
Patterns for Business Object Model Integration in
Process-Driven and Service-Oriented Architectures

Carsten Hentrich
CSC Deutschland Solutions GmbH

Abraham-Lincoln-Park 1
65189 Wiesbaden, Germany

chentrich@csc.com

Uwe Zdun
Distributed Systems Group

Information Systems Institute
Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040 Vienna, Austria

zdun@acm.org

ABSTRACT
Service-oriented architectures often have the goal to integrate
various systems of one or more organizations in a flexible way to
be able to quickly react on business changes. Integration based
only on services, however, falls short in reaching this goal
because the application-specific business object models of
multiple external systems (especially legacy systems) need to be
integrated into the service-oriented system. When multiple
business object models must be integrated into one system,
serious data integration issues might arise. Examples of such
problems are incompatible data definitions, inconsistent data
across the enterprise, data redundancy, and update anomalies. We
present patterns that address these issues and describe how to
integrate the application-specific business object models of
various external systems into a consistent process-driven and
service-oriented architecture.

1. INTRODUCTION
Service-oriented architectures (SOA) are an architectural concept
in which all functions, or services, are defined using a description
language and have invokable, platform-independent interfaces
that are called to perform business processes [1, 2]. Each service
is the endpoint of a connection, which can be used to access the
service, and the interactions are relatively independent from each
other (e.g., stateless services are favoured over stateful services).
On top of the various layers implementing the foundations of a
SOA, we find in many SOAs a Service Composition Layer that
deals with service orchestration, coordination, federation, and
business processes based on services [8]. In this paper, we
consider architectures in which the Service Composition Layer
provides a process engine (or workflow engine) that invokes the
SOA services to realize individual activities in the process (aka
process steps, tasks in the process).

The most important goal for using a SOA is often to integrate
heterogeneous systems in a flexible manner so that organizations

can quickly react on changes in the business. One important
aspect in this respect is that usually the SOA is used for
integrating a number of external systems. With this term we refer
to systems that are not yet integrated into the SOA. External
systems include systems of the organisation that realizes the SOA
or systems of other organisations. Typically, many of the external
systems are “legacy systems”. But there are many other kinds of
external systems, for instance, standard systems like SAP or other
third party systems. One of the key ideas in recent SOA
definitions is to save the investment that has been made in
existing IT infrastructure and applications and provide flexible
means for integrating them. This, however, is difficult, as most of
these external systems have been independently developed, or at
least there is a certain level of independence in their historical
evolution. For this reason, they often implement heterogeneous
data models.

This is not necessarily a problem because this is where stateless
services can help. In a SOA, the most important conceptual
pattern of integration is to offer SERVICES [3] that provide the
integration of an external system. To assume that services alone
are sufficient to design a larger SOA, however, is not enough.
When various business object models need to be integrated into a
SOA, often a purely SERVICE-based integration is infeasible or
impossible because of data integration issues. Examples are
incompatible data definitions, inconsistent data across the
enterprise, data redundancy, data incompleteness, data availability
issues, data ownership issues, or update anomalies. All these
problems can only be addressed at a broader scope than a single
service. In practice, often massive hand-coding efforts are used to
resolve these issues, which require a lot of time and are often hard
to maintain in the long run. Instead of using such “ad hoc
solutions” it is advisable to follow a more systematic approach –
both in terms of the refactoring processes and the architectural
solutions.

As a real world example, consider an automobile rental company
that has grown in the last years, has merged with two other
companies, and now consists of three independently working
territorial branches. Each branch represents a company being
acquired over the years to serve a territorial market. Transparent
business processes shall now be implemented, following a SOA
approach that allows renting cars via the Internet, independent of
the territorial assignment. The data models in the various
branches are different, as each branch uses independently grown
systems. Moreover, customer data is redundant in these systems:
They use inconsistent automobile identification mechanisms,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLoP '06, October 21–23, 2006, Portland, OR, USA.

Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

there is inconsistent formatting of data, and there are incorrect or
incomplete values in the data fields. If common business
processes shall be implemented for these branches, these data
issues must be resolved first.

Certainly, the cost for resolving these issues needs to be balanced
with the business case associated to improving the business
processes. However, in this paper we assume that this business
case has been made and concentrate on the solutions of resolving
these problems. The discussion concerning the business case
should be made separately and prior to starting an engagement or
project in this direction. For this reason, we will not consider
these aspects any further. On the other hand, the problems and
solutions provided in this paper can be used to lead such a
discussion and to reason about cost issues in relation to a business
case. In this paper we primarily present how to deal with these
issues and thus make a project successful.

In this paper, we explain proven practices – in patterns form – for
dealing with these crucial problems of systems integration. The
patterns interpret the data models of external systems, as well as
the data models defined in the service architecture, from an
object-oriented (OO) perspective, and hence we call these data
models business object models. When integrating systems via a
process-driven and service-oriented approach, application-specific
business object models need to be consolidated somehow and
integrated via the process flow.

Please note that the process-oriented and service-oriented
perspectives advocate a more behavioural, stateless view on the
system than objects. However, they usually perform operations on
data. This data can be represented in many different ways. We
assume the use of an object-oriented model of the access to data
in a process-driven SOA to follow the business object concept.
This is a proven practice, especially for larger process-driven
SOAs (for details see [4]).

Often it is necessary to adapt or change given data models to
understand them from an object-oriented perspective, for instance,
if a legacy system offers a procedural interface to its data model.
Because there are many different building blocks used for
representing state and/or access of business data, such as objects
or procedures that access data in a database, below we generally
use the term entity to refer to the different kinds of building
blocks of external systems (following the ENTITY pattern from
[3]).

The patterns contained in this paper, offer solutions that allow to
integrating various business object models. We present three
refactoring patterns that explain basic alternative steps for
consolidating two individual business object models. And we also
describe three architectural patterns that allow you to build a
consistent large scale architecture that is able to consolidate
multiple business objects.

In fact, data seems to be a forgotten child in SOA approaches.
One could ask, why we propose an approach considering OO
while also being service-oriented. Do these approaches not
contradict each other? We are convinced, the answer is no, as
services need to deal with data structures to describe and define
the input and output parameters of the services. These parameters
are usually not simple data types but rather represent complex
structures that can be interpreted as objects. In our opinion, SOA

and OO are, for this reason, complementary approaches. We
apply OO concepts to tackle the issues related to the “data”
perspective in SOA that is rather a functional than a data-driven
approach. OO offers suitable concepts for describing data
structures, which fits very well with current programming
languages and technology used in conjunction with SOA, such as
J2EE or .NET. Object-oriented languages are still leading edge in
these recent technology approaches related to SOA. As a result,
we propose an OO approach for tackling the data related issues in
SOAs. The patterns in this paper thus contribute to solving data
issues in SOA.

