
The Absent Participant

More patterns for group awareness

Till Schümmer
FernUniversität in Hagen

Department for Mathematics and Computer
Science

58084 Hagen, Germany
till.schuemmer@fernuni-hagen.de

Stephan Lukosch
FernUniversität in Hagen

Department for Mathematics and Computer
Science

58084 Hagen, Germany
stephan.lukosch@fernuni-hagen.de

ABSTRACT
The awareness of group members is one crucial aspect in
computer-mediated interaction. This paper presents a set
of patterns that support groups in which one or more group
members are currently away from the group. The patterns
help the group to stay aware of the missing user and the
user to keep up to date of what happens in the group. The
patterns are part of a larger pattern collection for computer-
mediated interaction.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces—Asynchronous interac-
tion, Computer-supported cooperative work

General Terms
Design, Human Factors

Keywords
Design patterns, awareness, groupware

1. INTRODUCTION
In a networked society, new forms of work have evolved

over the last two decades. People collaborate over distance
in virtual teams. They create virtual collaboration spaces
[24] at which they meet at the same or different points in
time. Understanding and better supporting distributed col-
laboration has been the goal of the research area of CSCW
(Computer Supported Collaborative Work) [14]. Compared
to its early beginnings in the 1980ies, we can currently state
that this research area has matured. However, only a few
of its findings have entered the main stream of software
development. Therefore, we argue that the whole field of
computer-mediated interaction should be supported by a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLoP’06 October 21-23, 2006, Portland, OR, USA
Copyright 2006. Copyright is held by the author/owner ACM 978-1-60558-
151-4/06/10 ...$5.00.

pattern language that will help software developers of var-
ious domain to better consider the collaboration aspect in
their applications. Up to now, we have collected over one
hundred patterns in this field [25]. In this paper we present
patterns for asynchronous interaction, partially from the col-
lection at http://www.cmi-patterns.org and partially up
to now unpublished, that have been discussed in a PLoP’06
writer’s workshop.

Since we cannot assume that all members of a collabora-
tion space will be present at the same time, it is important
that the environment keeps the members informed about
activities that occurred during their absence. A concrete
example is a virtual team of software developers who are
distributed around the world. Rashid from India starts to
work on the project at 9:30 local time. At this time, PaweÃl
from Poland is still in bed and Josè from Mexico enjoys a
dinner with his spouse. This means that much of the collab-
oration takes place asynchronously. Coordination of group
activities and exchange of information becomes much more
difficult. Although all three developers are nominal group
members, it is hard for them to stay aware of their activities.

Group awareness has been an important research area
in the field of CSCW (Computer Supported Collaborative
Work). Dourish and Bellotti [5] defined group awareness
as “an understanding of the activities of others which pro-
vides a context for your own activity”. Providing awareness
helps to coordinate the group members’ own activities. In
synchronous contexts, examples of awareness widgets are
Presence Indicators or User Lists that help to detect
the presence of a collaborator or Telepointers and Re-
mote Viewports that indicate at which part of a shared
document remote users currently put their focus [7], [22],
[15]. For asynchronous collaboration, there are fewer exam-
ples in the research literature, however, some practices have
proven to work.

2. A COMMON STORY
We will explain the patterns in the context of a common

story. Imagine that your goal is to support teams of dis-
tributed software developers and software customers in the
development of the next generation game engine. The mem-
bers are distributed as shown in figure 1. One team of de-
velopers is located in the Rio, one in London and a third
in India. The main customer is a large game manufacturer
located in Germany who has the goal of building an educa-
tional game that helps to better understand water supply in
African countries. The game manufacturer has a group of

African pilot users located in Ethiopia and in Malawi.

Figure 1: Distribution of team members in the ex-
ample setting

Different interaction constellations can be found in this
hypothetic project: The developers from the London con-
tinue to work on the results that were created only some
hours before in India. Both software teams communicate
to plan the internal architecture of the game engine. In
other meetings, the London team collaborates with the Ger-
man customer who integrates the game engine in his project.
The German customer also communicates with some of the
developers in India or Rio if time shifts allow an interaction.
Finally, the German game manufacturer interacts with his
pilot users and collects suggestions from them on how the
game could be improved.

Since all teams are distributed and potentially work at dif-
ferent points in time (remember the time shifts), the aware-
ness of other team members becomes a crucial aspect for
making interaction and coordination between the individual
participants possible.

3. A PATTERN LANGUAGE FOR ABSENT
PARTICIPANTS

We can approach the problem of group awareness from
different perspectives. Assuming that one user leaves the
collaboration context for a longer period of time, it is im-
portant that (a) the group becomes aware of the other user’s
absence so that they can adapt their group process if needed
and (b) the absent user is aware of important changes in the
collaboration space so that he can more easily resume collab-
oration after his absence. This is reflected by the patterns
in this paper.

Figure 2 provides an overview on the patterns. Patterns
are shown as rounded rectangles. Numbers refer to the sec-
tion in Chapter 3 where the pattern can be found. The
arrows between the patterns denote a reference between the
patterns. If a pattern has been considered for application,
you should also consider all patterns that are related from
the original pattern. Bordered areas cluster the patterns
with respect top their main focus.

When implementing a system that supports absent partic-
ipants, you should first ensure that activities of other users
are logged and therefore consider patterns from the Logging

Interest Agent

Away Message

Replay

Activity Expiration

Change Indicator

Activity Indicator

Activity Log Activity Monitoring

Timeline

Periodic Report

Aliveness Indicator

Logging

Indicators

Comprehension

Agents

1

2

3

45

6

7

8

9

Figure 2: Patterns for asynchronous group aware-
ness described in this paper

cluster. The Activity Log and the Activity Monitor-
ing pattern support this. Since these two patterns were
published before [22], we only include their thumbnail in
this paper:

Activity Log
Problem: Merging two users’ (past or current) activities
is a difficult task. It requires the activities to be transferred
to the same context and the goals aligned. Many applica-
tions do not provide access to the history of an artifact, its
use, and its evolution, however. Thus merging is vulnera-
ble to errors and often collaboration does not take place,
since the effort of merging exceeds the expected gains from
a collaboration.

Solution: Remember all activities – not only modifica-
tions, but also read accesses – that users perform on shared
artifacts in a log. Provide access to the log so that it is possi-
ble to understand (and merge) the various users’ activities.

Activity Monitoring
Problem: Many proprietary tools are not designed for
extendability. They do not provide means to modify the
application’s behavior. This makes it difficult to add auto-
matic tracking of user’s activities, which you would need to
provide awareness.
Solution: Add an additional layer in the communication
between the application and the shared data to monitor the
user’s activities. Allow other parts of your application (e.g.
a Activity Log or a User List) to subscribe to monitored
activities.

These two patterns help to capture events. In line with [9],
we define an event as “any significant change in the state of
an observed object”. The Activity Expiration→3.1 pattern
which is added to the Logging cluster in this paper argues
for removing events from the activity log if it grows too large
to avoid information overload.

