Space Selection. How do we select the virtual
address space for OSs that have special security needs? Some
systems emphasize isolation, others information sharing, others
good performance. The organization of each process’ virtual
address space (VAS) is defined by the hardware architecture and
has an effect on performance and security. Consider all the
hardware possibilities and select according to need.

Administrator Hierarchy. Many attacks come from the
unlimited power of administrators. How do we limit this power?
Define a hierarchy of system administrators with rights controlled
using a Role-Based Access Control (RBAC) model and assign
rights according to their functions.
Controlled Virtual Address Space [1]. How to control access by
processes to specific areas of their virtual address space (VAS)
according to a set of predefined rights? Divide the VAS into
segments that correspond to logical units in the programs. Use
special words (descriptors) to represent access rights for these
segments.

 Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Proceedings of the 13th Conference on Pattern Languages of
Programs (PLoP2006), October 21-23, 2006, Portland, Oregon, USA
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Secure Process

Controlled Process
Creator

Controlled
Virtual Address Space

Secure Thread

Authorization

RBAC
(Role Based Access Control)

Administrator
Hierarchy

executes in
defines access

faster context switch

authorized by

specializes

define rights

created by

Reference
Monitor enforced by

Virtual Address Space
Structure Selection

uses

Controlled-Process Creator [2]. How to define the rights to be
given to a new process? Define rights as part of its creation and
give it a predefined subset of its parent’s rights.

Authorization [5]. How do we describe who is authorized to
access specific resources in a system? Keep a list of authorization
rules describing who has access to what and how.

Role-Based Access Control [5]. How do we assign rights to
people based on their functions or tasks? Assign people to roles
and give rights to these roles so they can perform their tasks.

Reference Monitor [5]. How to enforce authorizations when a
process requests access to an object? Define an abstract process
that intercepts all requests for resources from processes and
checks them for compliance with authorization rules.

Figure 1. Pattern diagram for the patterns discussed here
(double lined) and their relationship to already existing

patterns

Going back to Figure 1, the central pattern in this paper is the
Secure Process, which defines the conditions for processes to be
secure. A variant of this pattern is the Secure Thread. An
important aspect of the security of processes is their address space
structure and one of these patterns (Virtual Address Space
Selection) indicates criteria to select an appropriate virtual
address space based on the expected types of applications.
Whatever address space is chosen, this must be controlled and the
Controlled Virtual Address Space pattern indicates its features.
Another important pattern to have secure processes is the
Controlled Process Creator that defines how the rights of a
process are initially acquired. The Administrator Hierarchy
pattern restricts the rights of administrators to prevent some
attacks. This pattern defines rights for administrators, including
their rights to access virtual address spaces (as well as other
resources). The rights for processes or threads are defined by the
Authorization pattern and enforced by a Reference Monitor
pattern. One way to organize authorization rights, typically used
for administrators is Role-Based Access Control (RBAC).

Section 2 presents the Secure Process pattern and its variant the
Secure Thread. Virtual Address Space Structure Selection is
described in Section 3, while Administrator Hierarchy is
presented in Section 4. We end with some conclusions.

2. SECURE PROCESS
How do we make sure that a process does not interfere with other
processes or misuse shared resources? A process is a program in
execution. A secure process is given its own virtual address space
and a set of rights to access resources.

 Example
A group of designers in Company X built an operating system and
did not put any mechanisms to control the actions of processes.
This resulted in processes being able to access the address space
and other resources of the other processes. In this environment we
cannot protect the shared information nor assure the correct
execution of any process (their code and stack sections may be
corrupted by other processes). While performance was good, once
its poor security was known nobody wanted to use this operating
system.

 Context
Typically, operating systems support a multiprogramming
environment with several user-defined and system processes and
threads active at a given time. A process is a program in
execution and a thread is a lightweight process. During execution
it is essential to maintain all information regarding the process,
including its current status (the value of the program counter), the
contents of the processor’s registers, and the process stack
containing temporary data (subroutine parameters, return
addresses, temporary variables, and unresolved recursive calls).
All this information is called the process context. When a process
needs to wait, the OS must save the context of the first process
and load the next process for execution, this is a context switch.
The saved process context is brought back when the process
resumes execution.

 Problem
We need to control the resources accessed by a process during its
execution and protect its context from other processes. The
resources that can be accessed by a process define its execution
domain and the process should not break the boundaries of this
domain. The integrity of a process’ context is essential not only
for context switching, but also for security (so it cannot be
disrupted by another process) and for reliability to prevent a rogue
process from interfering with other processes.