We present an example at the end of the paper to demonstrate the
application of all patterns and to outline the pattern relationships.
Please note that it might be useful for the reader to jump to the
example from time to time while reading the patterns to grasp a
concrete example of a pattern that is currently investigated.

2. PATTERNS OVERVIEW
In this paper, we first present three refactoring patterns that
explain basic alternatives for how to change a system in the
situation that a single business object model of an external system
should be integrated into a process-driven architecture:

• WRAP SERVICE AS ACTIVITY – explains a refactoring
solution that introduces one or more services for an
application-specific business object model. The pattern’s
solution is to wrap one or more of these services using a
process activity type that can be flexibly assembled in
process models.

• RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL –
explains a refactoring solution that restructures a specific
business object model of an integrated external system.
The external system restructuring is done in a stepwise,
minimal manner until the external system meets the new
requirements introduced by the process-oriented
architecture. WRAP SERVICE AS ACTIVITY can be used to
offer service interfaces to the restructured system.

• SYNTHESIZE BUSINESS OBJECT MODELS – explains a
refactoring solution that synthesizes a specific business
object model of an integrated external system and a
common business object model of the process-oriented
architecture.

These three refactoring patterns explain basic alternatives for
refactoring a single business object model into a “harmonized”
model of a process-oriented architecture. However, in larger
systems, it is necessary to consider multiple refactorings of
business object models and their interdependencies from the
perspective of the whole process-driven SOA. This cannot be
explained in terms of a single refactoring process, but must be
addressed at the architectural level. We present three architectural
patterns that are applied in this context:

• INTEGRATED BUSINESS OBJECT MODEL – explains an
overall architectural solution that allows you to implement
a harmonized business object model. Each of the three
refactoring patterns can be applied when it is most
appropriate. But still a consistent architecture is produced.

• DATA TRANSFORMATION FLOW – explains an architectural
solution based on a process subflow for data
transformation that maps different application-specific
business object models to a common business object
model. The goal is to enable flexible integration of
various external systems.

• BUSINESS OBJECT POOL – explains an architectural
solution in which a central pool for the business objects
enables processes that have logical interdependencies.
The processes can hence interact with each other without
comprising their technical independence.

Figure 1 shows an overview of the pattern relationships. There are
a number of external patterns that play a role in the patterns
introduced in this paper. We present thumbnails for these patterns
in an appendix at the end of the paper.

3. WRAP SERVICE AS ACTIVITY
External systems, i.e., systems that have so far not been part of
the process-driven SOA, should be integrated into a process-
driven SOA. In many cases, the external systems are legacy
systems.

Existing interfaces of external systems often do not reflect the
requirements of a process-driven architecture. Loose coupling
– a main goal of any SOA – for instance is often not well
supported because the external system only offers stateful
interfaces. Or, the required communication protocols of a
process-driven system are not supported by the external
system. However, flexible interfaces to external systems are
required to flexibly assemble processes involving external
system invocations from within a process design tool – which
is a central goal of a process-driven SOA.

In a SOA, the most important pattern of integration is to offer
SERVICES [3] that provide the integration of an external system. A
SERVICE is an operation offered as an interface, without
encapsulating state. SERVICE interfaces solve the basic problem of
how to represent loosely coupled interfaces. However, loose
coupling is hard to achieve, if the external system design forces us

to hard-code dependencies to stateful interfaces or communication
protocol details in the process models or integration code. For a
connection to the process-oriented layer, we must also meet the
requirements of the process-oriented SOA, but most often the
external system does not fulfil them a priori. Again, we do not
want to hard-code them in the process models, which should be
kept flexible, changeable, and understandable to the domain
expert.

Typically, a central requirement is that the SERVICES can be used
to integrate any kind of system in the same way and allow process
designers to flexibly assemble processes from the SERVICES
offered by the external systems. The SERVICES should hide all
details of the communication with the external system from the
process designer. Consider, for instance, integrating a mainframe
that only supports batch processing. From the perspective of the
process designer this system should be integrated in the same way
as a Web Service that was specifically written for this task.
However, different service developers use different approaches to
design SERVICES and integrate them into process models. This
means, the desired information hiding is hard to achieve, and
process designers must cope with these differences.

An inhouse guideline for SERVICES development can solve this
problem only partially. For instance, if services are used that are
not developed inhouse (e.g., services offered by an external
standard systems like SAP), guidelines on their design cannot be
imposed.

Refactor the external system and the process-driven SOA
using the following steps: For each entity in the external
systems that needs to be exposed to the process-driven
architecture, define one or more stateless SERVICES on top of
the existing interfaces of the external system. Define a special
SERVICE activity type in the process engine that wraps
invocations to external services. This way, SERVICE
invocations are represented as atomic activities in the process
flow. The SERVICE activity type can be used in business
processes to flexibly assemble services, because all details of
the communication with the external system are hidden in the
wrapper activity. Instantiate and use the SERVICE activity type
in process models whenever an external system needs to be
invoked.

The main task of the SERVICE is to translate a service-based
invocation into the interface of the external system and translate
the responses back into a service-based reply. Hence, the relevant
interfaces of external systems are integrated into the SOA using
SERVICES, exposing a view on the external systems that reflects
the requirements of the process-driven SOA.

The goal of decoupling processes and individual process
activities, realized as SERVICES, is to introduce a higher level of
flexibility into the SOA: Pre-defined services can be flexibly
assembled in a process design tool. The technical processes
should reflect and perhaps optimize the business processes of the
organization. Thus the flexible assembly of services in processes
enables developers to cope with required changes to the
organizational processes, while still maintaining a stable overall
architecture.

Figure 1. Patterns overview

In cases, where a service exists or can be built that equals the
required meaning of a process activity, an activity can be mapped
to exactly one service. However, in reality this is not always
possible. For instance, an activity in a process might need to wrap
a whole set of application services because each service only
fulfils a part of the overall functionality requested by the more
coarse-grained process activity. The main driving factor for the
integration of services and process activities should always be that
the process activity type needs to be understandable in the context
of the process models. A one-to-one integration between service
and activity is very easy to build and maintain. Hence it should be
chosen if possible, but only if its meaning fits well into the
context of the process model. There are other driving factors for
the integration of services and process activities, such as
reusability of services in different activity types or design for
foreseeable future changes.

Very often more than one application needs to be wrapped to
fulfil the goal of the activity (as shown on the right hand side of
Figure 2). Consequently, designing and implementing the
integration of the activity with application services is not trivial
and introduces a whole new set of problems. These problems are
addressed in more detail by the PROCESS BASED INTEGRATION
ARCHITECTURE pattern [4]. This pattern provides an architectural
concept for achieving that integration. Especially, the
MACROFLOW INTEGRATION SERVICE pattern [4] – a typical part of
the PROCESS BASED INTEGRATION ARCHITECTURE – is very
important in this respect, as it depicts the functionality requested
by a process activity as a one service, which is composed of more
fine grained services. These patterns thus allow developers to
solve issues that arise when the services cannot be directly
designed and implemented according to the requirements of
process activities and directly invoked via the process flow.

