
THE ABSENT PARTICIPANT
More patterns for group awareness

Till Schümmer & Stephan Lukosch
FernUniversität in Hagen

Computer Science Department
Informatikzentrum, Universitätsstr. 1, D-58084 Hagen, Germany

till.schuemmer@fernuni-hagen.de

August 26, 2006

Note to the Writer’s Workshop: We are aware of the fact that this
paper exceeds the size of a paper that can be discussed in depth in a work-
shop. Therefore, we’d like to ask for feedback on the problem/solotion pairs
of all patterns and the full content of the following four patterns: Away
Message→9, Life Indicator→4, Replay→5, and Timeline→6.
The patterns listed in the appendix are only provided to help the reader to
better understand the context of the pattern language. They need not to be
in the writer’s workshop’s attention.

Abstract

The awareness of group members is one crucial aspect in computer-mediated
interaction. This paper presents a set of patterns that support groups in
which one or more group members are currently away from the group. The
patterns help the group to stay aware of the missing user and the user to keep
up to date of what happens in the group. The patterns are part of a larger
pattern collection for computer-mediated interaction. This context will be
partially summarized in the paper.

Introduction

In a networked society, new forms of work have evolved over the last two decades.
People collaborate over distance in virtual teams. They create virtual collaboration
spaces (Schümmer and Fernandéz 2005) at which they meet at the same or different
times. Understanding and better supporting distributed collaboration has been
the goal of the research area of CSCW (Computer Supported Collaborative Work)
(Grudin 1991). Compared to its early beginnings in the 1980ies, we can currently
state that this research area has matured. However, only a few of its findings

1

have entered the main stream of software development. Therefore, we argue that
the whole field of computer-mediated interaction should be supported by a pattern
language that will help software developers of various domain to better consider
the collaboration aspect in their applications. Up to now, we have collected 114
patterns in this field (Schümmer and Lukosch 2007). In this paper we will present
9 additional patterns that focus on asynchronous interaction.

Since we cannot assume that all members of a collaboration space will be present
at the same time, it is important that the environment keeps the members informed
about activities that occurred during their absence. A concrete example is a virtual
team of software developers who are distributed around the world. Rashid from
India starts to work on the project at 9:30 local time. At this time, PaweÃl from
Poland is still in bed and Josè from Mexico enjoys a dinner with his spouse. This
means that much of the collaboration takes place asynchronously. Coordination of
group activities and exchange of information becomes much more difficult. Although
all three developers are nominal group members, it is hard for them to stay aware
of their activities.

Group awareness has been an important research area in the field of CSCW
(Computer Supported Collaborative Work). Dourish and Bellotti (1992) defined
group awareness as “an understanding of the activities of others which provides a
context for your own activity”. Providing awareness helps to coordinate the group
members’ own activities. In synchronous contexts, examples of awareness widgets
are Presence Indicators or User Lists that help to detect the presence of a
collaborator or Telepointers and Remote Viewports that indicate at which
part of a shared document remote users currently put their focus (Fernandez et al.
2003), (Schümmer 2004), (Gutwin and Greenberg 1996). For asynchronous collabo-
ration, there are fewer examples in the research literature, however, some practices
have proven to work.

A Common Story

We will explain the patterns in the context of a common story. Imagine that your
goal is to support teams of distributed software developers and software customers in
the development of the next generation game engine. The members are distributed
as shown in figure 1. One team of developers is located in the Rio, one in London
and a third in Hong Kong. The main customer is a large game manufacturer located
in Germany who has the goal of building an educational game that helps to better
understand water supply in African countries. The game manufacturer has a group
of African pilot users located in Ethiopia and in Malawi.

Different interaction constellations can be found in this hypothetic project: The
developers from the London continue to work on the results that were created only
some hours before in Hong Kong. Both software teams communicate to plan the
internal architecture of the game engine. In other meetings, the London team col-
laborates with the German customer who integrates the game engine in his project.
The German customer also communicates with some of the developers in Hong Kong
or Rio if time shifts allow an interaction. Finally, the German game manufacturer
interacts with his pilot users and collects suggestions from them on how the game

THE ABSENT PARTICIPANT
August 26, 2006 2

Figure 1: Distribution of team members in the example setting.

could be improved.