A possible solution to this problem is constrained by the
following forces:
• Each process requires some data, a stack, space for temporary

variables, keeping the status of its devices and other
information. All this information resides in its address space
and needs to be protected.

• If processes have unrestricted access to resources they can
interfere with the execution of other processes and misuse
shared resources. We need to control what resources they can
access.

• Processes should be given only the rights they need to perform
their functions (need to know or least privilege principle [7]).

• The rights assigned to a process should be fine-grained.
Otherwise we cannot apply the least privilege principle.

 Solution
Assign to each process a set of authorization rights to access the
resources they need. Assign also to the process a unique address
space to store its context as well as its needed execution-time
data. This protects processes from interference from the other
processes, assuring confidentiality and integrity of the shared data
and proper use of shared resources. In the ProcessDescriptor, a
data structure containing all the information a process needs for
its execution, add rights to make access to any resource explicitly
authorized. Every access to a resource is intercepted and checked
for authorization. It may also be possible to add resource quotas
to avoid denial of service problems but this requires some global
resource usage policies.

Structure
In Figure 2 each ProcessDescriptor has ProcessRights for
specific Resources. Additional security information indicates the
Owner of the process (when a process is created it receives rights
from its owner or its father process). The process rights are
defined by the Authorization pattern (the Process Descriptor acts
as subject in this pattern) and are enforced by the Reference
Monitor pattern, which intercepts request for resources and
checks them for authorization. More than one ProcessDescriptor
can be created, corresponding to multiple executions of
ProgramCode, and describing different processes. A separate
VirtualAddressSpace is associated with each process (defined by
the Controlled Virtual Address Space pattern). The process
context is stored in the VirtualAddressSpace of the process, while
the ProgramCode can be shared by several processes.

Dynamics
Figure 3 shows a sequence diagram for the use case “Access a
resource”. A requestResource operation from a process includes
the process ID and the intended type of access. The request is
intercepted by the Reference Monitor which determines if it is
authorized (checkAccess operation in the ProcessRight). If it is,
the access proceeds.
Other related use cases (not shown) include “Assign a right to a
process” and “Remove a right from a process”.

 Implementation
The Process Descriptor is typically called Process Control Block
(PCB), or Task Control Block (TCB), and it is realized as a data
structure that includes references (pointers) to its code section, its
stack, and other needed information. There are different
alternatives to implement data structures in general [9]. Records
(structs in C) are typically used for the Process Descriptor.
The Process Descriptors of the processes in the same state, e.g.
ready or waiting, are usually linked together in a double-linked
list. The hardware may include registers for some of the attributes
of the ProcessDescriptor; for example, the Intel X86 Series
includes registers for typical attributes. There are different ways
to associate a virtual address space to a process (see the pattern
Virtual Address Space Selection below). There are also different

ways to associate rights with a new process (see the
Controlled

Figure 2. Class diagram for Secure Process

Figure 3. Sequence diagram for use case “Access a resource”.

Process Creator in [2]). The hardware architecture normally
implements the virtual address space and restricts access to the
sections (segments) allocated to each process using appropriate
mechanisms.

* 1

Resource

VirtualAddressSpace

boundaries

1

ProgramCode

ProcessRight

*

*

1

executes
fro

checkAccess

enforces

Subject
id

Controlled
Virtual

Address
Space pattern

Authorization
pattern

*shares

Owner

i

ProcessDescriptor

i
program_counter
dat
open_file
register
stack
child_processe
pending_event
accounting_inf
security_inf
stat

creat
delete
save
resume
AssignRigh
removeRigh

*
1

ReferenceMonitor
pattern

:Resource :ReferenceMonitor :ProcessRight

requestResource()

<<actor>>

aProcess:

checkAccess()

yes

requestResource()

The pattern models as shown represent models where subjects
have rights described by an Access Matrix or according to Role-
Based Access Control [10, 5]. Some operating systems use
Multilevel (typically mandatory) models where the access of a
process is decided by its level with respect to the level of the
accessed resource. In multilevel systems, the process, instead of
being given a right, has a tag or label that indicates its level.
Resources have similar tags and the Reference Monitor compares
both tags.

