
High Availability Design Patterns

Kanwardeep Singh Ahluwalia
81-A, Punjabi Bagh,

Patiala 147001
India

+91 98110 16337

kanwardeep@gmail.com

 Atul Jain
135, Rishabh Vihar

Delhi 110092
India

+91 98119 84678

jain.atul@wipro.com

ABSTRACT
As information technology spreads its wings in to all spheres of
human life, including areas which are mission-critical, like
telecom services, medical sciences, air transport systems, space
missions etc., High Availability (HA) has become utmost
important aspect in the development of these systems. This paper
presents a pattern language that can be used to make a system
highly available.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes,
Reliability, availability, and serviceability.

General Terms
Algorithms, Performance, Design, Reliability.

Keywords
High Availability, Availability, Monitor, Reliability, Downtime,
Fault, Detection, Recovery, Tolerance, Redundancy, Active-
Passive, Standby, Throughput, Replica, Failure, Notification.

1. INTRODUCTION
In information technology, high availability refers to a

system or component that is continuously operational for a
desirably long length of time. Availability can be measured
relative to "100% operational" or "never failing."

In actual practice, availability goals are expressed and
measured in the number of nines of availability ranging typically
from 99.9% (3NINES) to 99.999% (5NINES) and even up to
99.9999% (6NINES) availability for the most demanding
applications.

Mission critical applications like those found in
telecommunications need to meet and exceed 5NINES. Table 1
shows the annual downtime and typical availability for various
classes of system applications.

Table 1 High Availability Standards

Typical Application Availability (%) Down Time per
Year

Typical Desktop or Server
Enterprise

Server Carrier-Grade

Server Carrier Switch Goal

99.9 (3NINES)

99.99 (4NINES)

99.999 (5NINES)

~9 hours

~1 hour

~5 minutes

The patterns in this paper address the architectural and
design choices that one must consider when designing a highly
available system. These patterns are not discussing the
programming techniques that can be used to implement these
patterns. The intended audience includes system architects and
designers who are designing reliable systems.

The pattern “System monitor” presented in this paper
duplicates pattern form “Detection Patterns for Fault Tolerance”
by Robert S. Hanmer – PLoP 2004. This pattern has been
presented here to take its place in the larger collection of patterns
presented here for High Availability.

The term ‘part of a system’ will be used here to denote an
element of a system that could be a software or hardware
component used in the system.

The term ‘client to the part’ will be used here to denote any
entity that is communicating with a part of the system. It may not
necessarily mean the ‘end client’ of the system. It can be some
other part of the system as well who is interacting with other
parts of the system.

The following definitions [1] of terms fault, error and failure
shall help to understand the patterns described in this paper.

• a system failure occurs when the delivered service deviates
from what the system is intended to do (e.g. as stated in its
specification).

• an error is that part of the system state which is liable to
lead to subsequent failure.

• a fault is the (hypothesized) cause of an error.

2. LANGUAGE MAP
Figure 1 shows how various patterns work together to make

a system highly available.
The patterns analyzed in this paper fall in two groups.

Patterns 1 to 5 fall in the group “Fault tolerance” as these
patterns suggest various options by which a part of the system
can be made fault tolerant by making it redundant. Patterns 6 to
9 fall in the group “Fault management” as these patterns suggest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLoP '06, October 21–23, 2006, Portland, OR, USA.
Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

how failures can be detected and notified so that recovery can be
done and system be notified about recovered parts so as to gain
redundancy in the system.

Figure 1 High Availability Pattern Language

3. PATTERNS DESCRIPTION
3.1 Pattern 1: Introduce Redundancy
3.1.1 Context

System that wants to continue working normally under
conditions when one of its parts fails.
3.1.2 Problem

What should a system do to continue working normally even
if one of its parts fails?
3.1.3 Forces
• The cost of keeping the system working even in case a part

of it fails should be low.

• The client’s requests should be processed transparently
even if there is failure in the system.

3.1.4 Solution
The key to a reliable design is to identify and address single

points of failure. Single points of failure are those parts whose
failure causes the entire system to fail. A production server is a
complex system and many factors affect its availability, including
environment, communication links, software, and hardware.
Each of these factors can potentially be the source of a single
point of failure.