The log data can now be analyzed and visualized in differ-
ent ways. The cluster labeled Indicators includes patterns
that help to better understand traces of users in the sys-
tem. The Activity Indicator→3.2 shows where the other
users have been active while the Change Indicator→3.3 vi-

sualizes modifications to artifacts that the absent user has
not yet seen. The Aliveness Indicator→3.4 finally shows
whether or not a user has been active at all.

These patterns focus on individual activities. After a
longer period of absence, this is not sufficient to get a holis-
tic idea of the group’s progress. The three patterns in the
Comprehension cluster therefore support the user in better
understanding sequences of activities. The Replay→3.7 pat-
tern replays activities like in a movie. The Timeline→3.6

provides a quick overview by chronologically visualizing
changes. The Periodic Report→3.5 avoids a large diver-
gence between the absent user’s knowledge and the group
progress by frequently informing the absent user on changes.

The last cluster in Figure 2 includes two patterns that
show how the user can stay “present” without “being there”.
The idea is that an Agent takes the role of the user while
the user is absent. The Interest Agent→3.8 collects ac-
tivities that are relevant for the absent user and the Away
Message→3.9 communicates the absence to the group when-
ever the absent user is required for interaction.

As mentioned in the introduction, this paper only presents
a small part of a larger pattern language on computer-
mediated interaction [25]. Whenever patterns reference
other patterns of this language, you can find short versions
of these patterns on http://www.cmi-patterns.org or full
versions of the pattern in [25]. Note that after the PLoP con-
ference, most of these patterns evolved so that they could
be included in the book on patterns for computer-mediated
interaction [25]. This shows the impact that a writer’s work-
shop can have: through fruitful discussions, the topics pre-
sented in the patterns became more focussed, the pattern’s
inherent forces became clear, the coherence of the pattern
language increased, and the concepts presented in the pat-
terns were be related to experiences made by professionals
participating in the workshop.

For the patterns present in [25], we decided to include
an abbreviated version in this paper. These are Ac-
tivity Indicator→3.2, Change Indicator→3.3, Alive-
ness Indicator→3.4, Replay→3.7, Timeline→3.6, Periodic
Report→3.5 and Away Message→3.9. You may consider
these short versions of the pattern as an appetizer that
should be sufficient to understand how the pattern works.
To the same extent as we explain the problem and the so-
lution, we include danger spots, namely potential negative
effects when applying the patterns. They are mainly the
result of the discussion at the writer’s workshop: partic-
ipants shared their observations with patterns like Away
Message→3.9 and complained about information flooding
experienced by too extensive awareness mechanisms. We
consider this as an important aspect of awareness patterns
in general. How to balance the need of staying aware with
the desire of spending low efforts on information processing
is a challenge that needs to be addressed when applying the
patterns in a specific context. To our experience, the dis-
cussion of danger spots makes it easy for the designers and
the users to find a good balance.

More detailed information like discussions of the pattern’s
rationale, extended examples, or hints for applying the pat-
tern in practice are provided in the book. For space rea-
sons, two patterns could not become part of the computer-
mediated interaction book and are only presented in this pa-
per: Activity Expiration→3.1 and Interest Agent→3.8.
They are included in this paper in full length.

3.1 Activity Expiration

Context: You are providing asynchronous awareness like
information on who has edited a specific page.

Problem: Awareness information helps to make a
user understand what other group members have
done in a collaboration space. They show other
user’s traces and therefore make the collaboration
space a living place. However, these traces become
too confusing if they stay in the space forever.

Scenario: Susan has been very active in the past and
thereby gained a top position in the community’s Hall of
Fame. However, she stopped her participation half a year
ago and is no longer responding to requests. Claire who
is seeking for assistance is thus mislead by the information
found in the Hall of Fame that suggested her to contact
Susan.

Symptoms: Consider to apply the pattern when . . .

– users complain that they are informed about old ac-
tivities that are not relevant anymore.

– users react to an activity but the other user who per-
formed the activity is no longer aware of what she did
in the past.

Solution: Mark activities as outdated after a spe-
cific point in time or after a user has noticed the
activity. This means that these activities are no
longer considered when providing awareness infor-
mation for the user.

Collaborations: Activities are stored in an Activity Log
and used to provide awareness on past actions. The pat-
tern proposes to have two triggers for marking activities as
outdated:

1. A user can explicitly request that an activity is marked
as outdated. This means that a flag is set in the ac-
tivity object.

2. The system periodically checks activities and flags
those activities that are too old.

In the first case, the flag has to be an attribute that is
only associated to the user that has set the flag. This is
necessary because different users can request that an activity
is outdated at different points in time. In the second case,
a global flag is set that is valid for all users.

When the system calculates awareness information, it only
considers those activity records that are not marked as out-
dated.

Rationale: When providing awareness information, it is al-
ways important to balance the amount of information so that
it is not too complex for the user. Otherwise, the user will
be distracted by the awareness information. The question
of what to filter in the process of providing group awareness
has to be stated in each design of an awareness widget.

One way to filter awareness information is to assume that
a user will remember information that was presented to her
in the past. If a user, e.g., has been informed about new
versions of a document in a Periodic Report→3.5, one
can assume that she will have processed this information.

Telling her about the new document on the next day again
will probably rather distract the user. The same is true for
activities that do no longer have an impact on the group
interaction. If a user, e.g., created a document to plan the
next days of collaboration, it will often make little sense to
inform another user who has been absent for a year about
this planning document a year later.

It is therefore important that old traces are no longer visi-
ble. The decision when it is appropriate to hide old activities
is often user dependent. A user who has seen the newest ver-
sion of a specific part of the collaboration space will show
less interest in the activities for that part as a user who has
not yet found the time to review the changed artifacts.

One could argue that the activities could also be deleted.
However, in some cases the activities can become important
again. One example is that users do no longer remember who
collaborated on an artifacts in its early days. Being able to
find these people can be important if implicit knowledge is
requested from them.

Check: When applying this pattern, you should answer
these questions:

– What kind of automatic triggers will you use to out-
date activities?

– Will you allow a user to outdate activities manually,
e.g., by providing a command that outdates all activ-
ities for a specific user?

– Can you outdate activities after you presented them
to the user?

Danger Spots: In cases where the activities are stored in a
database, the storage becomes more complex if the activities
are outdated for the individual users. It can then make sense
to only remember the time of the oldest activity a user is
interested in. Users can in this case decide to forget all
activities that are older than a specific age.

Known Uses:

BSCW [1] maintains an Activity Log to visualize mod-
ified artifacts using Change Indicators→3.3. These
indicators however do not vanish unless the local user
decides to catch up all changes. This results in the sit-
uation where the change warnings are no longer shown.

Motorola E1000 is a mobile phone in which the SMS con-
figuration may be appropriated in order to keep only
a specific number of short messages and skip old mes-
sages.1

Firefox http://www.mozilla-europe.org/en/products/

firefox/ is a web browser that is able to automat-
ically forget all visited pages after a user specified
period of time. Links to these pages will then be
displayed as unseen again.

Related Patterns:

Activity Log: The Activity Log stores all activities that
were performed in a collaboration space. The impor-
tance to consider not all of these activities is raised by
the Activity Expiration pattern.