 Example resolved
Company X solved its problem by adding rights to a process
representation. Now each process is constrained to access only
those resources for which it has rights. This protects each process
from each other as well as the confidentiality and integrity of
shared data and other resources. While other security problems
may still persist, the general security of the OS increased
significantly

 Variant
Secure Thread. Because of the slow context switching of
processes, most operating systems use threads, which have a
smaller context and share the same VAS. A secure thread is a
thread with controlled access to resources. Figure 4 represents the
addition of the ThreadDescriptor to the secure process. One
Process may have multiple threads of execution. Each thread is
represented by a ThreadDescriptor. A unique
VirtualAddressSpace is associated with a process and shared by
peer threads. ThreadRights define access rights to the VAS.

Figure 4. Class diagram for Secure Thread

Thread status includes typically a stack, a program counter, and
some status bits. There are different ways to associate threads
with a process [11]. Typically, several threads are collected into a
process. Threads can be created with special packages, e.g.,
PTHREADS in Unix, or through the language, as in Java or Ada.
Rights can be added explicitly or we can use the hardware
architecture enforcement of the proper use of the process areas
(see Known Uses).

 Known uses
• Linux uses records for process descriptors. One of the entries

defines the process credentials (rights) that define its access to
resources [12, 11]. Other entries describe its owner (subject)
and process id. A more elaborate approach, with execution
domains, is used in Selinux, a secure version of Linux 13.

• Windows NT and 2000 define resources as objects (really as
classes). The process id is used to decide access to objects [11].
Each file object has a security descriptor that indicates the
owner of the file and an access control list that describes the
access rights for the processes to access the file.

• Solaris threads have controlled access to resources defined in
the application, e.g. when using the POSIX standard [11].

• Operating systems running on Intel architectures can protect
thread stacks, data, and code by placing them in special
segments of the shared address space (with hardware-controlled
access).

 Consequences
This pattern has the following advantages:
• It is possible to give precise specific rights (access types) for

resources to each process, which restricts them to access only
authorized resources.

• It is possible to apply the least privilege principle by
appropriate distribution of access rights for execution.

• The process’ contexts can be protected from other processes,
because they are restricted to access only authorized resources.

• The virtual address space of a process can be protected by the
hardware and its memory manager.

• It is possible to stop or mitigate attacks coming from rogue
processes (produced by malicious users or malware).

This pattern has the following disadvantages:
• There is some overhead in using a Reference Monitor to

enforce accesses.
• It may not be clear what specific rights to assign to each

process.
• Having a separate address space implies a slow context switch,

which affects performance. Because of this, kernel processes
are usually implemented as threads and share an address space,
which reduces their security.

• There are other security problems not controlled this way, e.g.,
denial of service, users taking control in administrator mode,
virus propagation. Those problems require complementary
security mechanisms, some of which are described by other
patterns [5].

 Related patterns
• Controlled Process Creator [2, 5]. At process creation time,

rights are assigned to the process.

*

ProcessDescriptor
data
open_files
child_processes
pending_events
accounting_info
security_info

ThreadDescriptor
id
pc
registers
stack ProgramCode

*

1

Resource

VirtualAddressSpace

boundaries

*

1

ThreadRight

*

* *

1

*

executes

ReferenceMonitor pattern
enforces ProcessRight

• Controlled Virtual Address Space [1, 5]. A VAS is assigned to
each process that can be accessed according to the rights of the
process.

• Authorization [10, 5]. Defines the rights to access resources.
• The Reference Monitor pattern, used to enforced the defined

rights [5].

3. Virtual Address Space Selection
How do we select the virtual address space for OSs that have
special security needs? Some systems emphasize isolation, others
information sharing, others good performance. The organization
of each process’ virtual address space (VAS) is defined by the
hardware architecture and has an effect on performance and
security. Consider all the possibilities, displayed side to side, and
select according to need.

 Example
We have a system running applications using images requiring
large graphic files. The application also has stringent security
requirements because some of the images are sensitive and should
be only accessed by authorized users. We need to decide on an
appropriate VAS structure

 Context
Virtual memory allows the total size of the memory used by
processes to exceed the size of physical memory. Upon use, the
virtual address is translated by the Address Translation Unit
(usually called Memory Management Unit (MMU) in
microprocessors) to obtain a physical address that is used to
access physical memory. As indicated earlier, to execute a
process, the kernel creates a per-process virtual address space. We
need to accommodate a multiprogramming system with a variety
of users and applications. Processes execute on behalf of users
and at times must be able to share memory areas, other times must
be isolated, and in all cases we need access control. Performance
may also be an issue.

