
 1

Adopting Agile Practices:

An Incipient Pattern Language

Amr Elssamadisy – Valtech
David West – Transcendence Corporation

Abstract: The increasing popularity of Agile approaches to software development forces an
increasing number of organizations to deal with issues of Agile adoption (and adaptation).
This paper lays some groundwork for a pattern language that will facilitate the transition to
agility. We introduce patterns that focus on the dynamics of adoption rather than the
structure that results from adoption. To establish the desired foundation it is necessary to
“push the pattern envelope” in terms of traditional pattern documentation format and
relationships among patterns that form a pattern language.

Why This Topic and Why Now?

The first agile development processes, such as Scrum and XP, have roots extending back
to the mid-1990s. Agile achieved significant momentum and widespread adoption
beginning in the years 1999-2003. The Agile community continues to grow but still
represents minority of software development organizations. Effort has shifted from rote
adoption of a set of published practices (an attempt to treat agility as a method) to
attempts to understand the ideas, values and philosophy supporting agility in order to
optimize the adoption process. One of the forces behind this shift in emphasis is a
perception that agility must be “adapted” to fit specific circumstances before it can be
successfully adopted. Adaptations include the combination of practices from several
different “methods,” selecting (an even discarding) among the set of advocated practices,
and finding ways to incrementally introduce new practices. In effect: learning how to be
agile about adopting agility.

A set of patterns, preferably a pattern language, that would assist organizations adopting
agility is clearly needed and we believe that the body of experiences from which such a
language can be distilled is finally sufficient in size to assure some productive pattern
mining. Introducing some new patterns and relationships among them (necessary to
begin establishing a pattern language) is part of what we hope to accomplish in this
paper.

Another goal for this paper is to make the patterns and pattern language accessible to
those who will most benefit. The patterns community, per se, is not our target audience
in this regard. Individuals and organizations new to agility and experienced practitioners
assisting in the transition comprise our primary intended audience. To serve their needs
we have deviated, in some ways, from the standard treatment of patterns.

 2

Sometimes simply in terms of vocabulary - e.g. we will speak of “smells” more often
than “forces.” At other times we will follow the lead of Rising, and Manns by presenting
patterns that have “tangible but not necessarily structural” consequences and form.

A topic for considerable debate among pattern writers is whether or not a
solution that has worked well in a particular context to solve a particular
problem is really a pattern or whether it is just a general heuristic or
guideline. The fallback response to this question has historically been:
What does the pattern “build?” The origin of this response is the work of
Christopher Alexander, an architect who builds structures. His patterns
describe concrete changes in the real world. Since our patterns describe
organizational solutions the result is tangible but not usually structural.
Therefore we have taken extra care to include both an opening story to
provide an image for the intent of the pattern and also to include text that
describes what we feel the pattern “builds” – that is what the positive and
negative results of applying this pattern will be.

Our patterns generally address dynamics more than structure and so we copy the format
introduced by Rising and Manns.

Another point of divergence is a conscious attempt to produce a pattern language that
mirrors, in large part structurally, the domain, Agility, that is addressed by that pattern
language. It is our intent that the patterns we introduce reflect the granularity of agile
practices. Each pattern, therefore, will address the ‘how?’ and ‘why?’ of adopting an
individual practice, or related cluster of practices. This contrasts significantly with most
treatments of agility which focus on describing ‘what?’ the practices are and the
combination of practices into methods.

Based on our collective experience in teaching, leading development teams, and
participating in numerous patterns and agile forums (most recently at ChiliPlop 2006 and
XP2006) we believe that these patterns have significant potential to help guide the next
generation of adopters – allowing them to learn from our mistakes and successes.

Foundations and Starting Points

Our patterns derive from the specific way we view three terms, pattern, agility, and
adoption. It is useful, therefore, to make this understanding explicit.

Pattern – “a proven solution to a problem in context.” Patterns are a proven format for
sharing expert information about complex problems. Patterns, including the ones
presented here, are validated by their successful application in multiple instances.
Documentation of a pattern generally includes: name, definition, context, problem –
including identification of relevant forces, solution structure, implementation, and
discussion of applicability and other usage issues.

 3

Our presentation of patterns will diverge from these generally accepted definitions in
three ways:

First, we deviate slightly from the classical format used in pattern
documentation. We will use the following:

Name
Sketch: A story/narrative that acts like a ‘sketch’ in design patterns.

(idea taken from Fearless Change}
Context: Who and in what circumstances this pattern is useful.
{Forces:} Used to elaborate context and give specific issues that are

problems (partially) resolved by this pattern.
Therefore: The pattern description.
{But:} Negative consequences that can occur from applying this pattern.
{How:} Steps, ordering, guides to adopting this pattern. Sometimes

interleaved with Smells: to indicate where the adoption can go
wrong.

{a.k.a.} Similar published patterns.

Second, we introduce the concept of a, “smell,” to the patterns
community. The discovery of a pattern is driven by the isolation of a
problem. But how was the problem itself discovered or identified? The
agile community has come to use the idea of a “smell” as a means for
identifying potential problems. Smells are not defined, they are
recognized. A smell reflects a relatively vague sense of unease or
discomfort. Reflection on a smell may result in the identification of a
resolvable problem.

A smell is a kind of inverse QWAN. QWAN is the Alexandrian notion,
“Quality Without A Name;” something that is readily recognized even
though it cannot be defined or explicated. A lot can be said ‘about’
QWAN even though QWAN itself cannot be expressed. There is no
algorithmic means for creating the property of QWAN but there are
patterns that can be applied to increase the likelihood of the emergence of
QWAN in a construct. Smells too are recognized. Smells can be talked
about but not defined, and lack any kind of algorithmic resolution.

Third, we introduce the explicit use of “abstract patterns” - analogous to
an abstract class. An abstract pattern might also be seen as a category of
patterns. An abstract pattern lacks an implementation independent of
those of its concrete sub-patterns.

Agility – a state of being.

Like QWAN it is possible to discern the existence of agility – in individuals and
organizations – but agility is not definable. Specific behaviors, or practices, are

 4

consistent with agility and their presence or absence is an indicator but not a measure of
agility. There is no formulaic path leading from non-agility to agility nor is there an
aggregation of practices that ensure agility.

