
The Credentials Pattern
Patrick Morrison

Florida Atlantic University
777 Glades Road

Boca Raton, FL 33341-0991

Morrison@fau.edu

Eduardo B. Fernandez
Florida Atlantic University

777 Glades Road
Boca Raton, FL 33341-0991

ed@cse.fau.edu

ABSTRACT
In this paper we describe Credentials, which provide secure
means of recording authentication and authorization information
for use in distributed systems.

Categories and Subject Descriptors
D.2.11[Software Architectures]: Patterns

General Terms
Software Architecture, Design, Security.

Keywords
Patterns, distributed systems, credentials, security patterns.

1. INTRODUCTION
In order to provide individuals access to software systems while
restricting access to others, some means of distinguishing between
the two groups, and between individuals within the first group
must be devised. This paper assays the use of credentials for this
purpose. Credentials describe the use of identifying information
and its physical embodiment for defining authentication and
access control. This is presented as a pattern using the style of the
patterns in [11].

2. THE CREDENTIALS PATTERN
Credentials provide secure means of recording authentication and
authorization information for use in distributed systems.

2.1 Example
Suppose we are building an instant messaging service to be used
by members of a university community. Students, teachers and
staff of the university may communicate with each other, while
outside parties are excluded, perhaps for reasons of privacy.
Members of the community may use computers on school
grounds, or their own systems, so the client software is made
available to the community and is installed on the computers of
their choice. Any community member may use any computer
with the client software installed. The client software
communicates with servers run by the university in order to locate

active participants and to exchange messages with them.

In this environment, it is important to establish that the user
of the client software is a member of the community, so that
communications are kept private to the community. Further,
when a student graduates, or an employee leaves the university, it
must be possible to revoke their communications rights. Each
member needs to be uniquely and correctly identified, and a
member's identity should not be forgeable.

2.2 Context
Systems which share a common user base in which the users of
one system may wish to access the resources of another system,
based on a notion of trust shared between the systems.

Figure 1: Credentials in Context

Figure 1 shows the relationship of the Credential pattern to other
patterns. Credential can be used by an Authenticator [11] for
authentication or by a Reference Monitor [11] for authorization.
It can also be used by the ABAC pattern [9] for deciding
authorization. Authorization can be based on any of the three
standard models shown: Access Matrix, RBAC and Multi-level
[5].

2.3 Problem
In individual computer systems, the authentication and

authorization of a principal can be handled by that system's
operating system, middleware and/or application software; all
facts of the principal's identity and authorization are created by
and are available to the system. With distributed systems, this is
no longer the case. A principal's identity, authentication and
authorization on one system does not carry over to another
system. If a principal is to gain appropriate access to another
system, some means of conveying this information must be
introduced.

More broadly, this is a problem of exchanging data between
trust boundaries. Within a given trust boundary, a single
authority is in control, and can authenticate and make access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLoP '06, October 21–23, 2006, Portland, OR, USA.

Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

decisions on its own. If the system is to accept requests from
outside its own authority/trust boundary, the system has no
inherent way of validating the identity or authorization of the
entity making that request. At the heart of the external request is
the data necessary to make these decisions.

The solution to this problem must resolve the following forces:

● Protection – the system must be protected from
inappropriate use, while allowing appropriate use. The user must
provide enough information to grant authorization, without being
exposed to intrusive data mining.

● Persistence: Data must be packaged and stored in a way
that survives travel between systems while allowing the data to be
kept private.

● Authentication: The data available must be sufficient for
identifying the principal to the satisfaction of the accepting
system's requirements while disallowing others from accessing
the system.

● Authorization: The data available must be sufficient for
determining what actions the presenting principal is permitted to
take within the accepting system while also disallowing actions
the principal is not permitted to take.

● Trust: The system accepting the credential must trust the
system issuing the credential.

2.4 Solution
Store authentication and authorization data in a data structure
external to the systems in which the data are created and used.
When presented to a system, the data (Credential) can be used to
grant access and authorization rights to the requestor. In order
for this to be a meaningful security arrangement, there must be an
agreement between the systems which create the credential
(Credential Authority) and the systems which allow their use,
dictating the terms and limitations of system access.

2.5 Structure

In Figure 2, the Principal is an active entity such as a person or a
process. The Principal possesses a Credential, representing its
identity and its authorization rights. A Credential is a composite
describing facts about the rights available to the principal. The
Attribute may flag whether it is presently enabled, allowing
principal control over whether to exercise the right implied by the

Credential. Expiration date allows control over the duration of the
rights implied by the attribute.
A Credential is issued by an Authority, and is checked by an
Authenticator or an Authorizer. Specialization of a Credential is
achieved through setting Attribute names and values.
Some specializations of Attributes are worth mentioning.
Identity, created by setting an attribute name to, say, 'username'
and the value to the appropriate username instance, shows that the
subject has been authenticated and identified as a user known to
the Authenticator. Privilege, named after the intended privilege,
implies some specific ability granted to the subject. Group and
Role can be indicated in a similar fashion to Identity.