 Problem
We need to select the virtual address space for processes
depending on the majority of the applications we intend to
execute. Otherwise, we can have mismatches that may result in
poor security or performance.

The possible solution is constrained by the following forces:
• Each process needs to be assigned a relatively large VAS to

hold its data, stack, space for temporary variables, variables to
keep the status of its devices, and other information.

• In multiprogramming environments processes have diverse
requirements; some require isolation, others information
sharing, others good performance.

• Data typing is useful to prevent errors and improve security.
Several attacks occur by executing data and modifying code
[7].

• Because of the need to share the kernel services and its utilities
(databases, editors, etc), sharing between address spaces should
be fast and convenient. Otherwise performance may suffer.

• In order to decide, one should have a good knowledge of the
type of applications to be executed.

 Solution
Select from four basic approaches that differ in their security
features:

One address space per process (Figure 5). The supervisor (kernel
plus utilities) and each user process get their own address spaces.
Use of one VAS per process has the following tradeoffs:
• Good process isolation. Each process context is in a separated

VAS.
• Some protection against the OS. There is a well-defined

interface between the process and the OS where checks can be
applied.

• Simplicity in allocating VASs.
• Sharing is complex (special instructions to cross spaces are

needed). All processes use the same addresses and interprocess
communication requires specification of the intended VAS. We
need special instructions to move across VASs (overhead).

• Other resources may need special protection mechanisms (they
may not be mapped to memory).

Figure 5. One address space per process

Two address spaces per process (Figure 6). Each process gets a
data and a code (program) virtual address space. Use of two
VASs per process has the following tradeoffs:

Figure 6. Two address spaces per process

User

Process Descriptor

code

VAS

a) Idea

b) UML

program dat program

dat
supervisor

user

data

VAS

1

1 1

1
Supervisor

Process Descriptor

supervisor users

User

Process Descriptor

VA
S

Supervisor

Process Descriptor

a) Idea

b) UML

1 1

• Good process isolation. Each process context is in a separated

VAS.
• Some protection against the OS. There is a well-defined

interface between the process and the OS where checks can be
applied.

• Data and instructions can be separated for better protection
(some attacks take advantage of execution of data or
modification of code). Data typing is also good for reliability.

• Complex sharing plus rather poor address space utilization. We
need special instructions to move across VASs (overhead). If
there is little code or little data we cannot allocate them in the
same address space.

• Other resources may need special protection mechanisms (they
may not be mapped to memory).

One address space per user process, all of them shared with the
address space of the OS (Figure 7). The OS (supervisor) can be
shared between all processes. Use of one address space per user
process, all of them shared with one address space for the OS has
the following tradeoffs:
• Good process isolation, but only between user processes.
• Good sharing of resources and services (browsers, media

players). Supervisor is in the same VAS.
• The supervisor has direct access to the user processes and it can

misuse their information or interfere with their execution.
• The address space available to each user process has now been

halved.
• Other resources may need special protection mechanisms (they
may not be mapped to memory).

Figure 7. One address space per user process. All of them
shared with the address space of the operating system.

A single-level address space (Figure 8). Everything, including
files and I/O, is mapped to this memory space. Use of a single-
level address space has the following tradeoffs:

• Good process isolation. Descriptors are a good mechanism for
separating VAS areas.

• Logical simplicity. Every resource is mapped to one VAS.
• Uniform protection. Every resource is protected in the same

way.
• This is the most elegant solution (only one mechanism to

protect memory and files), and potentially the most secure if
capabilities are also used.

• It is hard to implement in hardware due to the large address
space required. The size of memory incurs on some extra
performance overhead.

Figure 8. A single-level address space

 Implementation
Most processors use register pairs or descriptors that indicate the
base (start) of a memory unit (segment) and its length or limit
[11]. VASs are implemented using indexes or hashing [11]. Both
approaches imply some loss of performance in order to have a
large address space. The OS designer can choose one of these
architectures based on the requirements of the applications and
according to the tradeoffs discussed earlier. A particular choice
may be influenced by company policies, cost, performance, and
other factors as well as security. The commercial availability of
specific types of VASs is another issue, there are few hardware
manufacturers and there may not be any processor with the
required features.

 Known uses
• One address space per process. This is used in the NS32000,

WE32100, and Clipper microprocessors [14]. Several versions
of Unix were implemented in these processors.