Since all teams are distributed and potentially work at different points in time
(remember the time shifts), the awareness of other team members becomes a crucial
aspect for making interaction and coordination between the individual participants
possible.

A Pattern Language for Absent Participants

We can approach the problem of group awareness from different perspectives. As-
suming that one user leaves the collaboration context for a longer period of time,
it is important that (a) the group becomes aware of the other user’s absence so
that they can adapt their group process if needed and (b) the absent user is aware
of important changes in the collaboration space so that he can more easily resume
collaboration after his absence. This is reflected by the patterns in this paper.

Figure 2 provides an overview on the patterns. Patterns are shown as rounded
rectangles. The arrows between the patterns denote a reference between the pat-
terns. If a pattern has been considered for application, you should also consider
all patterns that are related from the original pattern. Bordered areas cluster the
patterns with respect top their main focus.

When implementing a system that supports absent participants, you should first
ensure that activities of other users are logged and therefore consider patterns from
the Logging cluster. The Activity Log and the Activity Monitoring pattern
support this. Since these two patterns were published before (Schümmer 2004), we
only include their thumbnail in this paper:

Activity Log
Problem: Merging two users’ (past or current) work is a difficult task. It requires

THE ABSENT PARTICIPANT
August 26, 2006 3

Interest Agent

Away Message

Replay

Activity Expiration

Change Indicator

Activity Indicator

Activity Log Activity Monitoring

Timeline

Periodic Report

Life Indicator

Logging

Indicators

Comprehension

Agents

Figure 2: Patterns for asynchronous group awareness described in this paper.

that the activities are transferred to the same context and that the goals are aligned.
But many applications don’t provide access to the artifact’s history, its use, and its
evolution. Thus, merging is vulnerable to errors and often collaboration does not
take place since the merging efforts exceeds the estimated gains of a collaboration.

Solution: Remember all activities that users perform on shared artifacts – not
only modifying accesses, but also read accesses. Provide access to the activities,
so that a user can understand (and merge) other users’ activities with his own
activities.

Activity Monitoring
Problem: Many proprietary tools are not designed for extendability. They do not
provide means to modify the application’s behavior. This makes it difficult to add
automatic tracking of user’s activities, which you would need to provide awareness.

Solution: Add an additional layer in the communication between the application
and the shared data to monitor the user’s activities. Allow other parts of your
application (e.g. a Activity Log→ or a Local Awareness→10) to subscribe to
monitored activities.

These two patterns help to capture events. In line with Fitzpatrick et al.
(1999b), we define an event as “any significant change in the state of an observed
object”. The Activity Expiration→1 pattern which is added to the Logging clus-

THE ABSENT PARTICIPANT
August 26, 2006 4

ter in this paper argues for removing events from the activity log if it grows too
large to avoid information overload.

The log data can now be analyzed and visualized in different ways. The cluster
labeled Indicators includes patterns that help to better understand traces of users
in the system. The Activity Indicator→2 shows where the other users have been
active while the Change Indicator→3 visualizes modifications to artifacts that
the absent user has not yet seen. The Life Indicator→4 finally shows whether or
not a user has been active at all.

These patterns focus on individual activities. After a longer period of absence,
this is not sufficient to get a holistic idea of the group’s progress. The three patterns
in the Comprehension cluster therefore support the user in better understanding se-
quences of activities. The Replay→5 pattern replays activities like in a movie. The
Timeline→6 provides a quick overview by chronologically visualizing changes. The
Periodic Report→7 avoids a large divergence between the absent user’s knowledge
and the group progress by frequently informing the absent user on changes.

The last cluster in Figure 2 includes two patterns that show how the user can
stay “present” without “being there”. The idea is that an Agent takes the role
of the user while the user is absent. The Interest Agent→8 collects activities
that are relevant for the absent user and the Away Message→9 communicates the
absence to the group whenever the absent user is required for interaction.