Redundancy is a means to address single points of failure. It
is achieved by replicating a single part of the system which is
critical for system functioning. The replication will make sure
that if the critical part fails, there would be an alternate part
available to take on the responsibility of the failed part.
Redundancy is based on the assumption that multiple faults will
not occur in the system together.

Redundancy can be in the form of hardware redundancy or
software redundancy. Hardware redundancy aims at having
replicated set of hardware while software redundancy aims at
having multiple instances of the software, all aiming to achieve
same results but with different ways of implementation.

The replicated part may be introduced in a stand-by form
also known as active-passive redundancy, or it may be introduced
in active-active form where in all replicas are active at the same
time. If one replica "throws a fault", then other replicas can be
used immediately to allow the system to continue operating
normally.
3.1.5 Resulting Context

System would be able to function even if a critical part fails.
Introduction of redundancy shall make sure that there is no single
point of failure in the system. If a critical part fails, its
functionality shall be served by someone else. This shall make
the system always up and running and hence serve the client
requests without any failures.
3.1.6 Structure

Figure 2 shows that the single point of failure in the system
has been made redundant by having one or more replicas as
demanded by the situation. This helps in making the system
highly available since ‘single point of failure’ no more exists.

Figure 2 Redundancy Structure

3.1.7 Known Uses
Almost all the team games (cricket, hockey etc.) have two

sets of players. One set of players are active which are playing in
the field while other set of team is used as ‘extras’ which
become active, when some of active members are not able to play
(due to injury or rules of the game).

The avionics are designed to withstand multiple failures
through redundant hardware and software. Example of hardware
redundancy can be found in an airplane which has multiple flight
computers to provide high availability. Similarly example of
software redundancy can be found in the navigation systems,
where the back up system consists of a different implementation,
so that if the primary software implementation fails (let’s say due

Replica 1

Replica 2

Replica N

After Failure

2. Active-
Passive

redundancy

4. Active-
Active

redundancy

5. N+1
redundancy

1.
Introduce

Redundancy

6. System
monitor

9.
Recovery

notification

8. Failure
recovery

7. Failure
notification

3. Active-
Passive conflict

resolution

Fault Tolerance

Refinement relationship

Dependency relationship Fault Management

to an operand error), the probability of the failure of the back up
system for the same data is low.

Another commonly known example of redundancy is
redundant arrays of inexpensive disks (RAID), which employs
two or more drives in combination.
3.1.8 Related Patterns

Active-Passive redundancy [3]
Active-Active redundancy [4]
N+1 redundancy [5]

3.2 Pattern 2: Active-Passive redundancy
3.2.1 Context

You have determined that you need to Introduce
Redundancy [2] into your system, that has neither dearth of
resources to provide redundancy nor can compromise on
performance.
3.2.2 Problem

What should the system do to function without any
compromise on its performance even if one of its parts fails?
3.2.3 Forces
• Performance should not be compromised.
• Failed part’s client should be able to get its requests

processed seamlessly.
• System should not loose its state (in case of stateful

systems), due to failure of its part.

3.2.4 Solution
Introduce active-passive redundancy for the critical part of

the system which may potentially act as a single point of failure
in the system. This critical part of the system is provided with a
standby replica which shall be activated in case of failure of the
former.

The client to the failed part should be informed about the
passive part’s activation by fault management sub system (a
system implementing ‘Fault management’ related patterns shown
in the Figure 1), so that it can get its request served by the new
activated part and does not try to send the requests to the failed
part. The client should provide handling for failure notification
from the fault management sub-system so that it can re-direct
requests to the newly activated part.

In case the part has some state which system can not afford
to loose in case of its failure, the state also needs to be replicated
in the standby part. Thus helps the system to maintain its data
(state) integrity in case of failures. All the state changes in the
active part should be sent over to the passive part. There is a
need for a good communication channel between active-standby,
so that state updates are sent over the communication channel in
real-time.
3.2.5 Resulting Context

The introduction of a standby part makes sure that the
performance and throughput of the system is not impacted in case
of failure of active part. Thus, each active part is replaced by its
replica upon its failure, keeping the system’s capability same as
before the occurrence of failure. Here, it is assumed that the
standby part has the same capabilities as of active part.
Otherwise, the performance of the system may vary depending up
on the capabilities of the passive part.