2.6 Dynamics
Credentials have four primary use cases:
1) Issue Credential, by which a Credential is granted to the
Principal by an Authority
2) Principal Authentication, where an Authenticator accepts a
Credential provided to it by a Principal, and makes an access
decision based on the Credential
3) Principal Authorization, where the Principal is allowed access
to specific items
4) Revoke Credential, in which a Principal’s credential are
invalidated.

2.6.1 Issue Credential
The Principal presents itself and any required documentation of
its identity to an Authority (Figure 3). Based upon its rules and
what it ascertains about the Principal, the Authority creates and
returns a credential. The returned data may include an identity
credential, group and role membership credential attribute, and
privilege credential attributes. As a special case, the Authority
may generate a defined 'public' credential for Principals not
previously known to the system. This credential is made
available to Authenticators which reference this Authority

Figure 3: Issue Credential Sequence Diagram

2.6.2 Principal Authentication
The Principal requests authentication at an Authenticator,
supplying its name and authentication Credential (Figure 3). The
Authenticator checks the Credential and makes an access
decision. There are different phases and strengths of check that
may be appropriate for this step, discussed in the Implementation
section. It is necessary for the authenticator to be established in
conjunction with the original authority. It is not shown in the

Figure 2: Credentials Structure

sequence diagram, but it is also optionally possible to forward the
authentication request and credentials to the authority for
verification.

Figure 4: Principal Authentication Sequence Diagram

2.6.3 Principal Authorization
The Principal requests authorization to perform an operation from
an Authorizer, supplying its Credential(s) (Figure 5). The
Authorizer checks the credentials, and returns the result of that
check, and possibly the result of the operation, to the Principal.

Figure 5: Principal Authorization Sequence Diagram

2.6.4 Revoke Credential
If it is determined that a given Principal should no longer have
access to the system, or that a Principal’s credentials have been
stolen or forged, the authority can issue a revocation message to
each authenticator and authorizer. Once this message has been
received, the authentication and authorization subsystems reject
future requests from the affected credentials. If the Principal is
still authorized to use the system, new credentials must be issued.

2.7 Implementation
The most significant factor in implementing Credential is to
determine the nature of the agreement between the participating
systems. This begins with consideration of the functions to be
provided by the system to which credentials will give access, the
potential users of those functions, and the set of rights which are
required in order for each user to fulfill its role. Once these are
understood, a clear representation of the subjects, objects and
rights can be developed. This representation forms the basis for
storing credentials in some persistent medium and sets the terms
of authentication and authorization. It also forms the basis for
portability, as persisted data may be placed on portable media for

transmission to the location(s) of its use. It is important to note
that ‘portability’ is used in a restricted sense here, meaning only
that the credential data can be read by a node of the system not
directly connected at the time of credential creation, and not
necessarily meaning that the data can be transferred for use in
other systems.
The problem with a clear representation of security rights is that
bad actors can read them as well as valid participants in the
systems in question. In the physical world, anti-forgery devices
for credentials take the form of embedding the credential data in
media that is too expensive to be worth forging for the benefit
received; driver's license and other id cards, passports, and
currency all are based on the idea that it is too expensive for the
majority of users to create realistic fakes. In the digital world,
copies are cheap. There are two common means of addressing
this. One is to require that credentials be established and used
within a closed context, and encrypting the communications
channels used in that context. The other is to encrypt the
credentials when they are issued, and to set up matching
decryption on the authenticating system. This further subdivides
into “shared secret” systems, where the issuing and accepting
systems share the cryptographic keys necessary to encrypt and
decrypt credentials, and “public key” systems, where
participating systems can establish means for mutual
encryption/decryption without prior sharing. These design
choices are part of the terms set by the Authority agreement under
which the credentials apply. The Authenticator must use the same
scheme as the Authority. Kerberos tokens and X.509 certificates
are examples of this that require more specific approaches, see
[8].
As a simple example of “shared secret” systems, consider a
typical online banking authority and authentication setup; at
signup, the customer verifies their identity to the bank, the
authority. As part of the bank’s processing, it creates customer
data on its website, and allows the customer to create a username
and password granting access to the account. This data is stored
on the bank’s web server, which serves as the authenticator. The
customer later presents their credentials through a browser to the
web server, which authenticates under the authority of the bank.
In implementing the Principal Authentication use case, there are
different phases and strengths of check that may be appropriate.
For example, when entering my local warehouse club, I need only
flash a card that looks like a membership card to the authenticator
standing at the door. When it comes time to make a purchase,
however, the membership card is checked for validity, expiration
date and for whether it belongs to the person presenting it. In
general, the authenticator is responsible for checking the
authenticity of the credentials themselves (anti-forgery), whether
they belong to their bearer, and whether they constitute valid
access to the requested object(s). There is a good discussion of
levels of inspection on page 246 of [2].

2.8 Consequences
This pattern has the following advantages:
● Fine-grained authentication and authorization information can
be recorded in a uniform and persistent way.
● A Credential from a trusted authority can be considered proof
of identity and of authorization.