Agile practices are themselves patterns – frequently observed organizational and
behavioral solutions to commonly encountered problems. The practices are present, in
various combinations, in individuals and organizations that are recognized as agile.
However, the mere presence of those practices is insufficient to transform individuals and
organizations to the agile state of being.

Agile “methods” and agile “processes” are misnomers precisely because there is no
formula or specifiable combination of practices for attaining agility. The patterns and
pattern language we introduce in the following pages reflects, we believe, discernable
patterns in the dynamics of adoption expressed by individuals and organizations
attempting the transition to agility. Necessarily they will reflect some of the same
ineffability as agility, QWAN, and smells.

Adoption - the act of taking as one’s own a thing or behavior. Too often, agile adoption
is seen as little more than exhibiting, by rote, the enumerated practices and exhibiting, via
mimicry, the described artifacts in one or more of the agile method books. It was held,
and some still hold, that agile adoption was an all or nothing proposition. You did
everything listed exactly as described or you were not adopting agile. This view of
adoption is actually a smell – specifically the “Cargo Cult1 Syndrome.”

We see adoption as much more than aping as closely as possible each and every
described practice advocated by an agile advocate. We believe that successful adoption
requires asking additional questions, such as:

• “Which practice do I adopt first?”
• “Which practices relate to (in terms of support or dependency) others?”
• “Can I incrementally adopt a given practice or incrementally adopt from a set of

practices?”
• “Can I adapt the form of a practice without altering its substance?”
• “Can I add to or delete from a specified set of practices?”
• “What values and assumptions are presupposed by a given practice?
• And, consistent with the spirit of agility, “what business value does each practice

deliver?”

1 During World War II a number of airbases were built on remote tropical islands inhabited by pre-
industrial societies. During the war soldiers built airfields and control towers and engaged in various
activities that resulted in large airplanes full of cargo landing and discharging their contents. The native
inhabitants shared this cargo. After the war the soldiers departed and no more cargo was available to the
natives. So they adopted, as best they could, the superficial form of airstrips, control towers, and ritual
behaviors intended to induce the return of planes full of cargo. A cargo cult is any group that adopts form
instead of substance and believes that doing so will bring about a desired result.

 5

The patterns we introduce are intended to provide guidance for those embarking on the
journey to agility. Our focus is on that problem space and how each pattern addresses
both the mechanics of adoption and the expected technical and business value derived
from that adoption.

We are not presenting a finished or polished work. At ChiliPlop 2006 we quickly
discovered that a full pattern language describing adoption is a monumental undertaking.
So the few simple patterns here are only a beginning. By flushing these out and gaining
invaluable feedback from the Pattern Language community we will make these more
valuable to the readers. In addition to presenting this paper at PLoP 2006, we are making
our work and results available on a Wiki at www.agileprocessadoption.com. We also
have a companion article scheduled for the Agile Alliance’s quarterly publication in
September 2006. Finally, we have initial sponsorship from the Agile Alliance to build an
online community focused on Patterns of Agile Practice Adoption.

Mega-Smell – “Us versus Them” (UvT)

An organization or a development team has decided to adopt an agile software
development methodology. Unfortunately, that organization exhibits an all too common
problem – clearly, though often non-consciously, delineated sub-groups whose
interaction is characterized by “CYA” contractual communication. Failure is expected
and each sub-group is intent on making sure the “others” rather than themselves are to
“blame” for that failure. The organization smells like “Us versus Them.”

A number of forces and factors have converged to generate this smell. Among them:

• History – contention between IT and business, analyst and coder, coder and
tester, developer and user has been an industry plague since the advent of
commercial computing.

• Physical separation which contributes to social separation.
• Any organization in the United States (we cannot indict the rest of the world on

this point) is embedded in a very litigious culture where individuals seem loath to
accept personal responsibility.

• Industrial cultures have generally abandoned group consensus and informal
resolution mechanisms in favor of formal courts and black/white decision making.

• Much of the industrialized world shares a heritage that teaches people are innately
flawed but capable of redemption instead of innately good but subject to
corruption.

• A long-standing conflict between perceptions of Art vs. Science.
• Documentation is seen by most as a means to represent reality instead of an

ephemeral evocation of current group understanding.
• Functional separation (silos) - testing team/ coding team/ analyst team.
• Human Resources (and litigious culture) imposed false equivalency that

categorizes people instead of recognizing individual differences.
• A culture of debate instead of dialog.

 6

Although we believe we are the first to identify this problem area as UvT, the problem
itself has been recognized by other pattern writers including Coplien, Rising, and Manns.

A significant motivating factor in the development of XP2 was the need to address and
resolve UvT. Each of the original 12 XP practices can be understood as a means of
resolution. (This, of course, implies that the Practices are themselves patterns.) Any
organization seeking to become agile must adopt a set of practices sufficient to eliminate
all (or at least most) vestiges of UvT.

Although the adoption of the practices seems simple (as Nike said, “Just Do It!”)
organizations and teams have experienced significant difficulties and too many have
failed in the attempt. Our involvement with (and observation of) teams and organizations
that have been successful suggest that there is another set of patterns – adoption patterns
– that increase the likelihood of success when transitioning to agility.

The following list names many of these observed patterns. Figure One shows some
relationships among the listed patterns, the motivating mega-smell, and a set of practices
to be adopted.

• Reciprocal Visibility
• One Vision
• One Culture
• One Language
• Disciplined Practice
• Co-located Team
• One Room School
• Track Record
• Evocative Documents
• Bury the Hatchet, aka Truth and Reconciliation
• Tribal Organization
• Poly-Vocal Conversation
• Baby Steps
• Recognize Individual Differences
• Dynamic Information Radiator
• Static Information Radiator
• Reaffirmation Ritual
• Solidarity Ritual
• Participant Observation

2 We are using XP as an exemplar of Agile approaches in this instance. We believe that all agile
approaches equally value communication and all have practices specifically addressing the issue of
communication.