The handling of failure notifications in the client to the
failed part makes sure that there is a seamless switch over
happening to the newly activated part and no requests are failing
because of failure of previously activated part.

The continuous update of state by active to passive part
makes sure that the state possessed by the failed part is not lost.
3.2.6 Structure

 Figure 3 shows that the single point of failure has been
removed by providing a replica of the same. This replica is not
participating in serving the client requests. The requests are only
processed by the active part. However, as soon as active part
fails, the passive part takes over the control and starts processing
the requests. Hence, at any given moment, there is only one part
which is serving the requests.

Figure 3 Active Passive Redundancy Structure

3.2.7 Known Uses
Many mission critical establishments are provided with an

emergency power generator which becomes active as soon as the
primary power source fails.

Another known use can be found in MySQL database
cluster solution [3]. All potential single points of failure are
made redundant in this solution. This includes data nodes,
network cards, switches and links.

The data nodes are made redundant with a standby node
acting as mated pair. There is active communication going on
between these two active and passive nodes, so that state is also
replicated between these pairs. Thus, MySQL suggests having
efficient network connectivity between these mated pairs of
active-standby data nodes. As soon as active data node goes
down, SQL node is made aware of the failure and it connects to
the passive data node. Figure 4 depicts the clustered architecture
of MySQL.

Active

Passive

Client Active

Passive

Client

After
Failure Before Failure

Figure 4 MySQL cluster

The node pairs 152.100.0.10 - 152.100.0.11 and

152.100.0.12 - 152.100.0.13 are mated data nodes out of which
one acts as active (primary) and the other as passive (secondary).
3.2.8 Related Patterns

Introduce Redundancy [2]
Active-Passive conflict resolution [4]

3.3 Pattern 3: Active-Passive conflict
resolution
3.3.1 Context

System that needs to implement Active-Passive
redundancy [3] for high availability.
3.3.2 Problem

What should the system do in case both the redundant parts
in Active-Passive redundancy claim to be active?
3.3.3 Forces
• There should not be deadlock between the redundant parts

to become active.

3.3.4 Solution
Introduce a mechanism so that there is no conflict between

the redundant parts to become active and at any given point of
time there is only one active part. However, there can be
situation which may lead to race conditions, where in both the
redundant parts claim to be active. There are various
mechanisms to resolve this conflict.

To resolve the conflict in redundant hardware, one of the
solutions can be that the hardware with smaller id shall become
active at start-up.

Alternatively, the redundant parts shall generate a random
number and the one who generates a number with lower value
shall become active and the other becomes passive.

Another solution is that the redundant parts exchange their
startup time stamp and see which one of them came up (started)
first. The one with older time stamp can be considered as the
active and other one will play the role of passive part.
3.3.5 Resulting Context

The introduction of conflict resolution algorithm depending
up on the scenario shall reduce the possibility of conflicts while
deciding who shall become active out of the redundant parts.
3.3.6 Structure

Figure 5 shows that the replicas need to follow an algorithm
to have a handshake on who will become active.

Figure 5 Active Passive Conflict Resolution Structure

3.3.7 Known Uses
In a switching system, whenever a redundant pair of

controller cards come up after initialization during system start
up, each can claim to be a master due to race conditions. They
use hardware ids to resolve the conflict.
3.3.8 Related Patterns

Active Passive Redundancy [3]
3.4 Pattern 4: Active-Active redundancy
3.4.1 Context

You have determined that you need to Introduce
Redundancy [2] into your system and want to keep the cost low
by not investing in passive redundant resources and homogenous
software configuration.
3.4.2 Problem

What should the system do if it has limited resources to
provide redundancy but still wants to be functional in case of
failure of a critical part?
3.4.3 Forces
• The system should maximize the usage of its resources.
• The client (to redundant) part should be talking to a single

entity and get its requests processed seamlessly.
• The state (in case of a stateful part) should not be lost in

case of failure of a part.