Figure 2 illustrates the refactoring from a process model and
applications that offer only stateful interfaces to a process model
that wraps services of those applications in its activities. There are
two possible options for the mapping:

• Services can be designed and implemented to represent
requirements of process activities directly.

• Application services can only be designed and
implemented to fulfil parts of the process activities.

Actually, this wrapping implies important design decisions, as the
process activities will be designed in dependency with the
services. Ideally, the application services can be designed
according to the requirements of a process activity. However, on
the other hand, processes might change and thus the requirements
might change. For this reason, it is often better to provide the
services in terms of self-contained functions of an application that
are based on the entities of the application. That is, the services
are designed according to the specific business object model
applied by an application. The consequence is that processes and
application services are more loosely coupled and thus more
flexible. There is the trade-off, however, that larger integration
effort and greater complexity for implementing the integration is
required.

In this respect, the MACRO-MICROFLOW pattern [4] can be used to
conceptually decouple the fine grained application services that
are required within the integration context from long-running
processes. Following MACRO-MICROFLOW, the fine grained
application services are orchestrated in a microflow, i.e., a more
fine grained technical integration process. The PROCESS BASED
INTEGRATION ARCHITECTURE pattern provides flexible means for
implementing both the one-to-one and the one-to-many
relationship between process activities and application services.

4. RESTRUCTURE SPECIFIC BUSINESS
OBJECT MODEL
External systems, i.e., systems that have so far not been part of
the process-driven SOA, should be integrated into a process-
driven SOA. In many cases, the external systems are legacy
systems.

When integrating systems into a process-driven architecture,
the first choice should be to follow WRAP SERVICE AS
ACTIVITY. This, however, might fail because the external
system is a legacy system that is not structured in a suitable
way to allow for offering an object-oriented business object
model via SERVICES. Or the business processes might require
an integration of data from two or more application-specific
business object models, and service-based access to the data is
not enough to deal with the data integration problems. Or the
external system does not even allow services to access the
data.

Some legacy systems only offer unsuitable interfaces that are hard
to map to an (object-oriented) business object model design or to
a service-oriented design. Consider, for instance, a legacy system
has a procedural design that can be understood as an object-
oriented business model. Or the legacy system does not offer
session abstractions that can be used for aligning interdependent
stateless service invocations, and hence the performance of
interdependent invocations is weak.

If the data types of two external systems are incompatible and
cannot (easily) be mapped, it might be necessary to think about a
better solution than performing individual mappings within
wrapper SERVICES (maybe over and over again). In addition to
data mapping problems, it might be possible that an external
system does not offer appropriate interfaces to access the relevant
data at all via a pure wrapper SERVICE. Sometimes the data is Figure 2. Refactoring to services that are wrapped by

activities

accessible, but not in a suitable way. Consider for instance a
legacy system that offers only a batch interface. It might be
possible that the performance of this interface is not good enough
for an integration task. Or the data model and the interfaces
require repetitive invocations via the wrapper SERVICE which
downgrades the performance of the overall system. In other
words, often the external system was designed without having the
requirements of integration in a SOA in mind, and thus cannot
fulfil the requirements of the SOA.

Such data integration issues can arise even when the developers
only need to integrate two interfaces. Consider a simple point-to-
point integration between two systems is needed. In this simple
case, the interfaces between the two integrated systems need to be
mapped to exchange data. This is only possible in simple wrapper
SERVICES if the mapping of (data) types can be completely
performed in the service implementation.

In a larger SOA with a dedicated service orchestration layer
things get even more complicated. The reason for this is that the
different business object models of the involved external systems
need to be consolidated somehow to achieve a flexible
orchestration within the process flow.

Refactor the external system and the process-driven SOA
using the following steps: First assess whether a restructuring
is possible according to the following criteria. The system
evolution should be as non-intrusive and minimal as possible.
It should not break existing client code. Substantial portions
of the system should remain unchanged. If the assessment is
positive, restructure the application-specific business model of
an integrated external system by evolving the system to meet
the new requirements introduced by the process-oriented
architecture. Next, offer service interfaces so that the business
process can access the evolved external system following
WRAP SERVICE AS ACTIVITY.

Before applying a restructuring of an application-specific business
model it is necessary to consider that it may not be possible at all
or with acceptable effort to restructure the business object models
of legacy applications such that they work consistently together.
The requirements of the business processes need to be considered
by a business object model designer so that the business object
model is suitable for representing the domain architecture of the
business processes. Also, it is necessary to consider changing
requirements, e.g., in case another legacy application needs to be
integrated in a process flow. It is important to consider whether a
restructuring can be done with minimal changes so that existing
assets are preserved and existing client code is not broken. That
is, existing external interfaces should remain compatible.

A restructuring should only be performed, if all these
considerations lead to the conclusion that it is possible to
restru

Application AProcess 1

Application A

Entity

Process Activity

Process Activity

Process Activity

Process 1

Entity

Process Activity

Process Activity

Process Activity

Entity

Entity

Se
rv

ic
e

Se
rv

ic
e

Entity

Se
rv

ic
e

Entity

BEFORE AFTER

R
EF

A
C

TO
R

IN
G

cture the application-specific business object model of an external
system. If additionally the restructuring is possible with
acceptable effort, it should be considered before considering
integration following SYNTHESIZE BUSINESS OBJECT MODELS. This
is because RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS will
be quite effective: Most often it is easier to make local changes to
a system’s data in the system itself then to evolve the data in an
external mapping component (which is part of the business
process).

Figure 3 illustrates a refactoring process based on a restructuring
of an application-specific business object model: One monolithic
entity is split into a number of entities. Some of them are exposed
as services. These services are then integrated following the
WRAP SERVICE AS ACTIVITY pattern. Please note that this is just an
example of a restructuring. Many other restructurings are also
possible. The goal is to preserve the existing assets as far as
possible and not break existing client code.

Applying RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS is
often the only way to be able to integrate two business object
models. In some cases, it is relatively easy and not much work.
However, the restructuring might also be infeasible or
inapplicable. The evaluation whether the pattern is infeasible or
inapplicable might be non-trivial. In some cases, to RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODELS might be a big effort and
sometimes the effort is underestimated.

5. SYNTHESIZE BUSINESS OBJECT
MODELS
External systems, i.e., systems that have so far not been part of
the process-driven SOA, should be integrated into a process-
driven SOA. In many cases, the external systems are legacy
systems.