 7

Planning Game

Small Releases

Metaphor

Collective Ownership

Testing

Continuous
Integration

Pair Programming

On-site Customer

Simple Design

Coding Standards

Pair Programming

Sustainable Pace

Us vs.
Them

Solidarity

Courage

Reciprocal
Visibility

Ameliorates

Ameliorates

Ameliorates

One Language

One Vision

Static
Information
Radiators

Dynamic
Information
Radiators

Is-a-kind-of Is-a-kind-of

Solidarity Ritual

One Culture

Tribal
Organization

Recognize
Individual
Differences

Participant
Observation

Reaffirmation
Ritual

Baby Steps

Bury the
Hatchet

Disciplined
Practice

One Room School

Poly-Vocal
Conversation

Evocative
Documents

Track Record

Co-located
Team

Define style of

 8

In the remainder of this paper we will introduce a selection of the patterns that illustrate
the various directions in which we can continue our search for adoption patterns.

Reciprocal Visibility
Sketch: Upon joining an agile team Waterfall Will discovered that stand-up meetings

not only let him know what developer’s were doing but also what Scott the
ScrumMaster was doing to remove each and every road-block that came up.
When an issue was brought up it was put up on the Impediment Chart (an
Information Radiator) and everyday Scott was responsible to report to the team
the progress he has made towards removing the impediment. Will didn’t think of
Scott as just ‘overhead’ on the team anymore. Will understood that Scott paid
attention to what he and the rest of the development team were doing and also
understood that Scott was diligently removing roadblocks for the team.

Context: An organization exhibiting multiple symptoms of the us-versus-them smell, for

example: tightly constrained communication channels; documentation that is
viewed as legal contract rather than a communication tool; infrequent contacts
among users, managers, and developers; and, clearly delineated specialty areas
– e.g. analysts, coders, testers – reporting to different managers.

Numerous forces have combined to create this state of affairs in the
organization, but the most significant is ‘expectation of failure.’ Everyone
involved in the project, including management, immediately adopts a posture of
self-protection and blame avoidance. The less exposure of one’s activities, the
lower the portion of blame than can accrue.

Therefore: Success in the adoption of agile practices like the planning game, pair

programming, and sustainable pace mandates deployment of countering
actions. Reciprocal Visibility provides a pattern that can shape appropriate
counter actions. The essence of the pattern derives from a belief that the state of
a project and the contributions of all parties to that state should be overtly
manifest to all.

Reciprocal Visibility is an abstract pattern, one that describes traits reflected in
several related patterns. These traits are not structural (as is typically the case
with Alexander inspired patterns); instead they are prescriptive. They define
constraints that must be satisfied if the pattern is to exist. Reciprocal Visibility
is sufficiently abstract that there are only three constraints:

• All actions that affect the state of the project are expressed in a manner
that includes the whole team.

• All information about the state of the project is public and omnipresent
in the whole team environment.

 9

• All communication (actions and information sharing) take place in a
“safety zone” – i.e. no one can be punished (or rewarded) for their
participation in the conversation.

But: Satisfying the constraints imposed by this pattern will almost certainly raise the

anxiety level of everyone involved in the project. Managers will be
uncomfortable addressing the entire team instead of communicating only with
the team’s coach. The presence of the manager at team meetings will inhibit –
at first – frank conversation regarding issues.

Documenting individual and team performance on the walls of the team work
area will expose individual differences that will make some uncomfortable. (It
will also serve as a source of motivation for change.)

Some will attempt to abuse the communication safety zone with ad hominem
remarks. This error needs to be pointed out and corrected – but not punished
unless it persists after several reminders.

Reciprocal Visibility is parent to two abstract sub-patterns: Static Information Radiator
and Dynamic Information Radiator.

Static Information Radiator
Sketch: Dave the Developer and Aparna the Analyst were both on a project that has

been incrementally adopting agile development practices. Test-driven-
development had made a real improvement in the quality of the code so far, but
there was still a lot of improvement to be done. Aparna still saw many issues fall
through the crack, and by the time she got to reviewing the work that Dave had
completed for the iteration they would go into overdrive to get the card completed
or just miss completing the card all together. Recently Scott the ScrumMaster put
up a StoryBoard chart in the common area. Aparna saw that Dave’s work was
completed and ready for testing half-way through the iteration and was reminded
of it every time she passed the chart. She picked up the work Dave had
completed, found the one or two issues and notified Dave. Dave had the issues
fixed in a couple of days and the card went through to completion smoothly. It
was funny how such a simple chart placed so that both she and Dave saw many
times a day helped them both finish the card on time…

Context: The whole team needs consistent and continuous information about factors that

inhibit/enhance the process of delivering business-valued software. Traditional
forms of project documentation are (rightfully) perceived as overhead, generally
inaccurate, and incomplete. Information must be accurate, exceedingly easy to
update, and understandable “at a glance.” A Static Information Radiator captures
and displays information. It is the medium (e.g. posters, white board diagrams,
charts) that is static not the information.

 10

As an abstract pattern, Static Information Radiator extends Reciprocal Visibility
by adding additional constraints:

• Every aspect of a project’s state of interest to any member of the whole
team is an appropriate subject for a static information radiator

• The contents of any given static information radiator are limited to 1-3
distinct aspects of the project state.

• Updates to the content must require nominal effort (e.g. moving a story
card from one column of a progress chart to another during a daily
meeting) or be automatically generated as a byproduct of development
efforts (e.g. tests written, tests passed).

• Radiators should be “large format,” i.e. large posters, white board
diagrams, or any other equally visible and interpretable form.

• Radiators should be consistent with the pattern, “Evocative Document” as
discussed below.

Almost all agile methods discuss and advocate the use of various forms of
static information radiators. The idea of “big visible charts” is common
vocabulary and addresses, but does not explicate, the same issue as Static
Information Radiator.

But: Simply posting a series of “facts” about a projects state is insufficient to satisfy the

constraints imposed by this abstract pattern. ”Smelly” Static Information
Radiators can exhibit one or more of the following symptoms:

• Voids in the information exist indicating that individuals or roles are persisting in

their predisposition to secrecy. Some members of the team still believe that they
can avoid or transfer to others accountability for failure.

• Team members fail to see any value in one or more of the information radiators in
use – e.g. progress is being measured but not in a meaningful way. The
information does not lead to improvements in the development process.

• Wrong metrics are being employed. One common example is estimating in terms
of person hours rather than relative effort.