1http://direct.motorola.com/ENG/web_producthome.
asp?Country=GBR&language=ENG&productid=29265

3.2 Activity Indicator

Context: Users are geographically distributed and interact
in a highly synchronous session that involves frequent turn-
taking and request-response interaction.

Problem: Users need time to perform a task but only
the results are shared among them. In a collocated
setting users are accustomed to perceive non-verbal
signals such as movement or sounds when another
user is active. If the users are distributed, these
signals are missing. Users are therefore not aware of
other users’ activities, which can result in conflicting
work or unnecessary delays.

Scenario: Rick and Dimitri both decided to work on graph-
ical aspects of the game engine project. Rick started to work
on the rendering of places, while Dimitri looked at the ren-
dering of actors. At one point Dimitri started changing some
code that he had currently checked out to his workspace. He
planned to check the code in again after he had tested his
modifications. However, if Rick also wanted to modify the
same section of code, both user’s changes would need to be
merged after they had finished their tasks.

Symptoms: Consider to apply the pattern when . . .

– Users dislike distributed interaction because they do
not know what the other users are doing.

– Users perform concurrent actions.

– Users wait a long time for another user’s action, even
if the other user does not act at all.

– Users act at the same time but do not necessarily share
the same focus.

– Users do not want to be distracted from their current
task, but still feel the need to stay aware of other users.

Solution: Indicate other user’s current activities
in the user interface. To reduce interruptions, use a
peripheral place or a visually unobtrusive indicator.

Collaborations: Provide a user interface element in a pe-
ripheral location that shows whether remote users are active
and what they are currently doing. The current activity of
a user can for example be determined using an Activity
Log. Ensure that remote users’ activities are shown in the
user interface immediately the start to act. Hide the activity
if no more activities are detected from the remote users (for
example, there is no keyboard input for a specific period of
time).

Danger Spots: If many users collaborate, displaying their
various activities becomes difficult. Therefore, reduce the
information provided and cluster the information when sev-
eral users are performing the same activity, for example.

Known Uses:

MSN Messenger shows when another user is typing a
message in the status bar of the chat window. This
helps the local user to better judge whether a reply
can be expected.

Palant́ır [20] is a group awareness component that extends
a software configuration management system. Palan-
t́ır tracks the activities of project team members to
provide information about their actions.

Mail Clients like Thunderbird http://www.mozilla.

com/thunderbird/ provide a status icon whenever a
new message arrives.

Related Patterns:

Attention Screen can be used to filter the awareness in-
formation shown in the Activity Indicator.

Activity Log describes how to store information on the
users’ activities and can be used to determine a user’s
current activity.

3.3 Change Indicator

Context: Users work on independent copies of shared arti-
facts.

Problem: While users works on independent local
copies of artifacts, their checkout frequency for the
artifacts may be low. As a result, they may work
on old copies, which leads to potentially conflicting
parallel changes. The conflict is worse if two parallel
modifications have contradictory intentions.

Scenario: Marc has made some major improvements to the
graphics engine. The most important was that he changed
the coordinate system from cartesian to polar. Marc docu-
mented this change in the manual of the game engine. Mar-
tin, who uses the game engine, was not aware of this change.
He thinks that he knows how to use the game engine and
does not often read the manual. He therefore uses the graph-
ics engine part with cartesian coordinates and is confused
when the images look very strange.

Symptoms: Consider to apply the pattern when . . .

– Users apply changes to artifacts based on outdated
knowledge of the artifact’s state.

– Users report that they would have done things differ-
ently if they had been aware of the current state of the
artifact.

– Users frequently change artifacts.

Solution: Indicate whenever an artifact has been
changed by an actor other than the local user. Show
this information whenever the artifact or a reference
to the artifact is shown on the screen. The informa-
tion should contain details about the type of change
and provide access to the new version of the arti-
fact.

Collaborations: Figure 3 shows how the different partici-
pants collaborate. Note that we have chosen to demonstrate
the pattern on the assumption that shared artifacts are doc-
uments kept on a central document server. Without limiting
generality, this can be transferred to any shared artifact that
is kept at a specific place and that has to be copied to a local
system before it can be changed.

User 1 Document server User 2

Check-out document A with version 1

Return document A

Modify document A

Check-in modified document A

Confirm check-in

Create version 2

of document A

Return document A

Check-out document A with version 1

Indicate change of document A

Return document A

Check-out document A with version 2

Modify document A

Figure 3: Two users are working on a shared docu-
ment

In Figure 3 user 1 downloads a document A from the
shared document server. This document has the version
1. Later on, user 2 also checks the document A. Both users
now have independent copies of the document A which have
the same version. User 1 modifies the local version of the
document A and transfer this modified version to the shared
document server. The server creates a new version of doc-
ument A and informs user 2 about the new version. User 2
has not modified the local copy of document A, however, so
checks out the new version before performing the planned
modifications.

Danger Spots: Even when indicating changes, people might
ignore the indications. To overcome this problem, it is neces-
sary to establish a social protocol that defines how Change
Indications should be handled.

Changes can be complex, and providing details about
them can be complex too. In that case, consider provid-
ing a comparison view that contrasts a local user’s state of
a changed artifact with its state as seen by a remote user.

If changes occur too frequently, most artifacts will be
shown as changed artifacts, resulting in constant searching
for changes and insufficient time to perform constructive ac-
tions. One solution could be to highlight unchanged artifacts
explicitly, so that users can be confident that such artifacts
need no further attention.

Known Uses:

TUKAN. The programming environment TUKAN [21]
uses a weather metaphor to display change warnings.
A bold lightning symbol tells programmers that a spe-
cific artifact has been changed.

WinEdt. The text editor WinEdt (http://www.winedt.
com/) buffers the current file in memory while the user
performs edit operations on the file – as do many other
editors. If someone or something else has changed the
file, WinEdt displays a warning to indicate that the
current file has been modified outside of the applica-
tion.

Related Patterns:

Active Neighbors should be used if artifacts are seman-
tically related. In this case, it is important to high-
light not only changes to the current artifact, but also
changes that might have an impact on the current ar-
tifact at a semantic level.

Activity Log Use an Activity Log to store the activities
that are used to calculate conflicting activities.

User List When attached to artifacts, a User List is com-
parable to a Change Indicator in that it also dis-
plays activities on artifacts. The main difference is
that a User List only consider activities that are still
active. In most cases, Change Indicators show ac-
tivities that are completed.

3.4 Aliveness Indicator

Context: Users collaborate asynchronously on shared
artifacts or in shared virtual or non-virtual collaboration
spaces.

Problem: Users who work mainly asynchronously
only experience a small subset of activities that take
place in the collaboration space. Specifically, they
cannot easily see whether other users have been ac-
tive during their absence. This makes it hard to
experience life in the group.

Scenario: Marc just returned from a business trip. He
enters his office and wants to continue with the work on the
graphics component that he started last week with Carla.
However, he does not know whether or not Carla has also
done any work in this area while he was out of office.

Symptoms: Consider to apply the pattern when . . .

– Users complain that others have stopped participating,
although the silent users still follow the interaction.