Consider integrating systems into a process-driven
architecture using WRAP SERVICE AS ACTIVITY fails because of
data integration issues, and RESTRUCTURE SPECIFIC BUSINESS
OBJECT MODELS proves to be difficult, infeasible, or even
impossible, because the external systems cannot or should not
be changed or adapted. Local, independent changes in the
application-specific business object models are often not
enough to resolve data integration issues, such as incompatible
data definitions, inconsistent data across the enterprise, data
redundancy, and update anomalies.

Figure 3. Refactoring by restructuring an application-specific
business object model

Data integration issues, such as incompatible data definitions,
inconsistent data across the enterprise, data redundancy, and
update anomalies, can occur when integrating data or interfaces of
two or more systems into a process-driven architecture. These
issues can often not be resolved in a suitable way using only
wrapper SERVICES. Usually, in such cases one should try to apply
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODELS next. But
consider a legacy system where the source code is not available.
Or no experts for the languages or platforms used by a legacy
system are working for the company anymore. Or a significant
investment is needed to make changes to the legacy system, and
the extra costs should be avoided. Such situations are highly
unwanted, but nonetheless they occur.

Let us consider the other case; to apply RESTRUCTURE SPECIFIC
BUSINESS OBJECT MODELS is possible and feasible. The pattern
might, however, be still not applicable, if a “global” perspective is
needed for data integration. Consider for instance two or more
application-specific business object models need to be integrated
in a process flow. Sometimes data integration issues cannot be
(effectively) solved by only changing the local applications. For
instance, if one data model depicts an address as a custom data
record, and the other one as a string, we need to write conversion
code between the two incompatible data types at the “global”
level. That is, we create a “global” view based on the combination
of the information in the different application-specific business
object models.

Refactor the system using the following steps: Design a
synthesized business object model that consolidates the
structures of the involved business object models. Map the
relevant parts of the application-specific business object
models into the synthesized business object model, and
perform the data integration tasks at the global level. The
synthesized business object model depicts the requirements of
the related business processes, i.e., it provides a process-
related, global view on the application-specific business object
models.

The parts of the application-specific business object models that
are subject to exposed services are mapped into the synthesized
business object model. The exposed services are usually
integrated into the process flow using wrapper SERVICES that are
invoked by activities in the process flow.

The application-specific business object models can be mapped to
the synthesized business object model by some well-defined
mapping rules to automate the mapping, for instance following
the DATA TRANSFORMATION FLOW pattern.

Figure 4 shows a business process design and two applications
that can be accessed via service interfaces (e.g., external wrapper
services). Consider that the two applications cannot be changed
and data integration issues arise. The figure illustrates the
refactoring process from this situation to the introduction of a
synthesized business object model. The synthesized business
object model provides a consolidated model of the two
application-specific models. It especially fulfils the requirements
of the business processes.

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

R
EF

A
C

TO
R

IN
G

The synthesized business object model design has to consider all
requirements of the process domain, in terms of the services that
the processes need to expose. The model must be consistent with
all integrated applications and with the service requirements of
the processes.

6. INTEGRATED BUSINESS OBJECT
MODEL
External systems, i.e., systems that have so far not been part of
the process-driven SOA, should be integrated into a process-
driven SOA. In many cases, the external systems are legacy
systems.

The three refactoring patterns WRAP SERVICE AS ACTIVITY,
RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL, and
SYNTHESIZE BUSINESS OBJECT MODELS explain alternatives
and considerations for integrating a single business object
model interface into a process-oriented SOA. If multiple
external applications and business object models need to be
considered, often none of the three alternatives alone provides
a suitable solution. Also, the process flow might be offered
itself as a service and needs to provide a harmonized,
consistent view on the integrated application-specific business
object models. The different integration solutions must be
managed and offered in way that they can be flexibly
assembled from a process design tool.

The process flow needs to operate with a business object model,
i.e., the business objects being associated to the process and being
manipulated by the process. Moreover, often the process is a
function itself and represents a service. The input and output
parameters of this service relate to the business object model of
the process. The requirements on the business object model of a
process and the business object models of external systems
integrated in the process usually vary. That means all the business
object models under consideration are usually not consistent – and
need to be harmonized.

The various business object models implemented by external
systems will thus be reflected by the parameters of the application
services that are used to access them. These services simply
reflect the interfaces in terms of the business objects used as input
and output.

Figure 4. Refactoring to a synthesized business object model

As a result, one has to deal with the problem of harmonizing the
business object models of the various applications to integrate
them via a configurable process in some way. The problem even
gets worse if multiple processes need to be integrated. In this case
many requirements of these processes need to be represented in
the corresponding business object models. Consequently, greater
conflicts will be observed between the business object models of
the processes and those of the external systems.

Provide an INTEGRATED BUSINESS OBJECT MODEL for a
process-oriented SOA as an architectural solution. In the
design of the INTEGRATED BUSINESS OBJECT MODEL use the
following guideline: For each application-specific business
object model first try to WRAP SERVICE AS ACTIVITIES. If this
does not work for an interface of an application-specific
business object model because of data integration issues,
assess whether an integration solution based on RESTRUCTURE
SPECIFIC BUSINESS OBJECT MODEL or SYNTHESIZE BUSINESS
OBJECT MODELS (or both) would work better, and then follow
the chosen refactoring pattern. Integrate the result of the
refactoring using WRAP SERVICE AS ACTIVITIES into the
process model. The INTEGRATED BUSINESS OBJECT MODEL
uses appropriate metadata description mechanisms to keep
the model flexible concerning changing requirements.

The INTEGRATED BUSINESS OBJECT MODEL pattern introduces an
architecture which allows developer to use each of the three
refactoring patterns when it is most appropriate. The “standard”
solution of a SOA, to use the SERVICES pattern and to wrap it with
an activity in the process flow, should always be the first choice,
because this solution is simple and offers loose coupling. When
WRAP SERVICE AS ACTIVITIES alone is not sufficient, one has to
check whether SYNTHESIZE BUSINESS OBJECT MODELS can be
achieved and is of less effort than restructuring. The mapping
between application-specific and synthesized business object
models takes computational time and thus may imply a
performance issue. Performance in this respect is often the driving
factor to consider following RESTRUCTURE SPECIFIC BUSINESS
OBJECT MODEL.

Flexible aspects of the INTEGRATED BUSINESS OBJECT MODEL
should be described by metadata mechanisms. An abstraction
from concrete structures to more abstract structures, defined by
metadata, helps to manage a synthesized business object model
centrally. For instance, flexible data structures within business
objects can be defined via XML. What areas are subject to change
is detected by an analysis of application-specific business object
models and design issues detected in the business process
requirements.