• Updates are not performed in the same time frame as they occur and they are of
use. Usually means that the updates require far more than nominal effort to make
and/or are not automatically generated. Overtime, erratic productivity, and
declining team morale are secondary symptoms of this problem.

Dynamic Information Radiator

Name: Dynamic Information Radiator

Sketch: Ahmed the Analyst, Tammy the Tester, and Debbie the Developer had all

worked together before on many successful (and unsuccessful) projects over the

 11

years. Getting a product out the door was hard, and even though they were good
friends and frequently went out to lunch together, they each had a feeling that the
other’s “just didn’t get it” completely. There were always misunderstandings and
complications in the requirements, and of course the code was less than perfect
when developed, and the testing team did their best to find all the bugs but
somehow never got them all. The project they are currently on however seems to
be quite a bit different from the start. There are iteration kickoffs every two weeks
where the entire team gets together to make decisions and commitments to what
will be done in the next iteration. Daily stand up meetings keep everyone
informed and roadblocks are removed ASAP. And finally, at the end of each
iteration there is a Retrospective that allows the team to tweak the process itself
and get things on the same track. All of this frequent communication has helped
the team move functionality through very fast and has reduced many of the errors
that would have previously been missed or would have taken several months to
catch because of the slow cycle time. They may not have as many ‘documents’
describing exactly where they are, but as a team they really know where they are
and where they are going much more accurately than ever before.

Context: The whole team needs consistent and continuous information about factors that

inhibit/enhance the process of delivering business-valued software. Some of that
needed information is not reducible to static form – it is embodied in the actions
and decisions of individuals interacting with the team. Traditional forms of inter-
personal communication are too limited to meet the needs of an agile team.
Circumstances must be crafted that allow multi-channel, simultaneous, and
verifiable communications to take place among the whole team.

As an abstract pattern, Dynamic Information Radiator extends Reciprocal
Visibility by adding additional constraints:

• Every action, decision, and communication affecting the project must be
public to all involved in the project.

• Dynamic Information Radiator circumstances are tightly constrained in
terms of time and space.

• Dynamic Information Radiator circumstances are regularized in terms of
scheduling and format. Spontaneous creation of a dynamic information
radiator circumstances is possible, and sometimes necessary, but should be
an exception.

• Dynamic Information Radiators should be “high bandwidth,” i.e.
involving as many human senses as possible. This implies that face-to-
face radiators are preferable to multi-media which are preferable to voice
only.

Almost all agile methods discuss and advocate the use of various forms of
dynamic information radiators. The most prevalent example of a dynamic

 12

information radiator is the “stand-up meeting.” Retrospectives and planning
games are other common examples.

But: Simple articulation of information about the project is insufficient to satisfy the

constraints imposed by this abstract pattern. ”Smelly” Dynamic Information
Radiators can exhibit one or more of the following symptoms:

• Articulations are misperceived or misinterpreted. The format of the

radiator or the circumstances of delivery do not allow for sufficient
feedback and clarification.

• Radiators exist for purposes other than sharing commonly needed
information. E.g. to reinforce the status of a particular role, often a
management role.

• Inappropriate vocabulary is employed, e.g. a vocabulary of “blame.”
• Attendance is sporadic and resisted indicating that the information or the

format is not of any real value to the team.

Evocative Documents
Name: Evocative Documents

Sketch: Suva and Ademar were on their way home from a weeklong UML training

course and discussing what they had learned. “UML certainly provides a rich
and detailed tool for describing our software,” Ademar noted. “But it can still be
misleading,” Suva responded, “remember our discussion about the customer
class?” “I do,” said Ademar, “ and how we got into that discussion of what ‘is’
is – when people started using our UML description as if to say it was a
customer.” “Oh yes, and that guy in the back talking about Alfred Korzibski and
‘the map is not the territory,’ that was weird,” Suva added. “But he was right,
really,” continued Ademar, “no matter how much detail you get in your UML
model and templates, something is always missing. The model is never the real
thing.” “And our understanding of what the real thing keeps changing, and
changes from one context to another,” Suva said, “how can we put all of that in a
model?” “Well,” Ademar suggested, “we probably don’t need to if we can find a
way to remind ourselves of everything we know about something when we need
it.” “How would we do that?” Suva asked. “Remember that icon on the wall of
the seminar room,” Ademar enquired, “remember when we asked the the facility
manager about it and she talked for half an hour about its meaning and history,
and everything.” “Sure do,” Suva responded, “one simple symbol evoked a huge
amount of memory. Maybe that is the secret …”

Context: Literate and legalistic societies and organizations share a deeply held, though

often non-conscious, belief that written documents are representative in nature.
A contract IS the agreement among parties to the contract. The blueprint IS the
building, albeit in a different format. The specification IS the software artifact
desired. This belief is so strong in the arena of software that many believe that it

 13

should be possible to formally and mechanically transform specifications into an
artifact with no interpretation or ambiguity.

Agile development is the epitome of group “theory building” as described by
Peter Naur [citation]. Agile practices, more than any other kind of development
practice require the creation of a rich and easily accessible “external memory” as
described by Bo Dahlstrom [citation]. Representational documentation is
notoriously limited and has a long track record of failure in this regard.

Therefore: All documentation should be evocative rather than representational. Anyone

that has read a good novel is familiar with the notion of an evocative document –
one that enables the reader to “recall to mind” thousands of sensations, emotions,
even details of time and place that the author could not possibly have included in
the text of the novel. West has previously written about the power of evocative
documentation in agile [citation] development.

One force that must to be taken into account when attempting to create evocative
documentation is the previously mentioned assumption: documentation is
representative. Documentation that is highly stylized, that uses precisely defined
and context free syntax (e.g. UML) will almost certainly be perceived as
representational rather than evocative. The constraints imposed by Evocative
Documents’ parent, abstract, patterns (Reciprocal Visibility and Static
Information Radiator) are additional forces that must be accommodated.

Evocative Documents are:

• Informal – 3x5 cards rather than UML diagrams.
• Natural language based – both in terms of the natural language used by the

team for communication inside and outside the office, but also in terms of
the domain driven vocabulary of the project itself.

• Rich in referents to people, time, and place.
• Inclusive of .jpeg rather than .gif graphics (i.e. photos rich in color and

detail of the sort typically save in jpeg format instead of the line drawings
and UML diagrams typically saved in .gif format).