– Users ask the whole group whether or not they are still
participating.

– Users ask each other to visit the collaboration space
but are not sure whether or not other users have fol-
lowed their request.

Solution: Show an Aliveness Indicator with the
user’s virtual representation. For users that have
performed activities in the collaboration space re-
cently, use a picture for their indicator that looks
very alive. Use gradually less lively pictures to rep-
resent periods of inactivity. Make the picture look
like something for which the user can take respon-
sibility.

Collaborations: The system keeps track of users’ last ac-
tivities in the collaboration space. When visualizing the
members of the collaboration space (in the context of the
collaboration space), the system calculates the time span
since the user’s last activity. Depending on this interval, the
system selects a different indicator to show with each user’s
representation. For short time spans and hence recent activ-
ity, the indicators symbolize a high degree of vivacity, while
longer time spans are symbolized by less lively pictures.

Figure 4: Aliveness Indicators

Figure 4 provides examples of aliveness indicators: a with-
ering flower, a declining bar chart, a fading picture, or a
candle burnt down.

Optionally, the indicator can provide additional informa-
tion, for example by using a tooltip. It could show the time
when the user was last active, or provide details about what
the user did when active. The indicator can also have dif-
ferent scopes. For a shared workspace system, there can be
one indicator for each user in each workspace. In this case,
it makes sense to use an indicator that represents an arti-
fact that the user must take care of, such as the flower in
Figure 4. In systems where the collaboration space is less
important, there can be one global scope. This means that
the user has the same indicator for the whole system. The
fading user image is an example of such a visualization.

The second decision for the scope is whether the indicator
should be bound to an individual or to an artifact or region
in the collaboration space. An example of the latter could
be that the place is symbolized by a virtual flower and that
every activity in the place “waters” the flower.

Danger Spots: The motivation to keep an activity indicator
alive is probably the most important pitfall in this pattern:
users can just pretend participation. Whether or not their
participation is relevant to the group is not measured by the
pattern.

An interesting analogy to this was reported by Dave West
at the PLoP writer’s workshop: he remembered a UNIX
system that scheduled interactive processes with higher pri-
ority. The reason for that was that live processes should
respond quickly. However, this handicapped non-interactive
processes: what happened in his lab was that users started
to press the space bar repeatedly just to pretend that their
processes were interactive!

In the case of the Aliveness Indicator, the same phe-
nomenon may emerge if the number of activities is taken
as the only measure for participation. You could consider
grouping different activities into different classes, so that
some activities have a higher impact on the Aliveness In-
dicator than others. However, this may only shift the prob-
lem somewhere else: users could find new ways to trick the
indicator.

In general, this relates to the issue of trust. Aliveness
indicators can create a large social pressure to participate,
especially if managers observe them. In contexts in which
participation is less mandatory, you should think about us-
ing Masquerade to allow users to turn their indicator off.
In any case, this should be coupled with the Reciprocity
pattern, so that users who turn their indicator off cannot
see other users’ indicators.

Be aware of different cultural perception for the icons you
use for Aliveness Indicators. In some cultures, an ex-
tinguished candle can be interpreted as a sign of death, so
people might relate it to a feeling of being dead for the com-
munity. Icons thus need to be carefully chosen to suit a
community, and should be more abstract than concrete if
there is cultural diversity in the community. The same is
true for the use of colors: in some cultures, white is for ex-
ample a color of freshness and birth, while other cultures
connect associate it with mourning and death.

Using too many indicators, such as at every place in the
collaboration space, can lead to a situation in which users
constantly chase their indicators to keep them alive. Con-
sider for example the example of a virtual flower that is
bound to a workspace. If users are allowed to enter many
workspaces, they will also have many flowers and will need
to look for them even if the workspace is deserted for a longer
time. A solution to this problem could be either to reduce
the number of places that have flowers for specific users, or
to slow down the aging of the flowers so that they only fade
when both other users are active and the owner of the flower
is absent. This however complicates the calculation of the
flower’s age.

Known Uses:

Flowers in CURE. In the CURE web-based collaboration
space [23] flowers are used to indicate when a user is
active in a group’s space.

XING (https://www.xing.com) is a social networking sys-
tem that shows an activity meter on each user’s con-
tact page that represents how active the user has been
recently.

Related Patterns:

Change Indicator→3.3 shows a modification on the rel-
evant artifact. The difference between this and an
Aliveness Indicator is that only modification ac-
tivities are shown, and that time in most cases does
not play an important role in the Change Indicator
pattern.

Activity Log allows collection of activity information
about users and calculation of how the Aliveness In-
dicator should be displayed.

User List helps to understand the presence of a user bet-
ter. An Aliveness Indicator is also applicable in
semi-synchronous or asynchronous settings.

User Gallery provides a place to display an Aliveness
Indicator.

Away Message→3.9 Users who plan an absence can set up
an Away Message to explain to the community why
their Aliveness Indicator indicates inactivity.

Virtual Me can be combined with an Aliveness Indica-
tor. Whenever other users browse the page describing
the user, they can also see how “alive” the user is.

Reward is another way of honoring participation, but this
time by considering the quality of other users’ actions.
When users perform valuable actions, they receive an
award. The difference to an Aliveness Indicator is
that rewards normally do not fade.

3.5 Periodic Report

Context: Users collaborate asynchronously by modifying
shared objects.

Problem: Changes in indirect collaboration are only
visible by inspecting a changed artifact. Users want
to react to actions on artifacts, but they cannot pre-
dict when these actions will take place.

Scenario: In January Weigang filed a bug report on a se-
curity problem in the login mechanism of the game engine.
He then checked the affected components frequently for an
update. In January he did this daily, since he really needed
the security fix. Nothing happened, however, so Weigang re-
duced the frequency of his update checks. Now, four months
later, he only scans the files every fortnight and has given
up hope of a fix. Reflecting on the last few months, Weigang
regrets that he spent so much time looking for updates.

Symptoms: Consider to apply the pattern when . . .

– Users rely on each others’ activities but cannot predict
when they will take place.

– Users frequently scan for changes but rarely find any.

– Collaboration takes longer than it should because users
do not scan for changes as frequently as they appear.

– The community performs many modifications a day, so
that direct notifications of each change would consume
too much attention or would be too expensive.

Solution: Inform users periodically about the
changes that took place between the time of the cur-
rent report and the previous one.

Collaborations: Users defines an interest profile manually
or automatically based on their access rights in the collab-
orative system. They also define a notification interval and
a communication channel by which they would like to be
notified.

After the interest interval has passed (in most cases at
night), the system checks whether artifacts matching any
interest profiles have been modified within the last time in-
terval. If this is the case, the system puts meta-information
on the change into a periodic report. The periodic report,
with information on all matching modified objects, is sent
to the users using the requested communication channel.

Meta-information can for example contain a short descrip-
tion of the artifact, information about the person who mod-
ified it, and the time and type of the modification. It should
include a quick reference to the changed artifact to ease ac-
cess to it.

The check for changed artifacts can take place in two al-
ternative ways:

1. The system can query the timestamps of all objects
and search for those that fall within the notification
interval. This has the advantage that the artifacts
only have to carry a timestamp and no additional data
structures are needed to track changes. Information on
the performer of the change needs to be stored with the
artifact if such information is required in the periodic
report.