• Two address spaces per process. This is used in the Motorola
68000 series. The Minix 2 OS uses this approach [15].

• One address space per user process, all of them shared with one
address space for the OS. This was used in the Digital
Equipment’s VAX series and is still used in the Intel
processors. Typically, Windows run in this type of address
space.

• A single-level address space. Multics, IBM’s S/38, IBM’s
S/6000, and HP’s PA-RISC use this approach [16]. Multics had

a) Idea b) UML

use

superviso

use

Single level

Process Descriptor VAS

Supervisor User

1

Resource
*

user
…

supervisor

VAX/VMS
Intel 286...486

Process Descriptor

VAS

Supervisor

a) Idea

b) UML

User

1

1

{1/2 size}

its own operating system. IBM’s S/6000 run AIX, a version of
Unix [17]. The PA-RISC architectures ran HP-UX, a version of
Unix, but also Linux, OpenBSD, and Windows NT.

 Consequences
In addition to the specific consequences described as part of the
solution (tradeoffs) we have the following general consequences:

• Without hardware support it is not feasible to separate the
virtual address spaces of the processes. This means the OS
designer has limited choices.

• If the mix of applications is not well defined, it is hard to select
the best solution. Then, considerations other than security
become more important.

 Related patterns
• Secure Process. The interaction between processes depends

strongly on the virtual address space configuration, which can
affect security, performance, and sharing properties of the
processes.

• Controlled Virtual Address Space [1, 5]. A VAS is assigned to
each process that can be accessed according to the rights of the
process. The Virtual Address Space Structure is applied first to
select the appropriate structure. Once selected, the VAS is
secured using the approach of the Controlled Virtual Space
pattern.

• The Secure Layers pattern [18]. The VAS is assigned to one of
the kernel layers but it needs to interact with other layers,
including the hardware layer and the file layer.

4. Administrator Hierarchy
Many attacks come from the unlimited power of administrators.
How do we limit the power of administrators? Define a hierarchy
of system administrators with rights defined using a Role-Based
Access Control (RBAC) model and assign rights according to
their functions.

4.1 Example
Unix defines a superuser who has all possible rights. This is
expedient; for example, when somebody forgets a password, but
this approach allows hackers to totally control the system through
a variety of implementation flaws. By gaining access to the
Administrator rights, an individual can create new Administrator
and User accounts, restrict their privileges and quotas, access their
protected areas, and remove their accounts. A legitimate but bad-
intentioned administrator can similarly do a lot of damage.

4.2 Context
An operating system with a variety of users, connected to the
Internet. Special commands and data used for system
administration need to be controlled. This control is usually
applied through special interfaces. There are at least two roles
required to properly manage privileges, Administrator and User.

4.3 Problem
Usually, the administrator has rights such as creating accounts
and passwords, installing programs, etc. This creates a series of
security problems. A rogue administrator can do all the usual
functions and even erase the log to hide his tracks. A hacker that

takes over administrative power can do similar things. How do we
curtail the excessive power of administrators to control rogue
administrators or hackers?
The possible solution is constrained by the following forces:

• Administrators need to use commands that permit management
of the system, e.g., define passwords for files, define quotas for
files, and create user accounts. We cannot eliminate these
functions.

• Administrators need to be able to delegate some responsibilities
and privileges to manage large domains. They also need the
right to take back these delegations. Otherwise, the system is
too rigid.

• Administrators should have no control of system logs or no
valid auditing would be possible because they could erase or
modify these logs.

• Administrators should have no access to the operational data in
the users’ applications. If they do, their accesses should be
logged.

4.4 Solution
Distribute the administrative rights into hierarchical roles. The
rights for these roles allow the administrators to perform their
administrative functions but no more. Critical functions may
require more than one administrative role to agree. Use the
principle of separation of duty [19], where a user cannot perform
critical functions unless in conjunction with others. The
hierarchical structure permits revocation of previously granted
rights.

Structure
Figure 9 shows a hierarchy for administration roles. This follows
the Composite pattern [20], i.e., a role can be simple or composed
of other roles, defining a tree hierarchy. The top-level
administrator can add or remove administrators of any type and
initialize the system but should have no other functions.
Administrators in the second level control different aspects, e.g.
security or use of resources. Administrators can further delegate
their functions to lower-level administrators.