But: Your documentation has probably slipped into representational form and is no

longer evocative if:
• It takes longer to produce the documentation than it does to comprehend

and use it. (Refer to constraints stated in Static Information Radiator.)
• Anyone in the organization begins to express a belief that the

documentation has intrinsic value and not just utilitarian value.
• There is any kind of movement to make the documentation archival.
• Specialists are employed to produce the documentation. There is an

exception to this rule, technical writers (who should really be more
novelist than tech writer) charged with producing manuals and books for
users of the software that were prevented from participation in its creation.

 14

Stand Up Meeting
Sketch: When Joe joined his current project it was his first ‘agile’ project and he

couldn’t imagine a meeting every day. The previous meetings to him were almost
always a waste of time where he had to sit through discussions that weren’t
always very related to his work. Of course, the really important meetings where
decisions were made about scope and deadlines did not necessarily include him.
So he went to his first Stand Up meeting which was refreshingly short and very
focused on the iteration at hand. After several meetings, he also realized that
impediments to meeting iteration goals were addressed by Scott the ScrumMaster
quickly. In short, Stand Up meetings were relevant to the current iterations work
and were not too much of a burden to attend.

Context You are an organization that has started to see software development as an

Empirical process instead of a Deterministic process. Therefore you need
constant information about where the current project is so that you can accurately
control where it is going. Your organization is also working to establish and
maintain a 'whole-team' that is does not suffer from Us vs. Them via Reciprocal
visibility. Your team is in the process of improving its communications.

Forces:

• Software projects are empirical in nature and not deterministic, therefore constant
readings of where the project stands is necessary.

• Meetings tend to be long and wasteful because they mix so many agendas – both
explicit and hidden.

• It is necessary to structure meetings and interactions so that they focus on one
specific purpose – like making sure everyone understands what progress is being
made towards a collective goal.

Therefore introduce Stand Up meetings as feedback for management of an empirical

process. The daily meetings will give the entire team relevant information to
adapt to changes and new information within an iteration so that obstacles can be
addressed in a timely manner and the goals of the iteration can be met. Stand Up
meetings also help establish Reciprocal Visibility among the different members of
the team as the see that the entire group (management, analysts, developers,
testers) work together to meet the iteration goals.

But your meetings can easily go off track or be co-opted by management. Some meeting

smells – indicating a need to pull back and correct the format and/or purpose of a
meeting include:

• Meetings become travelogues, i.e. people tell what they did in detail instead of
short, concise status and impediments.

 15

• Meetings become design sessions, the need for design discussions can be
recognized inside the Stand Up but should be scheduled at another time with the
relevant participants.

• Meetings become planning meetings. Planning should be done on iteration
boundaries and outside the Stand Up meetings.

• Meetings are not regular and are dropped because little or no value to the
meetings is perceived.

How. Have one person in charge of keeping the meeting on track, that is they must be
responsible for:

• Promptly starting on time
• Attendance
• Letting the pigs talk and keeping the chickens3 as listeners
• Keeping the meeting under 15 minutes
• Interrupting burgeoning planning and/or design discussions and having them be

scheduled after the meeting.
• Keep the focus on concise status and not letting it turn into a travelogue.

a.k.a.
[Beck1999, Beck2004] Describes a stand up meeting with respect to eXtreme

Programing (XP).
[Coplien2005] Stand-Up Meeting pattern overlaps with this pattern but is more

broad in that they may “be held for the purpose of reviewing the architecture”
whereas our experience suggests that this type of discussion be taken off-line with
respect to the daily Stand Up Meeting.

[Yip2006] presents an entire pattern language to describe the details of a Stand Up
Meeting.

[Schwaber2002] defines a Stand Up meeting with regards to Scrum.

Reaffirmation Ritual
Sketch: Once upon a time, at the World’s Fastest Computer Company held an annual

event called Ducky Days. On the surface this was a typical company picnic
intended to improve interactions and professional relationships among the
employees of a large organization. It transcended most similar corporate events
in that it also celebrated a prized aspect of corporate culture – egalitarianism,
free-spirited creativity, and grass roots management. Ducky Days was really a
reaffirmation ritual – helping all involved remember, in a light hearted and social
way, the core values of the organization. The story goes, that when the company
began to grow it needed to add managers from the outside world. One such

3 The terms “pig” and “chicken” in this context are derived from a story about a pig and chicken starting a
restaurant. Given a menu of bacon and eggs, the pig is committed and the chicken is merely involved. The
suggestion here is that only those who are committed – those that will suffer the repercussions of failure –
should speak in stand-up meetings even though all involved may and should attend to gain an
understanding of what is happening with the project.

 16

manager was a notorious “stuffed shirt.” One day an employee put a yellow
plastic duck in the fountain outside the entrance to corporate offices. The uptight
manager was appalled and notified all employees that such behavior was
undignified and not to be tolerated. The next day, you guessed it, the fountain
was full of yellow ducks. The manager left the company shortly thereafter and
Ducky Days commemorates the victory.…

Context You are an organization that is working to establish and maintain a 'whole-team'

that is does not suffer from Us vs. Them via Reciprocal visibility. Your team
members tend to get 'heads-down' in their work and, especially with larger teams,
the do not communicate outside of their tasks.

Therefore use Reaffirmation Rituals to give the teams a laid-back atmosphere to enjoy

time together. They will naturally discuss their work and keep in touch with each
other. A team lunch is an excellent venue and one of the most common
reaffirmation rituals.

But (Smells) Be careful to keep these rituals informal. In one particular case lunches

were very productive until the project manager started showing up and tried to
'run' the lunch like a stand-up meeting. This destroyed the atmosphere and
reduced the high bandwidth informal communications which were happening
without him.

a.k.a Small Successes in Fearless Change has a lot of overlap.