2. The system tracks all changes in an Activity Log
and queries the Activity Log for activities that took
place during the notification interval. Since the ac-
tivities carry all the required meta-information (per-
former, time stamp, and the type of activity), this
information does not need to be part of the artifact.
However, the number of recorded activities may soon
grow and slow the system down.

Danger Spots: The report can be considered as spam.
Make sure that the users know how to tailor the report to
their needs.

In most cases it is advisable to avoid empty reports. How-
ever, subscribers could think that their report had been lost
if they didn’t receive one.

Make sure that the report is structured in a way that
can be easily grasped. Provide enough information on the
artifacts to allow a reader to filter irrelevant changes without
looking at the specific artifact in the system.

Known Uses:

BSCW is probably one of the best-known collaborative sys-
tems to make use of Periodic Reports.

Forums like Yahoo Groups (http://groups.yahoo.com)
often provide options for controlling the frequency of
messages sent to subscribers.

CURE sends a daily report every night. The report lists
changes that occurred in rooms to which the recipient
has access.

e-Commerce websites often allow customers to store
their interests and their e-mail address on the server.
Whenever a new item is added or an old item is
changed, the site sends a notification e-mail informing
the potential customer that there might be something
new of interest on the site.

Related Patterns:

Attention Screen An attention screen filters notifica-
tions and contact requests to ensure users’ privacy. It
can be combined with a Periodic Report to ensure
that users stay informed about the activities in a col-
laborative environment. It can also enhance accep-
tance of the Periodic Report, since it allows users
to define the information that should reach them via
the periodic report.

Change Indicator→3.3 A change indicator provides infor-
mation about changed artifacts in the same context
as the artifact itself. The notification that an artifact
has changed is attached to the artifact. In contrast,
a Periodic Report externalizes this information and
transmits it to users’ work contexts outside the system,
for example via users’ mailboxes.

Activity Log An Activity Log keeps track of all activ-
ities in a system. A Periodic Report can be gen-
erated from the Activity Log by querying it for ac-
tivities that took place on relevant artifacts since the
previous report.

3.6 Timeline

Context: Your system supports long-term asynchronous
and/or synchronous interaction.

Problem: Not all users participate in collaborative
sessions continuously. This makes it hard to un-
derstand who is working with whom on what topic.
Without such an understanding, however, users lack
the orientation and coordination required for group
interaction.

Scenario: Maurice tries to understand what Paul and his
colleagues implemented last week while Maurice was on va-
cation. He knows that the other developers discussed the
strategies for their work frequently and then split work be-
tween themselves. He decides to examine the change notifi-
cations that were circulated by e-mail, but even after this he
still lacks a holistic picture of the development activities.

Symptoms: Consider to apply the pattern when . . .

– Users complain that others do not participate, al-
though they do participate.

– Users stop participating, but this is not detected by
the group.

Solution: Display the activities that took place in
a workspace as a timeline.

Collaborations: The timeline is a two-dimensional diagram
that relates the time of an activity with either the artifact
used in the activity or the performer of the activity.

First group the activities monitored in the Activity Log
by the days on which each activity took place. Then show,
for each day, the activities that took place on that day. Sep-
arate the days using bars.

Display each activity as an icon or a dot in the diagram.
Use different icons for different users when showing the ar-
tifacts accessed by the activities on one of the axes. When
showing users on one of the axes, think about different icons
for the different artifacts that were accessed.

Use dynamic data visualization techniques such as
Datatips or Local Zooming [26] to support the display
of long activity logs with many artifacts. This means that
additional information is provided on request. Connect the
display of activities with the documents that were accessed,
so that the timeline can be used for navigating to shared
objects.

Danger Spots: Ensure that you select the data set with
the higher cardinality for the Y axis. If your group, for ex-
ample, has five members who work on fifty documents, the
documents should be shown on the Y axis and the members
should be shown using different colors or icons. This leads
to a diagram with fifty lines and five different icons. Other-
wise, one would have a diagram with just five lines but fifty
different icons, which would probably be harder to read.

One problem with this pattern can be scalability. As Ga-
noe at al. [12] evaluated in a field study, a timeline can be-
come“less effective (and even cluttered) if there are frequent
changes to all the documents.”

Known Uses:

Virtual School is a collaboration space for student inter-
action. In a user study [2], the authors of the Virtual
School environment, found several breakdowns in col-
laboration that had their causes in a lack of activity
awareness. One solution was to integrate a timeline
into the students’ workspace. The resulting system
was then called the BRIDGE awareness center [11].

Babble Timeline [6] is a visualization widget for better
understanding the history of chat conversation. It
shows up to one week of the chat log recorded in a
Babble chat.

CVS History Explorer http://www.

eclipseplugincentral.com/Web_

Links-index-req-viewlink-cid-819.html is a
tool that visualizes the history of files stored in CVS,
a versioned Shared File Repository. Users can se-
lect an artifact and open the timeline for the artifact,
which is based on the Flow history visualization first
proposed by [27].

Related Patterns:

Replay→3.7 also addresses the problem of explaining the
activities that took place in the collaboration space to
an absent user. The difference is that a Timeline visu-
alizes activity information, while the Replay pattern
shows which artifacts the activities changed.

Periodic Report→3.5 A Periodic Report provides a
more detailed view of changes in a collaboration space.
It is well suited to short time spans, but will become
very complex when it shows a longer period. A Time-
line abstracts further from the activities and is there-
fore capable of providing a longer overview of activi-
ties.

Activity Log A Timeline displays the activities stored in
the Activity Log.

Aliveness Indicator→3.4 helps to detect the fact that a
user has stopped participating. This can be seen in the
Timeline when there are no more entries for a specific
user – especially when the timeline display shows users
on the Y axis.

Immutable Versions For each activity, you should be able
to link to the version of the document that resulted
from the activity. This requires that you keep all ver-
sions of the shared artifact, as described in the Im-
mutable Versions pattern.

Timeline in the context of project retrospectives [17]. The
technique of project timelines has been widely used in
the context of project retrospectives, and captured as
patterns by various authors, e.g. [13]. The basic idea is
that members of a project team place notable project
events on a visual timeline. The technical Timeline

presented in this pattern can support the creation of a
project timeline. When using a technically generated
Timeline in a retrospective, you should allow users to
attach Shared Annotations to the Timeline so that
they can comment on the events.

Dynamic Queries and Data Brushing [26] discuss how
complex diagrams like a Timeline can be explored in-
teractively. In the Dynamic Queries pattern, users
can control a set of filters that defines which data el-
ements are included in the diagram. In the context
of the Timeline a filter could reduce the set of users
who are included in the diagram. The Data Brush-
ing pattern suggests simultaneously showing different
diagrams and allowing the user to select data in one of
the diagrams, with the effect that the other diagram
shows more detailed information based on the data se-
lected in the first diagram. Translated to the context
of a Timeline, you could consider having one global
diagram for the collaboration space, with detail dia-
grams that are shown after the user selects a set of
documents in the global diagram.