3.4.4 Solution
Introduce active-active redundancy for the critical part. In

this case, redundancy is introduced by having more than one
active part. All the redundant parts are active and helping in
processing at the same time. This solution is sometimes known
as cluster, which is a collection of resources that functions as a
single computing resource. Any member of the cluster can

Replica 1

Replica 2

Conflict resolving

Algorithm

service a client request without the client knowing which
member performed the operation. This is made possible by
introducing another entity between the client and the cluster
members, usually known as dispatcher [4]. The client talks to the
dispatcher which further get the requests processed by cluster
members. Using dispatcher, the cluster can be configured so that
an application fails over from one cluster member to another.
This is usually only possible when cluster members utilize a
homogenous software configuration. The dispatcher keeps the
information about all the failed members as well as working
members, which helps in forwarding requests only to active
members.

The number of redundant parts required is calculated
depending up on the peak load requirements on the system. One
additional part is added to the number of redundant parts
required to handle the peak load so as to have same efficiency
even if a part fails.

In case cluster members are keeping some state which they
can not afford to loose in case of failure, the state also needs to
be replicated in all other members. This helps the system to
maintain its integrity in case of failures. However, as the size of
cluster grows, the cost to replicate the state increases, as state
updates are being sent across all the cluster members. There is a
need for a good communication channel between cluster
members, so that state updates are sent by active to passive over
that communication channel in real-time.
3.4.5 Resulting Context

By introducing a redundant part which is also active, overall
cost has been saved, since the replica is also helping in
processing.

The introduction of dispatcher makes sure that the client is
not bothered about the status of each of the cluster members.
3.4.6 Structure

Figure 6 show that both all the replicas are actively
processing the client requests.

Figure 6 Active Active Redundancy Structure

3.4.7 Known Uses
One of the known examples of active-active redundancy is

Apache’s Tomcat cluster solution for web based applications. As
shown in Figure 7, an Apache web (HTTP) server acts as a
communication point for all the web clients. Apache web server
would be further connected to various Tomcat instances through
mod_jk [2] module.

Figure 7 Apache Tomcat Cluster
In case any Tomcat sever fails, Apache web server stops

sending requests to that instance. The clients who were being
served by the failed instance shall now be served by some other
Tomcat instance.

Tomcats can also be configured to replicate their state
among themselves, so that if any of the Tomcat server crashes, its
state is not lost.
3.4.8 Related Patterns

Introduce Redundancy [2]
3.5 Pattern 5: N+1 redundancy
3.5.1 Context

You have determined that you need to Introduce
Redundancy [2] into your system that consists of parts with
heterogeneous software configuration and does not want to waste
resources by providing one passive node for each potential single
point of failure.
3.5.2 Problem

What should the system do if it does not want to waste
resources by having a standby part for each active part, but still
wants to behave normally in case of limited failure?
3.5.3 Forces
• The cost and resources required for introducing Active-

Passive Redundancy [3] should be reduced.
• The system should be able to handle failure in one out of N

parts without any compromise on performance.
• The client should be talking to a single entity and get its

requests processed seamlessly.

3.5.4 Solution
Introduce 1 slave (passive) for N potential single point of

failures in the system. This slave would be working in a standby
mode and waiting for a failure to happen in any of the N active
parts. As soon as any of the N active parts fails, then the standby
part takes over the work of the failed one. This way the system
shall be able to handle one failure for every N critical active
parts at any given point of time. The number ‘N’ can motivated
by various factors, like the expected number of failures that can
happen at any given point of time in a group of active parts and
the cost and resources required while introducing the redundant
parts.

Apache
Web

Server

Tomcat 1

Tomcat 2

Tomcat 3

Tomcat n

Database

Active Replica 1

Active Replica 2

Client

The client should provide handling for failure notification
from the fault management sub-system so that it can re-direct
requests to the newly activated part. This shall make sure that
the requests are getting processed seamlessly.
3.5.5 Resulting Context

The introduction of 1 standby part for every N active parts
makes sure that the system is able to handle failure of one out of
N active parts. Since, only N parts are being introduced to a
single standby part, the cost of introducing redundancy is reduced
as compared to 1:1 active-passive redundancy.
3.5.6 Structure

 Figure 8 shows that there is one passive part for N potential
single point of failures in the system. If any of these N parts fails,
then the passive part shall takeover the functionality of the failed
part.