Solidarity Ritual

Sketch: The project was certainly important enough. Everyone seemed eager to be on

the project and to utilize the new agile approach. But the team just wasn’t
coming together. Stand-up meetings were characterized by a kind of finger
pointing, e.g., “I gave the specs to Jose yesterday, my roadblock is not getting the
updated customer requirements from Julia.” Angela, the coach, recognized that
the team needed some rituals to create and maintain a sense of common identity
so she approached the IT director with a list of requests. “We really need our
own space to consolidate the team. We can start with one wall of the cubicle
space where we will own all the whiteboards and bulletin boards. We wil conduct
our daily meeting in the aisle in front of that wall. We also need some marker of
team membership. I talked with HR and they said they could issue a different
color security badge to the members of this team and since everyone has to wear
those badges in a visible way every day – it will help everyone instantly recognize
who is and is not a member of the team.” “Well those sound simple enough,” the
manager replied, “what else might you need?” …

 17

Context You are an organization that is working to establish and maintain a 'whole-team'
that is does not suffer from UvT. Your team is in the process of building itself
and establishing its culture.

Forces. Organizations are comprised of individuals. Even though some cultures

emphasize individualism more than others almost everyone is shaped by
idiosyncratic needs and history. We all return home to separate homes which are
the real focus of our lives. Large organizations are multi-cultural in composition.
Different people bring different food for lunch, may speak different languages
around the water cooler, have different artifacts in their cubicles. Assertion of
identity, gender, and ethnicity are powerful forces acting on all of us.

Therefore Solidarity Rituals to help teams establish their individuality and pride in their

work. Celebrate Success when a team passes a major milestone and remember
important events as a team.

How. The challenge here is creating a new subculture. Cultures are characterized by

common values, world views, behaviors, and language. Creating the outward
appearance of a culture is the first step.

• The importance of a common space cannot be overemphasized. Begin small, e.g.
an owned whiteboard and a bit of aisle space among the cubes, if necessary but
push hard for a dedicated room.

• Common attire is important. It is frequently easier to use jewelry or distinctive id
badges rather than clothing (people do not want to wear the same T-shirt
everyday).

• Schedule common meals. Use food to mark important milestones or points where
the team needs to resolve issues among themselves. Precede retrospectives with a
potluck lunch.

• Engage the team in activities other than work – a reading group for instance, a
movie night, a Friday afternoon picnic.

Participant Observation
Sketch: “Hey Samantha, where were you last week?” asked Henri. “Back in the
trenches over at Facilities Management,” she replied. “I used to work in an area like
that before becoming a business analyst. They had a crisis and needed someone to help
our for a few days.” “I bet that was awful,” Henri sympathized. “At first,” Samantha
admitted, “but then I noticed that I was really gaining a much better understanding of the
requirements for this new system we are building for them.”

Context Your team, and your entire organization, ir organized based on roles and roles

within product lines. Even though you are assembling a team that includes most
of the roles, customer to coder, communication is still role-to-role with lots of
interpretation across the communication channel.

 18

Therefore. Anthropologists long ago discovered that true understanding requires more
than talking and observing. They invented the term, “participant observation,” to
describe how they gather the information and understanding necessary to write a
great ethnography. Live with, eat with, work with, and empathize with the other
members of your team.

• Pair programming is only the beginning – do some pair testing, pair story writing,
pair database design, pair forms entry. Have all of your people work alongside all
of your other people.

• In addition to working with your on-site customer, pair for a day or two in the
actual business unit where your software will be used.

Conclusion
So here we are - with a collection of Agile Practice Adoption Patterns that all address the
Us vs. Them smell found in many organizations. The concrete practices we have are 3
levels removed from the smell; that is we have Reciprocal Visibility which in turn
references other patterns such as Dynamic Information Radiator, which references the
concrete practice of Daily Stand-Up.

We envision new adopters of agile processes going to these patterns driven by the smells
they need to address at their particular organization and upon locating the concrete
patterns being able to get advice on how to adopt them. Currently most of the literature is
about the pattern itself not how to go about adopting them.

Finally, we see that the full pattern language is very large and requires much more work
to flesh out. One of the issues we are currently grappling with is taking subsets of this
language that make sense as a cluster instead of just arbitrarily digging deep as we have
done here.

Vision and Future Work
The vision we have for this work is to build a community where these and other patterns
come together and are available for those who are on their way to becoming agile. To
this end we have a wiki at http://www.agileprocessadoption.com/wiki/ where we are
documenting our initial results from different workshops (ChiliPlop and XP and
hopefully PLOP 2006). We also have initial support from the agile alliance
(http://agilealliance.org/AgilePracticePatterns).

At a more immediate scope our aim is to get a few patterns in a useful “cluster” and tie
them to related business values and smells. This paper is a step towards writing this
“cluster”, and as we get feedback (from the Pattern Language Community) we will be
able to put this information in a useful format for the community.

 19

References:
[Bartlet2006] Bartlet, E., And The Agile Survey Says…, Agile Journal,

http://www.agilejournal.com/content/view/29/43/ , 2006.
[Beck1999] Beck, K,. Extreme Programming Explained: Embrace Change, Boston, MA,

Pearson Education, 1999.
[Beck2004] Beck, K. and Andres, C. Extreme Programming Explained: Embrace

Change (2nd Edition), Boston, MA, Pearson Education, 2004.
 [Bergin2005] Bergin, J., Patterns for Agile Development Practice, Part 1, presented at

EuroPLoP 2005.
[Bergin2006a] Bergin, J., Patterns for Agile Development Practice, Part 2, presented at

EuroPLoP 2006.
[Bergin2006b] Bergin, J., Patterns for Agile Development Practice, Part 3, to be

presented at PLoP 2006.
[Elssamadisy2006a] Elssamadisy, A., Elshamy, A., Johnson, A. and West, D., Patterns of

Adopting Agile Development Practices Workshop, ChiliPLoP, Phoenix, AZ,
http://agileprocessadoption.com/wiki/index.php?title=ChiliPlop_2006_Results ,
2006.

[Elssamadisy2006b] Elssamadisy, A. and Elshamy A., Patterns of Adopting Agile
Development Practices Workshop, XP 2006, Oulu, Finland,
http://agileprocessadoption.com/wiki/index.php?title=XP2006_Patterns , 2006.

[Manns2004] Manns, M.L. and Rising, L., Fearless Change: patterns for introducing
new ideas, Boston, MA, Pearson Education, 2004.

[Schwaber2002] Schwaber, K. and Beedle, M., Agile Software Development with Scrum,
Upper Saddle River, NJ, Prentice Hall, 2002.