3.7 Replay

Context: You allow users to join, leave, and rejoin a col-
laboration at different points in time.

Problem: When users join an ongoing collaboration
as latecomers or when users rejoin a collaboration
after a time of absence, it is hard for them to under-
stand how the current state of the collaboration has
been reached, or what has changed since their last
participation, by only perceiving the current state
of the collaboration.

Scenario: Paul and Susan performed an extremely success-
ful pair-programming session. The next day, Susan wants
to continue the session but Paul has contracted flu and can-
not participate. Susan therefore asks Liam. Unfortunately,
Liam does not know what has been going on in Paul’s and
Susan’s session, which make it hard for him to start collab-
orating with Susan.

Symptoms: Consider to apply the pattern when . . .

– Users have problems participating in a collaboration
from its beginning.

– Users have problems understanding how the current
state of a collaboration has been reached.

Solution: Capture all changes to the shared objects
used in the collaboration in an Activity Log. When
users join or rejoin a collaboration, replay the cap-
tured changes to show them how the current state
of the collaboration has been reached.

Collaborations: To replay the sequence of changes by which
the current state of a Collaborative Session has been
reached, it is necessary to capture all changes that are ap-
plied to the shared state and to store these changes in a log
(see Activity Log).

Two cases have to be distinguished: with or without a
central server. In the simplest case, a server can be used as
a provider for the latecomer. This is for example the case

when using Centralized Objects or Mediated Updates
to communicate state changes. In both cases, the server has
to be enhanced to keep a log of all state changes already
applied to shared state. Depending on how state changes
are distributed, this might either be a log of Distributed
Commands or a set of Immutable Versions for all shared
objects.

The client system joining the collaboration is called a
“latecomer”. When a central server is available, a latecomer
can contact the server as provider and request the log of state
changes. After the latecomer has contacted the provider,
the provider includes the latecomer in future communica-
tion about state changes. From that point on the latecomer
buffers all messages about state changes.

After including the latecomer in communication, the
provider supplies the latecomer with a log of state changes.
As soon as the latecomer has received the log, it starts to re-
execute all state changes and display their execution in the
user interface. While executing the state changes, the late-
comer displays a control panel that allows the speed used to
re-execute the state changes to be set. After replaying the
log, the latecomer checks to see whether it has received fur-
ther state changes. If there are state changes in the buffer,
the latecomer executes them. When the buffer is empty,
the latecomer has a consistent current state, stops buffering
state changes, and participates in the session.

If there is no central server, it is not necessarily the case
that any of the clients have been in the session from its
beginning and so know of all state changes. To solve this
issue, you can model the state changes as shared objects
again. All clients synchronize their logs by means of the
synchronization mechanisms for Replicated Objects and
keep a full log of all state changes that can then be sent to
latecomers. State Transfer can then be used to provide
a latecomer with a copy of the log.

Danger Spots: Transmitting the complete log of state
changes might take a lot of time, especially if a latecomer
is joining very late in a session. To overcome this issue,
make regular copies of the shared state and let latecomers
choose the point of time at which replay starts. Then select
the copy of the shared state that is closest in time before
the time selected by the latecomer. Transmit this copy and
only the commands that have been executed afterwards to
the latecomer. The latecomer then uses the copy to initial-
ize shared objects and start executing commands from the
selected point in time.

It may not be feasible to create a full replay of the inter-
action. The system can only replay those parts that were
performed using the system. However, collaboration nor-
mally takes place using many interaction channels. The
probability that not all of these channels can be captured
and replayed is thus quite high.

A full replay can be too fine-grained, since it shows all op-
erations. The common way to overcome this issue is to ab-
stract from fine-grained changes to high-level changes. You
should therefore consider replaying composite changes in
one step and augmenting the replay with meta-information.
Finding the right level of abstraction is however domain-
and case-specific.

Known Uses:

Collaboration Bus [3] is a groupware development envi-
ronment that offers a service that allows sessions to be

replayed.

DreamObjects [18, 19] is a groupware framework that
keeps the log as a replicated object. It therefore does
not need a central server to act as a provider of the
log. When joining, users can choose what percentage
of the current should be replayed and the delay be-
tween display of state changes.

CatchUp [16] is a plug-in for the Eclipse development envi-
ronment that allows record and replay of refactorings.

Related Patterns:

Activity Log describes how to log all changes to the
shared state.

Centralized Objects allows a central server to be chosen
as session state provider for a latecomer.

Collaborative Session allows users to plan and coordi-
nate synchronous collaboration. Latecomers need the
current state of the session.

Distributed Command allows state changes to be encap-
sulated.

Immutable Versions allows different versions of a shared
object to be identified.

Mediated Updates allows the mediator to be chosen as
state provider for a latecomer.

Replicated Objects can be used to keep a replicated log
of state changes.

Decentralized Updates requires that all or a subset of
all clients keep the log of state changes, because the
participants of a Collaborative Session communi-
cate in a peer-to-peer network, so there is no central
server that can be chosen as change log providers for
latecomers.

State Transfer directly transfers the current session
state to a latecomer.

Timeline→3.6 shows the orchestration of different activities
by means of a diagram. A Timeline can be compared
to a script of activities, while Replay executes or an-
imates the script.

3.8 Interest Agent

Context: Users interact in a long-term topic-based interac-
tion.

Problem: In order to be able to follow and under-
stand long-term interaction, users often have to par-
ticipate in the evolution of the topic. But for time
reasons not all users can participate in the group
throughout the whole process.

Scenario: At the kick-off meeting for the new game engine,
the main office invited all potential customers to participate
in the specification of the engine. Martin flew to London
for this purpose and shared their thoughts with Paul and
Maurice. Martin would have liked to stay updated on the
project’s progress since this will make it probably easier to

use the game engine in his next project. But unfortunately,
Martin had to return to his office and spend all his time in
the other project his company is working on.

Symptoms: Consider to apply the pattern when . . .

– Interaction that is relevant to many group members
takes place with only a small set of group members
present.

– Users want to react to group activities but they don’t
know when such activities will happen.

– Users interact in a general purpose interaction space
but are only interested in a specific subset of topics.

Solution: Allow the users to place an interest agent
at the interaction space that keeps track of relevant
changes.

Collaborations: A user participates with other users in an
interaction space. When the user temporarily leaves the
interaction space (e.g., because he wants to interact with
another group), his interest agent takes his place.

The interest agent is a software component that is capable
of observing an interaction space. It acts in this space as a
representative of the user. Whenever there is an activity
in the interaction space observed by the interest agent, the
agent informs the corresponding user.

The interest agent should be tailorable so that the user
can decide, which activities in the interaction space are of
interest for him.

In case of small groups, the interest agent should be shown
to the remaining group so that the other group members stay
aware that the absent user follows the interaction (User
List).

From a technical perspective, the interest agent is an Ob-
server [10] of an event stream. New events trigger the
interest agent which then checks whether the event matches
one or more of the interest agent’s trigger conditions. If this
is the case, the interest agent creates a notification for the
absent user.