Figure 8 N+1 Redundancy Structure

3.5.7 Known Uses
Modern communications systems with multi-port T1/E1/J1

line cards employ redundancy to achieve the high-availability
that telecom networks require. Usually, these systems use relays
to implement N+1 redundancy switching.
3.5.8 Related Patterns

Introduce Redundancy [2]
3.6 Pattern 6: System Monitor
3.6.1 Context

You have determined that you need to Introduce
Redundancy [2] into your system that wants to monitor failures
of its parts to avoid potential single point of failures which may
lead to non-functioning of the system.
3.6.2 Problem

How to detect that the failure has occurred in the system?
3.6.3 Forces
• Failure must be detected at the earliest instance so that the

faulty part does not corrupt the behavior of the system.
• Failure must be detected at the earliest so that faulty part

can be recovered; before any additional failures in the
system makes the system completely non functional.

3.6.4 Solution
Introduce a mechanism to monitor all potential single point

of failures in the system, so that upon failure, the fault tolerance
mechanism can be activated. This pattern can be refined as
depicted in the Figure 9 which has been taken from the work of
Robert Hanmer [5].

Figure 9 Monitoring Failures

The SYSTEM MONITOR [5] can employ any of the
following solutions.

The system can rely on ACKNOWLEDGEMENT [5]
messages exchanged with monitored part, or it can rely on I AM
ALIVE [5] messages sent by the monitored part. Alternatively,
the system can periodically check the state of the monitored part
by sending ARE YOU ALIVE [5] messages. The system can SET
A REALISTIC THRESHOLD [5] after expiry of which it may
consider the monitored part to be dead.

Each of the above solutions adds complexity to the system.
To minimize complexity, system monitor can just watch and
verify the tasks performed by the monitored part using WATCH
DOG [5] mechanism.

A brief description of each pattern is given below:
SYSTEM MONITOR: This pattern recommends creating a

task to monitor system behavior, or the behavior of specific other
tasks, i.e. make sure that they continue operating.

ACKNOWLEDGEMENT: This pattern recommends
inclusion of an acknowledgement requirement on all requests.
All requests should require a reply to acknowledge receipt and to
indicate that the monitored system is alive and able to adhere to
the protocol. If the acknowledgement reply is not received then
report a failure.

I AM ALIVE: This pattern recommends that the monitored
system should send a report to the SYSTEM MONITOR at
regular intervals. If the monitoring system fails to receive these
reports it should report that the monitored task has stopped.

ARE YOU ALIVE: This pattern recommends that the
SYSTEM MONITOR should send periodic requests for status to
the monitored task. If the monitored task doesn’t reply within the
required time then action to recover it should be taken.

SET A REALISTIC THRESHOLD: This pattern
recommends maximizing the latencies so that the SYSTEM
MONITOR will be informed in a timely enough manner to meet
the availability requirement.

Potential SPoF 1

Potential SPoF 2

Potential SPoF N

Passive

Replica
For

1,2,.., N

Client
Potential SPoF N+1

Potential SPoF N+2

Potential SPoF N+N

Passive

Replica For
N+1 To

N+N

WATCH DOG: This pattern recommends adding in the
capability for the monitor to observe the monitored tasks
activities, much as a Watchdog tends the flock. This Watchdog
can be either hardware or a software component depending on
the system requirements, but in either case it will watch visible
effects of the monitored task. The monitored task will not be
modified.
3.6.5 Resulting Context

Implementation of ACKNOWLEDGEMENT, I AM ALIVE,
ARE YOU ALIVE, SET A REALISTIC THRESHOLD and
WATCHDOG helps in detecting the failures at the earliest,
which helps the system to avoid a situation where it is not
behaving as per the specifications and further leading to its non-
functioning.
3.6.6 Structure

 Figure 10 shows that all the replicas (monitored parts) are
being observed for any failures by System monitor.