[Yip2006] Yip, J., It’s Not Just Standing Up: Patterns for Daily Stand-up Meetings, to be
presented at PLoP 2006.

At this point references need to be flushed out – these are place holders that need details
for each reference.

• ‘War Stories’ articles from several previous conferences
• Extreme Programming Applied (also war stories)

Acknowledgements
We thank all of the people who participated in the workshops at ChiliPlop and XP2006
and others that have taken the time to share their experiences and critique our work.
These are Ahmed Elshamy, Ashley Johnson, Rod Coffin, John Muffarage, Jean
Whitmore…. (more here later)

Author Bios:
Amr Elssamadisy, Valtech Technologies Inc.

Amr is currently a Principal Consultant at Valtech (www.valtech.com). He considers

himself a developer but has also worked for consulting companies since 1999, so
maybe an outgoing, people-oriented, developer is a better description. He has been

working professionally as a software developer, architect, manager, consultant, etc…

for over 12 years helping build software systems in C++, J2EE, and .NET. His first

 20

agile development project was a large project XP effort in 1999 where he had a

chance to work and learn from some of the best in the field. Since then he has led,
participated, and guided teams in several large and small agile development projects

in both the .NET and J2EE worlds.

David West, PhD. Dave has been a working professional – computer operator to
consultant with side trips into management – since 1968. He has taught university

courses for sixteen years, authored a book, Object Thinking, published by Microsoft

Press Professional. He has been doing agile development since the mid-nineties,
earlier if you count the rapid application development, prototyping, and objects. He

has worked with small teams and large fortune 100 organizations doing training,

mentoring, and coaching.

 21

This is a copy of a running conversation with Ralph Johnson. Won’t be part of the paper
but is good for reference:

Also, there is a blog by Ralph Johnson partially based on his advice to

me (I think)

at http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showCo

mments=true&entry=3327001782

<RalphJohnson>

Joe and I are co-chairs of PLoP. When Joe told me about your
situation, I said that if you were not comfortable with your shepherd,

you should get a new one. That is what Joe was thinking, too, so he

went ahead and told you that.

I got a copy of the e-mails {between me and my old shepherd} and
looked them over. In fact, I think that Sue was pretty accurate. Her

main problem was using too much Alexandrian jargon, giving you too

much information, and not being able to understand some of the

things you were saying. I'm not trying to talk you out of getting a new
shepherd; I think that was the right decision. I'm just trying to make

sure you profit from the time you have spent on this so far.

The first issue was what the paper was really about. Does it make
sense to have patterns about becoming an agile organization? In

some sense, all patterns about X are patterns about becoming X.

Patterns are supposed to be applied one at a time. Piecemeal growth

is considered a good thing in the pattern community. {so it seems I
am not clear about my intent - I don't know what an agile organization

is really... I know these are practices that move us in the direction of

delivering better software... Not sure what the ccts of an agile

organization will be - haven't seen enough of them :) }

I think you point is that there are some prerequisites to becoming

agile that the other work has missed. {Actually my point is that other

work either takes the wrong granularity - i.e. methodology and not

practice, and it discusses the 'what' more than the 'how'. When it
does discuss the 'how' it is again, w.r.t. to a methodology and does

 22

not have the fuzziness of a pattern - i.e. the forces and consequences

- clearly marked} This paper is focusing on building up trust between

all the members of the team. {Actually, you are right in one case -
the examples I've taken are expanding Reciprocal Visibility. On the

other hand, there is the notion that these are the first patterns of a

much larger language - hence the title.} It is easy to say the "Whole

team", but if people are taking an "Us vs. Them" attitude then it is just
not going to happen. Trust is not going to get built up overnight.

Going from "Us vs. Them" to a Trusting Community will take a lot of

time because people have a lot of bad memories and experiences to

overcome. It might be easier to create this community with a new
team.

Your main pattern is Reciprocal Visibility. It is weird that you do not

define it! Maybe that is just the fact that this is a rough draft. When
you say you are going to do define it, you instead say how you are

going to get it. The definition of RV should be something along the

lines of "The sate of the project is visible to all members of the

project. Not only can developers see what developers are doing, but

business can see what developers are doing and developers can see
what business is doing." Rituals and Radiators are how you achieve

RV, not what it is. {point well taken, this makes sense for RV, not so

sure for the others... More later.}

The context is too specific. RV is important even if you have a new

team, or if everybody gets along well. {That may be true in the

abstract. But, by taking a smell driven approach we naturally looked

at RV from the point of addressing "Us vs. Them". Maybe we were
just wrong here - maybe it is more useful to drive through smells....}

The context defines the solution when you say "there are tightly

constrained communication channels", because the pattern in "use

communication channels that everybody can see". So, the context

should REALLY be something like "the developers, users, and business
people are all different, but have to interact for the project to be

successful". To help figure out the context, think about when the

pattern is not important. For example, you don't need to consider it if

development regularly produces a stream of value and business is
happy with them and so is always worrying about other things.

I think that "Reaffirmation ritual" {In fact, reaffirmation ritual looks a

lot like "small successes" by Mary Manns and Linda Rising. The idea
that "small success" should be acknowledged and celebrated does not

say how to do so - that can be done in a myriad of ways.} and

"Information radiator" are not patterns, they are categories of

 23

patterns. {There is also “personal space” from Manns and Rising

which is exactly the same as static information radiator. So…}

Pattern writers are always torn between being concrete and being
concrete and being abstract. If we make our patterns more abstract,

they are more likely to apply. If we make them more concrete, they

are easier to apply. "Stand up meeting" is much easier to understand

and to follow than "Dynamic information radiator". {I contend they
are both valuable. Dynamic information radiator tells you what type of

things need to be done to solve a particular set of forces. This is why

they look like aggregations, in fact they are a projection into a set of

concrete patterns with a focus on the value of a dynamic info radiator.
It also leaves room for the reader to come up with their own. Stand

up meeting is a concrete implementation of that pattern which you

may use. You may be constrained in doing so, for example distributed

teams, and come up with you own dynamic info radiator to achieve the
same goal.}

I suggest that RV have a real definition followed by an implementation

section. The implementation section will have five subsections, one for

the reaffirmation ritual, solidarity ritual, dynamic information radiator,
static information radiator, and participant observation. The latter is

actually more of a pattern though both name and description is bad.