Figure 9. Class diagram for Administrator Structure

CompositeAdministrator
init

addAdministrator

removeAdministrator

Administrator
addAdministrator

removeAdministrator *

SimpleAdministrator

SecurityAdministrator
addSecurityDomainAdministrator
removeSecurityDomainAdministrator

*

SystemAdministrator
init
addSecurityAdmin
addResourceAdmin
addOperator
removeSecurityAdmin
removeResourceAdmin
removeOperator

ResourceAdministrator Operator

SecurityDomainAdministrator

4.5 Implementation
Define a top administrative role with the only function of setting
up and initializing the system. This includes definition of
administrative roles, assignment of rights to roles, and assignment
of users to roles. Separate the main administrative functions of the
system and define an administrative role for each one of them.
These define the second level of the hierarchy. Define other levels
to accommodate administrative units in large systems or for
distributing rights into functional sets. Figure 10 shows a typical
hierarchy. Here the system administrator starts the system and
does not perform later actions, the second-level administrator can
perform set up and other functions, the security administrator
defines security rights. Security Domain administrators define
security in their domains. Other examples are shown in Section
4.7.

Figure 10. A typical administration hierarchy

4.6 Example resolved
Some secure Unix versions such as Trusted Solaris (see Section
4.7) use this approach. Now the superuser only starts the system.
During normal operation the administrators have restricted
powers. If a hacker takes over their functions he can do only
limited damage.

4.7 Known uses
• AIX [17] reduces the privileges of the system administrator by

defining five partially-ordered roles: Superuser, Security
Administrator, Auditor, Resource Administrator, and Operator.

• Windows NT uses four roles for administrative privileges:
standard, administrator, guest, and operator. A User Manager
has procedures for managing user accounts, groups, and
authorization rules.

• Trusted Solaris [21] is an extension of Solaris 8 operating
system. It uses the concept of Trusted Roles with limited
powers.

• Argus Pitbull [22] applies least privilege to all processes,
including the superuser. The superuser is implemented using
three roles: Systems Security Officer, System Administrator,
and System Operator.

4.8 Consequences
The Administrator Hierarchy pattern has the following
advantages:
• If an administrative role is compromised, the attacker gets only

limited privileges. The potential damage is limited.
• The reduced rights also reduce the possibility of misuse by

legitimate administrators.
• The hierarchical structure allows taking back control of a

compromised administrative function.
• The advantages of the RBAC model apply: simpler and fewer

authorization rules, flexibility for changes, etc [5].
• This structure is useful not only for operating systems but also

for servers, database systems, or any systems that require
administration.

Possible disadvantages include:
• Extra complexity for the administrative structure.
• Less expediency. Performing some functions may involve more

than one administrator.
• Many attacks are still possible; if someone misuses an

administrative right this pattern only limits the damage.
Logging can help misuse detection by keeping a record of all
actions executed by administrators.

• Because some functions may require two administrators to
agree to perform it, we need to add OCL constraints in the
model to indicate this, increasing its complexity.

• In some cases, administrators need to communicate to perform
their jobs but the pattern assumes no communication. This
aspect can be corrected with a few associations.

4.9 Related Patterns
This pattern applies the principles of least privilege and separation
of duty (some people consider them patterns also). Each
administrator role is given only the rights it needs to perform its
duties and some functions may require collaboration.
Administrative rights are usually organized according to a RBAC
model, a pattern for this model is given in [10, 5].

5. CONCLUSIONS
These patterns contribute three more solutions to help make
operating systems more secure. The security of complex systems
such as OSs is a difficult problem and more patterns are needed.
A catalog of these patterns would be useful to operating system
designers confronted with balancing the increasing functionality
of these systems with the need to make them secure. Taken
together, our four papers on operating system security patterns
can form the basis of such a catalog. A related aspect is the
security of the OS utilities and similar patterns may apply [23].
These patterns only apply to security aspects, clearly other
aspects are important; the debate about the best OS architecture is
not yet finished [24].

6. ACKNOWLEDGMENTS
Our shepherd Juha Parssinen, as well as Sami Lehtonen, Ralph
Johnson, and Paris Avgeriou provided valuable suggestions that
considerably improved this paper. Comments from the Secure
Systems Research Group at Florida Atlantic University were also
of great value. Finally, the PLoP 2006 Writer Workshop
participants gave further useful advice.

This work was partially supported by funding from the
Department of Defense.