Figure 10 System Monitor Structure

3.6.7 Known Uses
In case of Tomcat cluster solution, Apache HTTP server

keeps on checking the health of various Tomcat servers using its
mod_jk [2] module.

In case of real time systems based on non-preemptive
priority process scheduling, each process is expected to utilize
the CPU for a definite amount of time and voluntarily relinquish
the CPU before the expiry of the definite amount of time. If due
to a fault, any process misbehaves and starts to hog the CPU, the
watch dog process that is monitoring all the processes, detects
the process failure on controller card and triggers the fault
tolerance mechanism.
3.6.8 Related Patterns

Introduce Redundancy [2]
3.7 Pattern 7 Failure Notification
3.7.1 Context

You have implemented System Monitor [6] in the System
that now wants to handle failures of its parts to avoid potential
single point of failures which may lead to non-functioning of the
system.
3.7.2 Problem

What should system do when it detects a failure in a part?
3.7.3 Forces
• Failed part should not be given any requests for processing

to avoid mal-functioning of the system.
• System should initiate the handover of responsibilities of

the failed part to a redundant part.

• System should initiate recovery of failed part.

3.7.4 Solution
The SYSTEM MONITOR should notify the fault recovery

sub-system so that the failed part can be immediately isolated by
marking it out of service, thereby restricting the failed part from
impacting the behavior of the system.

Since the system is expected to finish the requested task
despite failure, it must notify the fault tolerance sub-system so
that the redundant part takes over the functions of the failed part
immediately.

Systems often may not afford to provide redundancy at all
levels in the system hierarchy. In such situations, if the failure
occurs at a level where redundancy is not available, the failure
notification should be propagated up to a level where client to
redundant sub-system is available. This will enable client to
switch over to the redundant sub-system so as to get its requests
processed seamlessly.

There may be situations, where the failed part of the system
may not be recovered by the fault recovery sub system without
manual intervention. In such situations, it is recommended to
notify the I/O [6] system to generate audio or visual alarms
depending upon the criticality of the failure.
3.7.5 Resulting Context

The notification of the recovery sub-system initiates
isolation and recovery of the faulty part which helps the system
to function flawlessly.

The notification to the fault tolerance sub-system triggers an
appropriate action to activate the redundant part.
3.7.6 Structure

 Figure 11 shows that the client is being notified up on
failure of a replica, so that client no more gives requests to the
failed part. The steps have been explained below.

Step 1: Failed replica 1 notifies the client about its failure.
Step 2: The client stops sending requests to the failed

replica 1 and uses replica 2 which helps in processing the
requests without failure.

Figure 11 Failure Notification Structure
Figure 12 shows that the client is being notified up on a

failure at a level where redundancy is not available. The steps in
the diagram have been explained below.

Step 1: Failed component 1’ notifies about its failure to
replica 1.

Step 2: Since, there is no redundancy related to component
1’, replica 1 has to further inform the client about the failure of

Failed Replica
1

Replica 2

Client

1. Failure
Notification

2. Requests

Monitored part
1

System
Monitor

Monitored part
2

Monitored part
3

its chain. So in this step, replica 1 notifies the failure of
component 1’ to the client.

Step 3: The client after receiving failure notification from
replica 1 stops sending requests to replica 1 chain (even though
replica 1 is working) and starts sending requests to replica 2.

Figure 12 Failure Notification Structure for multi level

components

3.7.7 Known Uses
In a switching system, the moment one copy of the

controller card fails or is marked out of service, it toggles the
control signal on its control bus which sends the hardware signal
to the redundant copy to take over.
3.7.8 Related Patterns

System Monitor [6]
3.8 Pattern 8: Failure Recovery
3.8.1 Context

You have implemented Failure Notification [7] in the
System that now wants to recover its failed part.
3.8.2 Problem

How to recover the failed part of the system?
3.8.3 Forces
• Recovery mechanism should be capable of isolating the

fault.
• Recovery mechanism should be capable of handling faults

that require manual intervention.