Rationale: Since the interest agent follows the interaction,
the owner of the agent can be sure that he will not miss
important actions in the interaction space.

Check: When applying this pattern, you should answer
these questions:

– How can you make the interest agent tailorable?

. Are there specific topics that can serve as filters
for relevant interaction?

. Are there different types of activities that are of
different interest to the owner of the interest agent
(the creation of an object could, e.g., be of greater
importance than the removal of the object).

. Does it make sense to follow only specific users’
actions?

– How do you inform the owner of the interest agent?
Is a daily notification (using a Periodic Report→3.5)
sufficient or should the interest agent provide immedi-
ate feedback?

– Is it important that other users stay aware of the ab-
sent user?

Danger Spots:

– Selecting the appropriate level of detail for the report is
difficult. The reported information can range from the
changes to artifacts that are reported in a Periodic
Report→3.5 up to communication content or naviga-
tion activities that are reported by using Replay→3.7.
Therefore, users must be able to tailor the reported
information to their needs.

– Often important information is captured semantically,
e.g. in a audio discussion among team members. This
kind of information is difficult to capture and report.

Known Uses:

Netnews: Many news readers allow the user to tag relevant
threads. The reader will track changes in this thread
and inform the user when new messages are added to
the thread.

ELVIN [8] is an event notification infrastructure that al-
lows users to configure interest agents to observe the
stream of events in the collaboration space.

Related Patterns:

Periodic Report→3.5: The notifications of the interest
agent can be accumulated in a periodic report. This
has the advantage that the owner of the agent will not
be disturbed during the day.

Change Indicator→3.3 also addresses the problem that a
user is unable to perceive all changes immediately. But
instead of informing the user when the change occurs,
the Change Indicator attributes the visualization of
the changed artifact in order to show that this artifact
has not been seen by the interested user.

User List covers the aspect of the interest agent pattern
that argues to visualize an absent user’s agent. How-
ever, there is one big difference: The Interest agent
shows users who are interested but not there while the
User List pattern shows users who are currently fol-
lowing the group process (by being there).

Replay→3.7 can be used by an Interest Agent to provide
a very detailed report of the activities.

3.9 Away Message

Context: Users interact in a request-response scheme with
differing levels of synchronicity.

Problem: Users expect their interaction partners
to respond quickly to their actions, but sometimes
an interaction partner is unable to respond quickly.
The longer initiating users have to wait, the greater
their frustration.

Scenario: Martin has encountered problems using the
graphics components of the game engine, so he contacts
Carla to ask her a question. Normally, Carla responds after

several minutes, but by the evening of Martin’s working day
there is still no response.

Symptoms: Consider to apply the pattern when . . .

– Senders ask recipients whether they received a message
because the senders did not get a response.

– Senders wait for a recipient’s action, but this action
does not happen.

– Senders are used to quick replies from their interaction
partners based on previous experience. This means
that they expect a specific responsiveness from their
interaction partner.

– Users are away from the interaction space from time
to time.

Solution: Let the groupware system respond to
a communication with an automatic away message
whenever a normal response time cannot be guaran-
teed. Provide information on when the requesting
user can expect a response.

Collaborations: The Away Message pattern suggests fol-
lowing a three-step process when users leave an interaction
context temporarily:

Setup. Before users leaves the interaction space, they think
about the duration of their absence. They create an
away message that explains why they cannot respond
and which includes information on the earliest possible
reply (their estimated return date).

In most cases, users also provide an explanation that
helps senders to handle urgent requests. An example of
this is an explanation about who a sender can contact
during the recipient’s absence.

Design the set-up process so that it is quick and easy.
Ideally a user should be able to activate an away mes-
sage with only one click. It may otherwise be too time-
consuming to set up an away message when a user is
about to leave.

Execution. When a sender sends a message to an absent
recipient, the recipient’s system automatically replies
with the away message. To avoid duplicate notifica-
tions, the recipient’s system in addition remembers
that the sender was notified. Further e-mails from the
sender will not be automatically replied to.

Tear Down. When absent users return and are ready to re-
ply to messages normally, they deactivate their away
messages. Optionally, senders who received an away
message can be informed that an addressee has re-
turned.

Danger Spots: One of the largest problems with away
messages is that they often do not distinguish between bi-
lateral and group communication. When communicating via
a Forum, for example, which delivers messages to the users’
e-mail boxes, the recipient’s system may reply with an away
message that is received by the whole group instead of the
individual sender. The reason for this is that many e-mail
dispatching mechanisms modify the message headers so that

the sender field is different to the reply-to field. The recip-
ient’s system keeps track of message senders, but replies to
the reply-to address. This address is again multiplexed to
all members of the forum. Forum members may therefore
receive multiple away messages, which is annoying.

When discussing this pattern with our copy-editor, he re-
ported a recent case of an employee who had left a company
with an active and permanent away message. For many
months afterwards every single posting to a mailing list re-
sulted in a reply to each of the several thousand members
of the mailing list that stated that “John Doe is no longer
at (this company)”. Almost no-one on the group had ever
even heard of the person or the company involved.

A solution is to keep track of the addresses to which an
away message has been sent, instead of the message senders
to which the message was a reaction. An alternative solution
that is often used is not to auto-reply with an away message
if the original message was not personally directed to the
absentee. For e-mails, for example, this is the case if the
recipient is set to the address of the forum and the member
of the forum is only added as a Bcc: (blind) recipient of the
message.

A comparable problem is that an absentee cannot know
in advance who will receive an away message. Since mes-
sages are by default sent to anyone who tries to contact the
absentee, the information about their absence can be seen
by anybody. This can be valuable information, especially
for spam mailers, since it proves that the e-mail address is
working and hence valid. A possible solution to this is to
define a list of e-mail addresses in advance that may receive
an away message.

This leads to a more sophisticated version of the Away
Message pattern in which the absentee can define different
messages for different groups of senders. If you consider
for example the case of a lecturer who leaves university for a
month, it makes sense to provide several away messages: one
for the students, in which questions on course management
might be answered, one for faculty members that discusses
issues about project work, and a third for external partners.
The problem with such sophisticated messages is it requires
more effort to set up the Away Message.

You could think about detecting the absence of a user au-
tomatically and providing away messages in this case. How-
ever, this may lead to two problems: first, such users will no
longer be in control of whether they tell other users about
their absence. This violates the users’ privacy. Second, such
a system will in most cases not know when the absentee re-
turns. This information is, however, needs to be included in
effective away messages.

Known Uses:

Vacation [4] is probably the most widely used implementa-
tion of an away message. In the activation phase, users
can specify a message body that is from then on sent
to all senders of e-mail to the absent user. Whenever
replying with an away message, the system keeps track
of the sender and ensures that no duplicate messages
are created.

Instant messaging systems like Trillian http://www.

trillian.cc/ allow users to add a message that ex-
plains that they are currently away. When another
user tries to initiate a chat communication, the system
automatically replies with the away message provided.

Related Patterns:

Availability Status also helps senders to stay aware of
the status of a request. However, the availability status
normally does not reveal any temporal estimation of
response.