Figure 5 illustrates how an INTEGRATED BUSINESS OBJECT MODEL
is designed. The INTEGRATED BUSINESS OBJECT MODEL integrates
all involved business object models, and the business processes
are defined on top this model. The integrated object model – if
designed using appropriate metadata mechanisms – is open for
integrating additional external business object models.

Integrated Business
Object Model

Application Specific
Business Object Model1 1..n

maps to

- process requirements
- metadata restructuring

Figure 5. Integrated business object model

Unanticipated changes to the INTEGRATED BUSINESS OBJECT
MODEL might occur during the evolution and lead to some
restructuring. In fact, taking the right level of design abstraction
with metadata that anticipates future changes and, at the same
time, provides enough concrete structures is still rather an art than
a science.

The DATA TRANSFORMATION FLOW pattern provides an
architecture design approach for designing and implementing the
necessary mapping from application-specific business object
models to INTEGRATED BUSINESS OBJECT MODEL.

When the model is implemented, the actual business objects will
be stored in a CENTRAL BUSINESS OBJECTPOOL.

The CANONICAL DATA MODEL [6] represents a similar approach to
designing a data model that is independent from specific
applications. The INTEGRATED BUSINESS OBJECT MODEL can be
viewed as a specialisation of it within a process-driven SOA
context. SERVICES are used to access the external system from a
SOA.

7. DATA TRANSFORMATION FLOW
Systems need to be integrated via a business-process driven and
service-oriented approach, and the systems have heterogeneous
business object models.

Consider a transformation between the business object models
of two systems integrated into a SOA is needed. Major goals
of a SOA are loose coupling and flexibility. These properties
should not be compromised by hard-coding data integration
details. In a process-oriented SOA, it is additionally necessary
to map the data integration steps conceptually to the process
flow to be able to easily configure data integration changes
from process design tools.

In SOAs, the systems have usually been independently developed
and have changed over time. As a result it is usually not trivial to
depict the business objects provided as input and output
parameters of one system onto the business object model used by
the target system. Consequently, some kind of mapping and
transformation will be necessary. The structures and the semantics
of the business object models must map somehow.

In this context mapping means that business objects and the
attributes of them need to be projected onto business objects and
corresponding attributes of the target model. This mapping must
be maintainable, and the mapping architecture must be extensible.
It should be possible to react on typical change requirements, such
as an increased workload, a business object model change, or that
a new application needs to be integrated with minimum effort.

This means especially that no programming effort should be
necessary to change (minor) details of the data integration.
Somehow we need to depict and configure data integration
between business object models in the process so that it is
possible to use process design tools for the mapping process and
for rapidly changing the mapping.

Implement the data transformation as a process subflow (a
microflow) that uses mapping components that are based on
configurable transformation rules to project one business
object model on another. Technology that supports rule-based
data transformation is used to change the transformation
rules at runtime. Perform the mapping steps as activities of a
process subflow to make the data transformations
configurable from the process design tool.

The mapping logic to project one business object model onto
another is encapsulated in a component that performs the
transformation. The mapping logic is implemented by
configurable mapping rules associated to a component. There may
be several of these components in the DATA TRANSFORMATION
FLOW.

In a process-driven and service-oriented architecture, the DATA
TRANSFORMATION FLOW is actually depicted by a MICROFLOW
ENGINE [4], and the mapping components are represented as
(reusable) process flows in the engine. The process flows perform
the transformation of the business object models. The individual
activities in the process flow represent transformation steps. As a
result, the structural model of a DATA TRANSFORMATION FLOW
can be defined as shown in Figure 6. The actual conceptual
mapping is done by specialized microflows that are invoked as
sub-microflows to realize the transformation.

 Microflow

+ add(in mf: Microflow)
+ remove(in microflowID)
+ execute(in microflowID)

*1

- microflowID

+ getID()
1..*1 Microflow

Stephas

Microflow Engine

Conceptual
Mapping Flow

Conceptual
Mapping Step

Projection/
transformation
process

Projection/
transformation
step

Figure 7 illustrates one possible realization in a flow model: A
MICROFLOW EXECUTION SERVICE [4] exposes an integration
microflow as a service that can be invoked by process activities.
All data transformation is done in data transformation sub-flows.
The MICROFLOW EXECUTION SERVICE thus realizes the
composition of the mapping functionality according to the
requirements of the integration process.

This DATA TRANSFORMATION FLOW pattern realizes the
transformations from application-specific to synthesized models,
when SYNTHESIZE BUSINESS OBJECT MODELS is applied.

When realizing the transformation in a mapping flow, message
transformation patterns will be applied, e.g., MESSAGE
TRANSLATOR, CONTENT ENRICHER, and CANONICAL DATA MODEL
[6]. A conceptual mapping microflow represents a mapping
component in the spirit of MESSAGING MAPPER [6]. The DATA
TRANSFORMATION FLOW pattern can be realized as part of an
ENTERPRISE SERVICE BUS [8]. The MACRO-MICROFLOW pattern [4]
can be used for structuring processes: In the context of this pattern
the mapping flows refer to the microflow level.

The DATA TRANSFORMATION FLOW pattern leads to an
architecture in which the mapping flows are encapsulated in
maintainable units that can be flexibly composed.

Appropriate technology is required to implement the mapping
flows. For instance a message broker with transformation
functionality can be used to achieve this, or another integration
middleware. The mapping may cause performance issues, if the
logic gets complicated and/or storage functions are required to
keep the transformed objects in databases. Thus, this pattern may
only be suitable in larger SOA contexts, where this kind of
flexibility is actually required.

8. BUSINESS OBJECT POOL
Business processes are executed on a process engine.

Business processes are very often interdependent in their flow
logic. That is, a running process may have effects on other
processes being executed in parallel. Technically each process
has its own data space that carries the control data for
executing a business process and is thus independent of other
processes. On the one hand, we need to implement the logical
interdependencies between processes, but on the other hand,
we need to retain the technical independence – which means
interdependences should be avoided.

Business processes in execution have their own data space, i.e.,
the data spaces of business processes running in parallel are
disjoint. Actually, this is necessary to provide a business process
instance with full control over the execution of the instance –

Figure 7. Conceptual mapping flows as sub-microflows.

Figure 6. Conceptual mapping as special sub-microflows

from a technical point of view. Logically, however, business
processes are interdependent. That means processes are often
depending on the results of other processes – or even on events
being generated by other processes. For instance, consider a
business process handles an order and during this process, the
customer decides to cancel the order. This is an event being
generated outside the control of the actual order fulfilment
process, but the order fulfilment should react accordingly to this
event, i.e., by stopping the fulfilment or rolling back certain
things that have already been done.