● It is possible to protect credentials using encryption or other
means.
This pattern has the following disadvantages:
● It might be difficult to find an authority that can be trusted. This
can be resolved with chains (trees) of credentials, where an
authority certifies another authority.
● Making credentials tamper-resistant takes extra time and
complexity.
● Storing credentials outside of their using systems leaves system
authentication and authorization mechanisms open to offline
attack.

2.9 Example Resolved
Create a credential authority, “IM Registration.” Give it the
responsibility of verifying identity and granting a username and
password, in the form of an id card, to university community
members when they join the university community. This login
embodies the authority of the granting agency, and embodies the
identity of the subject as verified by the agency. Set policy and
user guide policies so that members are encouraged to keep their
login information private.
Code the client software to implement an Authenticator when
someone wishes to start a session. Grant or deny access based on
the results of the authentication. Implement checks on the servers
to ensure that the member's credential is not expired.

2.10 Known Uses
This pattern is a generalization of the concepts embodied in

X.509 Certificates, CORBA Security Service's Credentials [1],
Windows security tokens [4], SAML assertions [7], and the
Credential Tokenizer pattern [12]. Capabilities, as used in
operating systems, are another implementation of the idea.

Passports are a non-technical example of the problem and its
solution. Countries must be able to distinguish between their
citizens, citizens of nations friendly and unfriendly to them,
trading partners, guests, and unwanted persons. There may be
different rules for how long visitors may stay, and for what they
may engage in while they are in the country. Computer systems
share some of these traits; they must be able to distinguish
between members of their user community, and non-members.
These non-members may be eligible or ineligible to gain system
access or participate in transactions.

2.11 Related patterns
Metadata-based Access Control [9] describes a model where
credentials can be used to represent subjects. The Credential
pattern complements Security Session [11] by giving an explicit
definition of that pattern's 'Session Object', as extracted from
several existing platforms. The Authenticator pattern [3] and the
Remote Authenticator/Authorizer [10] describe types of
authenticator. An Authorizer is a concrete version of the abstract
concept of Reference Monitor [11]. Delegation of credentials is
discussed in [13]. [12] describes a Session Object pattern that
"abstracts encapsulation of authentication and authorization
credentials that can be passed across boundaries". That is an
incorrect interpretation of the concept of credentials. Credentials

abstract authentication and authorization rights, not sessions.
They confuse credentials with rights.

ACKNOWLEDGMENTS
We thank our shepherd Jorge Ortega Arjona and Ralph Johnson
for valuable comments that improved this paper. The FAU Secure
Systems Research Group also contributed valuable ideas. This
work was supported through a Federal Earmark grant from the
Defense Information Systems Agency (DISA), administered by
Pragmatics, Inc.

REFERENCES
[1] R. Anderson, 2001. “CORBA Security Service

Specification”, OMG http://www.omg.org/docs/formal/02-
03-11.pdf.

[2] R. Anderson 2008. Security Engineering, Wiley (2nd Ed.)
[3] F.L. Brown, J. DeVietri, G. Diaz, E.B. Fernandez 1999. “The

Authenticator Pattern”, Proceedings of Pattern Language of
Programs (PloP'99)

[4] K. Brown 2005. The .NET Developer's Guide to Windows
Security, Addison-Wesley.

[5] E.B.Fernandez and R.Y.Pan, “A pattern language for
security models”, Proceedings of Pattern Language of
Programs (PloP'01)

[6] N. Delessy, E.B.Fernandez, and M.M. Larrondo-Petrie, "A
pattern language for identity management", Procs. of the
2nd IEEE Int. Multiconference on Computing in the Global
Information Technology (ICCGI 2007), March 4-9,
Guadeloupe, French Caribbean.

[7] J. Hughes, E. Maler 2005. “Security Assertion Markup
Language (SAML) 2.0 Technical Overview”,
http://xml.coverpages.org/SAML-TechOverview20v03-
11511.pdf

[8] J. Lopez, R. Oppliger, and G. Pernul 2005. "Authentication
and authorization infrastructures (AAIs): a comparative
survey", Computers & Security, vol. 23, 2004, 578-590.

[9] T. Priebe, E.B.Fernandez, J.I.Mehlau, and G. Pernul 2004.,
"A pattern system for access control ", in Research
Directions in Data and Applications Security XVIII, C.
Farkas and P. Samarati (Eds.), Procs of the 18th. Annual
IFIP WG 11.3 Working Conference on Data and
Applications Security, Sitges, Spain, July 25-28, 2004.

[10] R. Warrier, E.B. Fernandez 2003 "Remote
Authenticator/Authorizer", Pattern Languages of Programs
Conference (PLoP’03)

[11] M. Schumacher, E. B. Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad 2006. Security Patterns:
Integrating Security and Systems Engineering, Wiley

[12] C. Steel, R. Nagappan, and R. Lai 2005. Core Security
Patterns: Best Strategies for J2EE, Web Services, and
Identity Management, Prentice Hall, Upper Saddle River,
New Jersey

[13] M. Weiss 2006. "Credential delegation: Towards grid
security patterns", Procs. of the Nordic Pattern Languages of
Programs Conference (VikingPLoP)