{Hmmm... Sounds reasonable, I still get the information I need and it

is within the context of RV... At the same time the granularity is too
large. Each of these patterns stand alone in their own right and are

more than just groupings. The fact that two of them are very related

to already published and (I assume shepherded) patterns in Fearless

Change is external validation.}

Most of the time I first look at a pattern paper, I think that a pattern

should be broken into smaller pieces. It is weird that I am telling you

to combine these patterns into one, but that is in fact what I am

doing!

Sue's second point was not to talk about smells but to talk about

forces. I think you are right. {Yipeee!} Your target audience will

understand smells much better. I thought her appeal to Alexander
was wrong. I think he advocates picking one thing that bothers you a

lot and fixing it, and that is what focusing on smells lets you do.

{Yes. Also smells are less exact than forces, which is our natural way

of thinking. It is much easier to recognize a smell coming along. The
more you wait the worse it gets.}

Sue's third point is that there should be patterns at different levels of

 24

abstraction. I agree. In fact that is what I like so much about RV; it is

clearly a different level of abstraction than stand up meeting. Standup

Meeting does some things beyond RV, because it also helps a group to
respond quickly to problems, which is not what RV is about. It is

typical that a lower level pattern can help out several higher level

patterns. {We are in agreement here - it is a many to many

relationship.}

I also think RV is a structure. It is a structure of people. You have a

group of people who can be divided into many categories. Obviously

tow developers pair programming will know more about what the other
is doing than the customer down the hall will know about either of

them. But does this customer know ENOUGH about what they are

doing? Does management know enough about what the developers

are doing to know whether to higher more developers, to promise a
particular release date, to start looking for a new market? Do

developers know enough about business to make their decisions? RV

is about information flow. If information is not flowing then bad

decisions get made, and decisions take longer to make. {AMEN! So

RV is a structure... I can buy into that. But the lower level patterns?
probably not - probably practices....}

To summarize, you need to define what the patterns are. You can

either look at a pattern as a structure or as the process you follow to
get to the structure. {Assuming the structure is known. What

structure does a standup meeting build?} In my opinion the pattern is

the structure and the process you follow is the implementation of the

pattern. A pattern needs both. RV will be a lot better if you separate
the two. This implementation of RV is other patterns, so there is a

natural link between the higher-level pattern and the lower-level

patterns. But what you are calling intermediate level patterns are not

really patterns but categories of patterns and you can put those

categories in the description of the implementation of the pattern.
{but what about giving the reader, in fact encouraging the reader, to

use a 'dynamic information radiator' even if stand up meeting is not

applicable? Will have to see - write it both ways.}

-RalphJohnson

{retyped by Amr Elssamadisy - all misspellings are mine :)}

</RalphJohnson>

 25

How: Pick any Start with Story Board - keep it light - either a white board or some

kind of bulletin board with stickies. (DO NOT TRY TO AUTOMATE AT
THIS POINT.) The story life-cycle becomes visible - the state of the current
iteration becomes visible to the entire team. Because we are focusing on
stories this reinforces the correct modularity (granularity) of work. This also
allows feedback at a finer grain than an iteration. Story Boards communicate
information from IT and from Business.

Smells:
• If cards are not moving across the board there is a problem; usually people are

not updating the board, sometimes this can point to another problem with no
useful work being done.

• Nomadic stories that wander off the board is a bad thing. There are variations
on how to handle this.

• (Illegal Immigration) Porous borders: story cards that are not stories and do
not have business value. (ex. stories are pure refactorings)

Next there are two possible routes:

• If you have a continuous integration tool in use then the tool probably has a
reporting page that can be made available to the group for minimal effort.

• The next step with Story Board is to include authorship signoff. Review and sign
off should be a priority and done as soon as possible.

Smells:
• Business Analysts see their major responsibility as analysis and producing

more stories. Reviewing/testing implemented stories is sometimes seen as a
low priority. Signoff tends to happen at the tail end of the iteration. Many
stories don't pass because feedback is too late.

• Up-to-date running application is not available to BA's for testing and sign-
off.

a.k.a Personal Space in Fearless Change has a lot of overlap – Information Radiator
already has traction as a term in the agile field.

Name: Dynamic Information Radiator

Sketch: Joe and Bob were….

Context: The whole team needs consistent and continuous information about factors that

inhibit/enhance the process of delivering business-valued software. A major
challenge confronting adopters is establishing a sustainable pace and an
appropriate rhythm for delivering software. The team is accustomed to an
inappropriate (possibly iterative) sequence and pace.

 26

Forces:
• Teams are predisposed to secrecy.
• The team is unable to articulate their progress in a useful fashion.
• The team doesn't know where they are (the wrong metrics are being used).
• Information is exchanged sporadically and tends to be late resulting in overtime

and erratic productivity.
• The world is unpredictable - therefore unpredictable events must be ameliorated.
• Low team morale.
• The team has not identified or established a sustainable pace.

Therefore: Use dynamic information radiators to address these forces. Stand Up
Meetings, Iteration Kick Offs, Retrospectives (iteration/release/project level), and
Science Fairs all can be used to address one or more of these forces. Dynamic
Information Radiators Sketch

How: Start with the Planning Game (see Story Writing) to set an iteration plan (over
several iterations a tempo will develop), move to an Iteration Kick Off. At the coach's
discretion (assumes Coached Agile pattern, see Bootstrapping Agile otherwise) have
intermittent Stand Up Meetings with the goal of reaching daily Stand Up Meetings by
iteration 2. End the iteration with a Retrospective. Notice that we are not adopting these
patterns very incrementally; everything is done within the first iteration. Demo's and
release retrospectives should be planned for before the first release.

Smells:
• Too many changes made to the backlog or adjusting velocity frequently

(non-convergence) means that your cycle time is too long.
• Kick Off/Planning Game taking too long. (All day)
• Stories are not fully flushed out before planning game.
• Stand Up Meeting attendance is low and/or sporadic (includes not starting

on time). Reduce frequency or improve content (distinguish between
Coached Agile and Bootstrapping Agile teams.