The other way round, one might consider a point in the order
fulfilment process which is a point of no return. That means at
some point in the fulfilment process, the order cannot be
cancelled anymore. Consequently, the order fulfilment process
generates the respective status of the order. If the customer wants
to cancel the order, the order cancellation process needs to
consider this point of no return, for instance, by informing the
customer that the order cannot be cancelled anymore.

It is necessary and useful that the data spaces of each process
instance are disjoint – to keep the processes instances as separate
and autonomous entities. But this makes it hard to depict the
interdependencies of the processes. In any case the behaviour of
the process must be deterministic. The process logic has to
consider all possible events that may occur and depict those
events by some decision logic and the corresponding paths of
execution.

Keep the business objects in a central pool which can be
accessed in parallel by all processes of the process domain.
Attribute changes to objects in the pool can then be used as
triggers to corresponding behaviour in interrelated business
processes. The processes can access the central pool during
their execution and react on those attribute values.

Treating the business objects as central resources and allowing
access to those centralized business objects enables, in principle,
parallel processes to read and write the data of the business
objects. One process might write certain attributes of a business
object, e.g., a change in the status of the object. Another parallel
process might then read the status information and react to the
attribute values correspondingly. Often, the pool of business
objects is realized as a central REPOSITORY [3].

Process instances can use their disjoint data spaces to store
information that is only relevant for the process instance but
which is of no interest for other process instances, such as data to
implement the decision points in control flow logic. This data is
generally of no relevance to other processes but only the instance
itself. Information that has central relevance will be stored in a
central business object kept in the BUSINESS OBJECT POOL.

Concurrency issues may occur in case several process instances
have write access on the same business object, for instance.
Traditional locking mechanisms can be used to solve some of
these issues. Accessing the business objects takes some additional
computational time, and, in case large amounts of data need to be
read, caching mechanisms might be suitable.

The access to business objects in the BUSINESS OBJECT POOL from
the data space of a process instance can be realized via BUSINESS
OBJECT REFERENCES [5] that point to objects in a central
REPOSITORY [3]. The REPOSITORY is often necessary for revision
and reporting purposes to store the business objects manipulated
in business processes for historical reasons. To allow for
controlled modifications of central business objects, the PRIVATE-
PUBLIC BUSINESS OBJECT pattern [7] can be used. This pattern
offers a solution to the problem of hiding modifications to
business objects as long as the process activities that manipulate
the objects are not yet finished. The business object pool may be a
representation of an INTEGRATED BUSINESS OBJECT MODEL.

By accessing the BUSINESS OBJECT POOL and observing attribute
values of those objects, a process instance may react in its control
logic on an attribute value. The attribute value might have been
set by another process running in parallel. Hence the pattern
allows the process logic and its data spaces to be defined
independently from other process, but still logical
interdependencies can be depicted.

However, the process model must exactly define on what events it
is able to react, and the business objects must be accessed via
process activities. Sometimes representing process
interdependencies only by using central business objects is not
enough. Then usually new services or processes must be defined
to realize the (more complex) interdependent behaviour.

9. EXAMPLE AND KNOWN USES
The patterns have been applied in various integration and SOA
projects within the project scope of IBM. For instance, in a SOA
project for a telecommunications customer in Germany, these

Figure 8. Central business object pool

patterns have been applied to build a larger SOA architecture
based on an ENTERPRISE SERVICE BUS [8]. The architecture has
been based on IBM WebSphere technology. WebSphere Business
Integration Message Broker has been used as the MICROFLOW
ENGINE [4] to depict the conceptual mapping flows and the
service bus.

The project has focused on restructuring the business model for
order management and depicting redesigned business processes
on the SOA platform. We have followed the SYNTHESIZE
BUSINESS OBJECT MODELS pattern to form a synthesized object
model to process various types of orders. For historical reasons
many different systems have been involved in the ordering and
fulfilment of products, as new products have been developed over
time and quick tool support has been implemented. There has
been redundant data in these various systems.

An integrated and business process oriented approach needs to
take the overall process perspective of ordering products and
integrating the various systems involved in the business processes
into account. Hence, the data models of these systems to be
integrated have been mapped to business object models and a
synthesized business object model for the overall business
processes has been developed.

In order to achieve this, the redundancies of data in the systems
have been identified by looking for the same conceptual entities
in each system. For instance, the customer, or information on
related contracts to the customers could be found in many of these
systems. However, the data associated to these conceptual entities
have not been the same in all the systems. There was some
overlap, and this overlap needed to be identified to define a
representation in the INTEGRATED BUSINESS OBJECT MODEL. The
second step was thus to identify the overlaps and to depict the
commonalities in the INTEGRATED BUSINESS OBJECT MODEL. The
common representation had to be chosen in a way that allows to
integrating the systems by DATA TRANSFORMATION FLOWS.
Following the SYNTHESIZE BUSINESS OBJECT MODELS pattern it
was thus possible to extract the redundancies and to develop a
synthesized object model for the business processes
systematically. The synthesized business object model thus did
not contain redundant data but consolidates the views of the
systems involved in the business processes. This INTEGRATED
BUSINESS OBJECT MODEL has been implemented in a separate
DB/2 datastore, used by the executed business process that also
represented a BUSINESS OBJECT POOL. That means, the DB/2
database served as the technology for realizing the BUSINESS
OBJECT POOL. The various business processes running in parallel
were thus able to access the business objects concurrently, and the
objects were realizing all requirements of the overall business
processes.

One critical factor of flexibility regarding the object model was
the products being ordered by customers. To provide reduced
time to market, the processes needed to be designed in a way that
products being ordered and processed are easy to change. For this
reason, the notion of product has been designed in the
INTEGRATED BUSINESS OBJECT MODEL via metadata description
mechanisms in XML. The mandatory and optional attributes of a
product could be flexibly specified using an XML-based
language.

The DATA TRANSFORMATION FLOWS have been implemented
using message transformation mechanisms of the WebSphere
Business Integration Message Broker. This broker offers
functionality for defining reusable message transformation flows
that served as the DATA TRANSFORMATION FLOWS to map object
models. The messages have been transported via WebSphere MQ.

The WRAP SERVICE AS ACTIVITY pattern has been applied as well.
In some cases it was even possible to directly integrate the
application service in the process flow, as both mapped one-on-
one. One example is the integration of a legacy customer
application. This application basically is a database containing a
customer table and some related tables. In case of a larger
business customer there is a whole hierarchy of sub-customers,
for instance, representing different geographical locations. The
customer table as an entity has been wrapped by services offering
read/write access to the customer repository. Additionally, more
simple services have been implemented, such as checking
whether a customer already exists in the customer repository. This
is a simple service that just returned a Boolean value. However,
no persistent data needed to be stored in a business object in this
case, as the process logic depicts the corresponding path of
execution for the Boolean values true or false.