Aliveness Indicator→3.4 An Aliveness Indicator is an
alternative to an away message, since it also signals
the requesting users that they may not expect an im-
mediate response. However, it does not explain why
the absentee cannot respond, or when the absentee will
again be available.

4. CONCLUSION
Within this paper, we presented a set of patterns that

address one of the most important aspects of asynchronous
group collaboration: staying aware of what has happened in
a collaboration space during a longer time of absence. Now
that the final version of this paper is made available, we can
also look back on 18 months in which these patterns began
to influence the construction of collaborative systems.

One example is the XecliP system, an eclipse exten-
sion that supports distributed pair programming (http:
//sourceforge.net/projects/xeclip/): Although in-
tended for synchronous interaction, the system allows to
Replay→3.7 interaction that took place in a pair program-
ming session and inspect the interaction between partici-
pants, e.g., for reaching a better understanding of the code’s
evolution. With systems like XecliP, the scenarios described
in this paper have become reality, although most distributed
teams still ignore most of the potentials for close interaction.

When using the patterns in our teaching, we observed that
students become much more innovative in designing collab-
oration support. In this sense, the patterns of this paper
as well as the rest of the pattern language for computer-
mediated interaction starts to show its real impact, namely
that it helps designers to take new opportunities given by
networked collaboration into account and shape the envi-
ronments of the future in which we will spend an increasing
part of our time.

5. ACKNOWLEDGEMENTS
Munawar Hafiz did a great job as a shepherd for PLoP

2006 where these patterns were first discussed. His ques-
tions helped us to make the following patterns more clear.
The workshop participants shared their experiences with us
which helped us to get another step closer to understand-
ing the real forces behind asynchronous interaction. Finally,
we would like to thank John Wiley & Sons for allowing us
to include abbreviated versions of patterns from [25] in this
paper.

6. REFERENCES
[1] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs,

D. Kerr, K. Sikkel, J. Trevor, and G. Woetzel. Basic
support for cooperative work on the world-wide web.
International Journal of Human-Computer Studies:
Special issue on Innovative Applications of the
World-Wide Web, 1997.

[2] J. M. Carroll, D. C. Neale, P. L. Isenhour, M. B.
Rosson, and D. S. McCrickard. Notification and

awareness: synchronizing task-oriented collaborative
activity. Int. J. Hum.-Comput. Stud., 58(5):605–632,
2003.

[3] G. Chung, P. Dewan, and S. Rajaram. Generic and
composable latecomer accommodation service for
centralized shared systems. In S. Chatty and
P. Dewan, editors, IFIP Working Conference on
Engineering for HCI, pages 129–145, Heraklion, Crete,
Greece, 1998. Kluwer Academic Publisher.

[4] B. Costales. sendmail. O’Reilly, 3 edition, 2002.

[5] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In Conference
proceedings on Computer-supported cooperative work,
pages 107–114, 1992.

[6] T. Erickson and M. R. Laff. The design of the ’babble’
timeline: a social proxy for visualizing group activity
over time. pages 329–330, 2001.

[7] A. Fernandez, T. Holmer, J. Rubart, and
T. Schümmer. Three groupware patterns from the
activity awareness family. In Proceedings of the
Seventh European Conference on Pattern Languages of
Programs (EuroPLoP’02), Konstanz, Germany, 2003.
UVK.

[8] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold,
T. Phelps, and B. Segall. Augmenting the workaday
world with elvin. In Proceedings of ECSCW’99, pages
431–451, Copenhagen, September 1999. Kluwer
Academic Publishers.

[9] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold,
T. Phelps, and B. Segall. Instrumenting and
augmenting the workaday world with a generic
notification service called elvin. In Proceedings of
ECSCW 1999, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[11] C. H. Ganoe, G. Convertino, and J. M. Carroll. The
bridge awareness workspace: tools supporting activity
awareness for collaborative project work. In NordiCHI
’04: Proceedings of the third Nordic conference on
Human-computer interaction, pages 453–454, New
York, NY, USA, 2004. ACM Press.

[12] C. H. Ganoe, J. P. Somervell, D. C. Neale, P. L.
Isenhour, J. M. Carroll, M. B. Rosson, and D. S.
McCrickard. Classroom bridge: using collaborative
public and desktop timelines to support activity
awareness. In UIST ’03: Proceedings of the 16th
annual ACM symposium on User interface software
and technology, pages 21–30, New York, NY, USA,
2003. ACM Press.

[13] E. Gottesdiener. Team retrospectives – for better
iterative assessment. The rational edge, April, 2003.

[14] J. Grudin. Cscw introduction. Communications of the
ACM, 34(12):30–34, 1991.

[15] C. Gutwin and S. Greenberg. Workspace awareness for
groupware. In Proceedings of the CHI ’96 conference
companion on Human factors in computing systems:
common ground, pages 208–209, Vancouver, BC
Canada, 1996.

[16] J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support api evolution. In

ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 274–283,
New York, NY, USA, 2005. ACM Press.

[17] N. L. Kerth. Project Retrospectives: A Handbook for
Team Reviews. Dorset House Publishing Company,
Incorporated, 2001.

[18] S. Lukosch. Transparent and Flexible Data Sharing for
Synchronous Groupware. Schriften zu Kooperations-
und Mediensystemen - Band 2. JOSEF EUL
VERLAG GmbH, Lohmar - Köln, Aug. 2003.

[19] S. Lukosch. Transparent latecomer support for
synchronous groupware. In J. Favela and
D. Decouchant, editors, Groupware: Design,
Implementation, and Use, 8th International
Workshop, CRIWG 2003, LNCS 2806, pages 26–41,
Grenoble (Autrans), France, Sept. 2003.
Springer-Verlag Berlin Heidelberg.

[20] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
raising awareness among configuration management
workspaces. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 444–454, Washington, DC, USA, 2003. IEEE
Computer Society.

[21] T. Schümmer. Lost and found in software space. In
Proceedings of the 34th Hawaii International
Conference on System Sciences (HICSS-34),
Collaboration Systems and Technology, Maui, HI,
2001. IEEE-Press.

[22] T. Schümmer. GAMA – a pattern language for
computer supported dynamic collaboration. In
K. Henney and D. Schütz, editors, Proceedings of the
Eighth European Conference on Pattern Languages of
Programs (EuroPLoP’03), Konstanz, Germany, 2004.
UVK.

[23] T. Schümmer. A Pattern Approach for End-User
Centered Groupware Development. Schriften zu
Kooperations- und Mediensystemen - Band 3. JOSEF
EUL VERLAG GmbH, Lohmar - Köln, Aug. 2005.

[24] T. Schümmer and A. Fernandéz. Patterns for virtual
places. In Proceedings of the Tenth European
Conference on Pattern Languages of Programs
(EuroPLoP’05), 2005.

[25] T. Schümmer and S. Lukosch. Patterns for
Computer-Mediated Interaction. John Wiley & Sons,
Ltd., 2007.

[26] J. Tidwell. Designing Interfaces. O’Reilly, Sebastopol,
CA, USA, 2006.

[27] F. B. Viègas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history
flow visualizations. In CHI’04: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 575–582, New York, NY, USA, 2004.
ACM Press.