3.8.4 Solution
The failed part tries to self recover by re-initializing itself. If

the re-initialization fails, the part is sent for manual recovery
using various alarming techniques like Audible Alarms, Alarm
Grid and Office Alarms [6]. Manual recovery involves isolation
and resolution of the fault.
3.8.5 Resulting Context

The faulty part has been recovered by isolating the fault
using diagnostics and fixing the same using manual procedures.
3.8.6 Structure

The following diagram shows how the failed replica is being
recovered from the fault.

Figure 13 Failure Recovery Structure

The steps in Figure 13 have been described below.
Step 1: The failed replica tries to re-initialize itself in order

to overcome the failure due to transient fault.
Step 2: If the re-initialization is not successful, alarm is

raised to invite manual intervention for diagnosis of the fault and
its resolution.
3.8.7 Known Uses

In a switching system, whenever a controller card is sent for
recovery, the fault recovery subsystem tries to re-initialize the
data as well as the binary code on the card to recover from any
data or binary corruption faults. In case the problem still persists
after the re-initialization, the card is sent for diagnostics in order
to isolate the hardware faults. Based on the diagnostics test
results, the operator takes appropriate actions to fix the fault,
e.g., replacing the controller card with a new card.

Whenever humans fall ill (may be fever), they first try to
recover by taking commonly available medicines. However, if
they still do not recover, then doctor’s help is sought, who would
suggest some diagnostic tests to be done to identify the root
cause of the problem and treat the same.
3.8.8 Related Patterns

Failure Notification [7]
3.9 Pattern 9: Recovery Notification
3.9.1 Context

You have implemented Failure Recovery [8] in the System.
3.9.2 Problem

What should system do after the faulty part has recovered?
3.9.3 Forces
• The system should reinstate the recovered part to have

redundancy in the system.
• The recovered part should be put in to use ‘immediately’

to make the system resilient about future failures.

3.9.4 Solution
Fault tolerance subsystem should be notified about the

recovery of the failed part as soon as it recovers, so that the
recovered part can be reinstated to provide redundancy in the
system.

In case of stateful systems, the recovered part should start
synchronization with its peer nodes, in order to prepare itself for
processing the requests.
3.9.5 Resulting Context

The notification to fault tolerance sub-system results in the
inclusion of recovered part in the system which provides
redundancy in the system.

Failed
Replica

Manual
recovery

Re-initialization

(Self recovery)

1

Recovered
Replica

2

3

Replica 2

Client

2. Failure
Notificatio

3.
Requests

Replica 1 Failed
Component 1’

Component 2’

1. Failure Notification

3.9.6 Structure
The following diagram shows that the client starts sending

requests to the repaired part after it is informed about its
recovery.

Figure 14 Recovery Notification Structure

The steps in Figure 14 have been explained below.
Step1: The client is notified about the recovery of the failed

replica 1.
Step2: The client starts sending requests to r replica1, hence

reinstates the recovered part. This makes the system highly
available.
3.9.7 Known Uses

In case of MySQL cluster solution, whenever one of the
redundant data nodes comes up after recovery, it notifies the

management server about its recovery and makes the data nodes
redundant.
3.9.8 Related Patterns

Failure Recovery [8]

4. ACKNOWLEDGMENTS
We would like to thank Kyle Brown for his feedback and

encouragement during shepherding of these patterns.
Credit also goes to the participants of writer’s workshop at

PLoP’06 who gave very useful comments.

5. REFERENCES
[1] Deepal Jayasinghe. Fault Tolerance with FAWS.

http://www.jaxmag.com/itr/online_artikel/psecom,id,733,no
deid,147.html

[2] Gal Shachor. Working with mod_jk. Available at
http://tomcat.apache.org/tomcat-3.3-doc/mod_jk-howto.html

[3] MySQL Cluster documentation available at
http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html

[4] P. Sommerlad and M. Stal. 1995. PLoP. The Client-
Dispatcher-Server Design Pattern.

[5] Robert S. Hanmer. 2004. PLoP. Detection Patterns for Fault
Tolerance.

[6] Robert S. Hanmer and Greg Stymfal. 1998. PLoP.
Telecommunications Input and Output Pattern Language.

Repaired
Replica 1

Replica 2

Client

Recovery
Notification

Requests

1

2