As WebSphere MQ Workflow and the integrated application had
MQ messaging interfaces only some simple transformation was
necessary in terms of DATA TRANSFORMATION FLOWS. The DATA
TRANSFORMATION FLOWS basically performed the mapping of
different data structures and types between the customer
application and the services.

A concrete example for these data transformations can be found in
the context of a service that allows retrieving customer data. The
customer repository had information split across many tables,
such as the basic customer data like name and address in one
table, contract data of the customers in another table, and the
customers account data in separate table, as a customer may have
several accounts. The service represents the retrieval of all this
data in a consolidated way as this was the requirement of the
corresponding business process activity. For this reason,
transformation flows implement the consolidation of the basic
customer data, the contract data, and the account data to make
them available by a single service. The consolidated data have
been put in an XML message representing the output of the
service.

Figure 9 provides an overview of the INTEGRATED BUSINESS
OBJECT MODEL. The model represents the order domain and the
product domain and the relations between products and orders.
Moreover, the model shows that no specialized classes have been
designed for dedicated products. The special products have been
configured in XML – the example below shows the definition of
the product DSL/ISDN.

The XML product definitions have been stored in terms of a
product catalogue. An order only references the products by their
product code, as we can see in Figure 9 – the Product class
contains the product code as an attribute. The product code is
basically an ID of a product to identify it in the product catalogue.
The product catalogue and the products may thus be easily
changed without modifying the INTEGRATED BUSINESS OBJECT
MODEL where the business objects themselves have been stored in
a BUSINESS OBJECT POOL represented by a DB/2 database.

The corresponding user interfaces for data entry and for
processing the products could thus be designed generically, as the
metadata structure could be interpreted and the user interfaces
were constructed generically. Implementing a new or improved
product was thus basically an act of configuration. Though, some
amendments and enhancements in the business processes also
needed to be designed and implemented in this case. The SOA
approach provided an effective means to do that. However, the
effort was minimised as the design has considered the notion of
product to be variable construct and changes have been limited to
a minimum. The INTEGRATED BUSINESS OBJECT MODEL thus had
to depict the domain of orders considering the requirements of the
redesigned business processes and the integrated applications.

Furthermore, recent technologies directly support these patterns.
For instance, IBM WebSphere InterChange Server and
WebSphere Process Server conceptually support the concept of
synthesized object models. Application specific object models
addressed by application adapters can be mapped via tool support
to the synthesized object model. Consequently, the patterns have
shown much relevance as they are more and more supported by
development tools. However, the patterns are not restricted to
WebSphere technology. They are also applicable with other
platforms that support process-driven and service-oriented
approaches, such as Staffware. The problems addressed by the
patterns actually do not depend on any particular platform.

There are other known uses of the patterns in the banking
industry. In finance we usually deal with old legacy systems,

<ProductType name="BundleDSLOnline" id="ProductBundleDSLOnline" sellable="true">

 <Documentation>

 <ShortDescription>This is the product bundle ISDN / DSL and Online </ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <ProductRef name="ISDN/DSL" ref="ProductIsdnDSL" />

 <ProductRef name="Online" ref="ProductOnline" />

 <AttributeRef name="Customer class" type="CustomerClass" />

 <AttributeRef name="Installation price" type="Number" />

 <AttributeRef name="Tariff" type="Tariff" />

</ProductType>

<ProductType name="ISDN/DSL" id="ProductIsdnDSL" sellable="false" marketingName="-">

 <Documentation>

 <ShortDescription>This is the type definition of the product ISDN / DSL</ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <AttributeRef name="Tariff" type="Tariff" />

 <AttributeRef name="Upstream bandwidth" type="Bandwidth" />

 <AttributeRef name="Downstream bandwith" type="Bandwidth" />

 <AttributeRef name="Damping" type="Damping" />

 <RuleRef name=" UpDownBandwidthConstraint " ref="UpDownBandwidthConstraint" />

</ProductType>

<ProductType name="Online" id="ProductOnline" sellable="false" marketingName="Online">

 <Documentation>

 <ShortDescription>This ist the type definition of the product Online</ShortDescription>

 <DetailedDescription>Detailed description...</DetailedDescription>

 </Documentation>

 <AttributeRef name="Tariff" type="Tariff" />

 <AttributeRef name="ImDSLBundle" type="Boolean" />

implemented in Cobol, running on large mainframe computers.
These systems represent a huge investment that needs to be
protected, not at least because of their reliability and stability. The
SOA approach is very interesting for the financial industry,
because most of the processes are rather strongly formalised and
SOA promises an approach for integration and flexibility.

Moreover, there are other known uses in the automotive industry,
especially in supply chain management, where we will find the
problems addressed in this paper. In supply chain management we
usually deal with business processes that run across different
departments, involving various stakeholders, and even across
companies (suppliers). In such supply chain contexts,
heterogeneity of the system landscape involved in the business
processes is rather the norm than the exception.

The patterns in this paper address common problems arising in
SOA projects that are built considering existing and historically
grown legacy systems, or – more generally speaking – systems
being developed independently. Often these legacy systems
represent island solutions for requirements that needed to be
implemented quickly and in an evolutionary context. The
problems also occur in situations where no broader IT strategy is
defined and where systems grow independently. When taking a
business process driven and service-oriented perspective, some of
the data integration issues, discussed in this paper, arise, such as
data redundancies. This is due to the broader and integrated view
taken by the SOA approach. SOA often forces developers to solve
these – sometimes long known – issues in a systematic way. The
problems addressed by the patterns are often inherent and most
probably predictable in projects that extend system boundaries
and take an enterprise-wide view.

For this reason, SOA rather offers a systematic approach for
tackling data integration issues that are often very well known and
existing for years. SOA, as an architectural concept, is not the
solution to these well known integration problems, but it provides

a means to approach them systematically and effectively. It is
rather the systematic detection and the solutions aligned with
business goals represented by the business process oriented
approach that makes these patterns valuable.

10. CONCLUSION
In this paper, we have presented patterns in the realm of data
integration in process-oriented SOAs. The first three patterns
offer alternatives for single refactoring design decisions about the
integration of specific business object models: WRAP SERVICE AS
ACTIVITY, RESTRUCTURE SPECIFIC BUSINESS OBJECT MODEL, and
SYNTHESIZE BUSINESS OBJECT MODELS. Besides the description of
these patterns in the process-oriented SOA domain, this paper
describes architectural patterns to use these patterns in a larger
context. An architecture which supports the use of each of the
refactoring patterns, when it is most appropriate, is introduced by
the INTEGRATED BUSINESS OBJECT MODEL pattern. Additionally
we have described a process-oriented solution for data mapping
and transformation, the DATA TRANSFORMATION FLOW pattern.
Finally, the BUSISNESS OBJECT POOL pattern supports the
harmonization of business object models, as the pattern introduces
a central pool for business objects which can be accessed in
parallel by independent processes.