7. REFERENCES
[1] Fernandez, E. B., 2002. Patterns for operating systems

access control. In Proceedings of 9th Conference on Pattern
Language of Programs (PLoP 2002) (Monticello, Illinois,
USA, September 8-12, 2002). PLoP 2002.
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[2] Fernandez, E. B. and Sinibaldi, J. C. 2003. More patterns
for operating system access control. In Proceedings of the
8th European conference on Pattern Languages of Programs,
(Irsee, Germany, June 25-29, 2003). EuroPLoP 2003, 381-
398, http://hillside.net/europlop.

[3] Fernandez, E. B. and Sorgente, T. 2005. A pattern language
for secure operating system architectures. In Proceedings of
the 5th Latin American Conference on Pattern Languages of
Programs (Campos do Jordao, Brazil, August 16-19, 2005).
SugarloafPLoP 2005.

[4] Fernandez, E. B. 2006. Operating system access control.
Chapter 10 in Schumacher, M. Fernandez, E.B. Hybertson,
D. Buschmann, F. and Sommerlad, P. Security Patterns:
Integrating security and systems engineering, J. Wiley &
Sons, 2006.

[5] Schumacher, M., Fernandez, E. B., Hybertson, D.,
Buschmann, F. and Sommerlad, P. 2006. Security Patterns:
Integrating security and systems engineering, J. Wiley &
Sons, 2006.

[6] Fernandez, E. B., Gudes, E. and Olivier, M. 2009. The
Design of Secure Systems, under contract with Addison-
Wesley, to appear 2009.

[7] Gollmann, D. 2006. Computer security, 2nd Edition, Wiley,
2006.

[8] Pfleeger, C. P. 2003. Security in computing, 3rd Edition,
Prentice-Hall, 2003.
http://www.prenhall.com

[9] Nyhoff, L. 2005. C++: An introduction to data structures
(2nd Ed.), Prentice-Hall, 2005.

[10] Fernandez, E. B. and Pan, R. Y. 2001. A pattern language
for security models. In Proceedings of 8th Conference on
Pattern Language of Programs (Monticello, Illinois, USA,
September 11-15, 2001). PLoP 2001.

 http://hillside.net/plop/plop2001/

[11] Silberschatz, A., Galvin, P., Gagne, G. 2005. Operating
System Concepts (7th Ed.), John Wiley & Sons, 2005

[12] Nutt, G. 2003. Operating systems (3rd Ed.), Addison-Wesley,
2003.

[13] Security Enhanced Linux, http://www.nsa.gov/selinux
[14] Fernandez, E.B. 1985. Microprocessor architecture: The 32-

bit generation. In VLSI Systems Design (October 1985), 34-
44.

[15] Tannenbaum, A.S., Herder, J.N. and Bos, H. 2006. Can we
make operating systems reliable and secure? In Computer
(May 2006), IEEE, 44-51.

[16] PA-RISC family, http://en.wikipedia.org/wiki/PA-RISC
[17] Camillone, N.A., Steves, D.H. and Witte, K.C. 1990. AIX

operating system: A trustworthy computing system. In IBM
RISC System/6000 Technology, SA23-2619, IBM Corp.,
1990, 168-172.

[18] Yoder, J. and Barcalow, J. 2000. Architectural Patterns for
Enabling Application Security. In Proceedings of the 4tth

Conference of Pattern Languages of Programs (Monticello,
Illinois, USA, September 3-5, 1997). PLoP 1997. Also
Chapter 15 in Pattern Languages of Program Design, vol. 4
(N. Harrison, B. Foote, and H. Rohnert, Eds.), Addison-
Wesley, 2000.

[19] Summers, R.C. 1995. Secure computing: Threats and
safeguards, McGraw-Hill, 1997.

[20] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995.
Design patterns – Elements of reusable object-oriented
software, Addison-Wesley, 1995.

[21] Trusted Solaris Operating System,
http://www.sun.com/software/solaris/trustedsolaris/

[22] Argus Systems Group. Trusted OS security: Principles and
practice.
http://www.argus-systems.com/products/white_paper/pitbull

[23] Hafiz, M. and Johnson, R. 2008. Evolution of MTA
Architecture: The Impact of Security. In Software: Practice
and Experience (May 12, 2008), John Wiley & Sons, 2008.
DOI= http://dx.doi.org/10.1002/spe.880

[24] Tanenbaum-Torvalds debate,
http://en.wikipedia.org/wiki/Tanenbaum-Torvalds_debate