11. ACKNOWLEDGEMENTS
We like to thank Wolfgang Keller, our PLoP 2006 shepherd, for
his very valuable comments on this paper. Further thanks go to
Axel Emmer for helping with the revision of the paper for ACM
DL.

12. REFERENCES
[1] D. K. Barry. Web Services and Service-oriented

Architectures, Morgan Kaufmann Publishers, 2003
[2] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating

to Service-oriented architecture – part 1, http://www-
106.ibm.com/developerworks/webservices/library/ws-
migratesoa/, IBM developerWorks, 2003

[3] E. Evans. Domain-Driven Design – Tackling Complexity in
the Heart of Software”, Addison-Wesley, 2004.

[4] C. Hentrich, U. Zdun. Patterns for Process-Oriented
Integration in Service-Oriented Architectures, Proceedings of
EuroPLoP 2006, Universitätsverlag Konstanz, 2006.

[5] C. Hentrich. Six Patterns for Process-Driven Architectures,
Proceedings of EuroPLoP 2004, Universitätsverlag
Konstanz, 2004

[6] G. Hohpe and B. Woolf. Enterprise Integration Patterns.
Addison-Wesley, 2003.

[7] T. Köllmann, C. Hentrich. Synchronization Patterns for
Process-Driven and Service-Oriented Architectures.
Proceedings of EuroPLoP 2006, Universitätsverlag
Konstanz, 2006.

[8] U. Zdun, C. Hentrich, and W. van der Aalst. A survey of
patterns for service-oriented architectures. International
Journal of Internet Protocol Technology, 1(3):132-143, 2006.

Figure 9. Example of an Integrated Business Object Model

13. APPENDIX: OVERVIEW OF
REFERENCED RELATED PATTERNS
There are several important related patterns referenced in this
paper, which are described in other papers, as indicated by the

corresponding references in the text. Table 1 gives an overview of
thumbnails of these patterns in order to provide a brief
introduction to them for the reader. For detailed descriptions of
these patterns please refer to the referenced articles.

Table 1. Thumbnails of referenced patterns.

Pattern Problem Solution

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of business objects be
achieved in a business process, as far as
concurrent access and changes to these
business objects is concerned?

Only store references to business objects in the process
control data structure and keep the actual business objects in
an external container.

CANONICAL DATA MODEL

[Hohpe et al. 2003]

How to minimize dependencies when
integrating applications that use different data
formats?

Design a CANONICAL DATA MODEL that is independent from
any specific application. Require each application to
produce and consume messages in this common format.

CONTENT ENRICHER

[Hohpe et al. 2003]

How do we communicate with another system
if the message originator does not have all the
required data items available?

Use a specialised transformer, a CONTENT ENRICHER, to
access an external data source in order to augment a
message with missing information.

ENTERPRISE SERVICE BUS

[Zdun et al. 2006]

How is it possible in a large business
architecture to integrate various applications
and backends in a comprehensive, flexible and
consistent way?

Unify the access to applications and backends using services
and service adapters, and use message-oriented, event-
driven communication between these services to enable
flexible integration.

ENVELOPE WRAPPER

[Hohpe et al. 2003]

How can existing systems participate in a
messaging exchange that places specific
requirements, such as message header fields or
encryption, on that message format?

Use an Envelope Wrapper to wrap application data inside an
envelope that is compliant with the messaging
infrastructure. Unwrap the message when it arrives t the

MACROFLOW
INTEGRATION SERVICE

[Hentrich et al. 2006]

How can the functionality and implementation
of process activities at the macroflow level be
decoupled from the process logic that
orchestrates them, in order to achieve
flexibility, as far as the design and
implementation of these automatic functions
are concerned?

The automatic functions required by macroflow activities
from external systems are designed and exposed as
dedicated MACROFLOW INTEGRATION SERVICE with well-
defined service interfaces.

MACRO-MICROFLOW

[Hentrich et al. 2006]

How is it possible to conceptually structure
process models in a way that makes clear
which parts will be depicted on a process
engine as long running business process flows
and which parts of the process will be depicted
inside of higher-level business activities as
rather short running technical flows?

Structure a process model into macroflow and microflow.

MESSAGE TRANSLATOR

[Hohpe et al. 2003]

How can systems using different data formats
communicate with each other using
messaging?

Use a special filter, a MESSAGE TRANSLATOR, between other
filter or applications to translate one data format into
another.

MESSAGING MAPPER

[Hohpe et al. 2003]

How do you move data between domain
objects and the messaging infrastructure while
keeping the two independent of each other?

Create a separate MESSAGING MAPPER that contains the
mapping logic between the infrastructure and the domain
objects.

MICROFLOW ENGINE

[Hentrich et al. 2006]

How is it possible to flexibly configure IT
systems integration processes in a dynamic
environment, where IT process changes are
regular practice, in order to reduce
implementation time and effort?

Delegate the microflow aspects of the business process
definition and execution to a dedicated MICROFLOW ENGINE
that allows to configuring microflows by flexibly
orchestrating execution of microflow activities.

MICROFLOW EXECUTION How to expose a microflow as a coherent Expose a microflow as a MICROFLOW EXECUTION SERVICE

Pattern Problem Solution

SERVICE

[Hentrich et al. 2006]

function with defined in- and output
parameters without having to consider the
technology specifics of the MICROFLOW
ENGINE being used, in order to decouple the
engine’s technology specifics from the actual
functionality that is has to offer to execute
concrete microflows?

that abstracts the technology specific API of the
MICROFLOW ENGINE to a standardised well-defined service
interface and encapsulates the functionality of the
microflow.

PRIVATE-PUBLIC
BUSINESS OBJECT

[Köllmann et al. 2006]

How can business object modifications be
hidden from other users as long as the process
activity during which the changes are made is
not finished?

Introduce private-public business objects, which expose two
separate images, a private and a public image of the
contained data.

PROCESS-BASED
INTEGRATION
ARCHITECTURE

[Hentrich et al. 2006]

What architecture design concepts for process-
driven backend systems integration are
necessary, in order for the architecture to be
scalable, flexible, and maintainable?

Provide a multi-layered PROCESS-BASED INTEGRATION
ARCHITECTURE to connect macroflow business processes
and the backend systems that need to be used in those
macroflows.

REPOSITORY

[Evans 2004]

Exposure of technical infrastructure and
database access mechanisms complicates the
client.

Delegate all object storage and access to a REPOSITORY.

SERVICE

[Evans 2004]
Some domain concepts are hard to model as
objects because they have no state.

Define one or more related operations as a standalone
interface declared as a SERVICE and make the SERVICE
stateless.