As mentioned in the introduction, this paper only presents a small part of a larger
pattern language on computer-mediated interaction. Whenever patterns reference
other patterns of this language, you can find short versions of these patterns in
Section 10.

Acknowledgements: Munawar Hafiz did a great job as a shepherd for PLoP
2006 where these patterns were first discussed. His questions helped us to make the
following patterns more clear.

THE ABSENT PARTICIPANT
August 26, 2006 5

1 Activity Expiration

Activity Indicator

Change Indicator

Activity MonitoringActivity Expiration

Away Message

Activity Log

Periodic Report

Timeline

Interest Agent

Replay

Life Indicator

Alternative name(s): Remember to Forget

Do not consider activities from an activity log that are no longerIntent
relevant to the users.

You are providing asynchronous awareness like information on whoContext
has edited a specific page.

4 4 4

Awareness information helps to make a user understandProblem
what other group members have done in a collaboration
space. They show other user’s traces and therefore make
the collaboration space a living place. However, these
traces become too confusing if they stay in the space for-
ever.

Susan has been very active in the past and thereby gained a topScenario
position in the community’s Hall of Fame→10. However, she
stopped her participation half a year ago and is no longer respond-
ing to requests. Claire who is seeking for assistance is thus mislead
by the information found in the Hall of Fame that suggested
her to contact Susan.

You should consider to apply the pattern when . . .Symptoms

– users complain that they are informed about old activities that
are not relevant anymore.

– users react to an activity but the other user who performed
the activity is no longer aware of what she did in the past.

Therefore: Mark activities as outdated after a specificSolution
point in time or after a user has noticed the activity. This
means that these activities are no longer considered when
providing awareness information for the user.

Activities are stored in an Activity Log→ and used to provideCollaborations
awareness on past actions. The pattern proposes to have two trig-

THE ABSENT PARTICIPANT
August 26, 2006 1 Activity Expiration 6

gers for marking activities as outdated:

1. A user can explicitly request that an activity is marked as
outdated. This means that a flag is set in the activity object.

2. The system periodically checks activities and flags those activ-
ities that are too old.

In the first case, the flag has to be an attribute that is only
associated to the user that has set the flag. This is necessary
because different users can request that an activity is outdated at
different points in time. In the second case, a global flag is set that
is valid for all users.

When the system calculates awareness information, it only con-
siders those activity records that are not marked as outdated.

When providing awareness information, it is always important toRationale
balance the amount of information so that it is not too complex
for the user. Otherwise, the user will be distracted by the aware-
ness information. The question of what to filter in the process of
providing group awareness has to be stated in each design of an
awareness widget.

One way to filter awareness information is to assume that a
user will remember information that was presented to her in the
past. If a user, e.g., has been informed about new versions of a
document in a Periodic Report→7, one can assume that she
will have processed this information. Telling her about the new
document on the next day again will probably rather distract the
user. The same is true for activities that do no longer have an
impact on the group interaction. If a user, e.g., created a document
to plan the next days of collaboration, it will often make little sense
to inform another user who has been absent for a year about this
planning document a year later.

It is therefore important that old traces are no longer visible.
The decision when it is appropriate to hide old activities is often
user dependent. A user who has seen the newest version of a spe-
cific part of the collaboration space will show less interest in the
activities for that part as a user who has not yet found the time to
review the changed artifacts.

One could argue that the activities could also be deleted. How-
ever, in some cases the activities can become important again. One
example is that users do no longer remember who collaborated on
an artifacts in its early days. Being able to find these people can
be important if implicit knowledge is requested from them.

When applying this pattern, you should answer these questions:Check

– What kind of automatic triggers will you use to outdate activ-
ities?

– Will you allow a user to outdate activities manually, e.g., by

THE ABSENT PARTICIPANT
August 26, 2006 1 Activity Expiration 7

providing a command that outdates all activities for a specific
user?

– Can you outdate activities after you presented them to the
user?

In cases where the activities are stored in a database, the storageDanger Spots
becomes more complex if the activities are outdated for the indi-
vidual users. It can then make sense to only remember the time
of the oldest activity a user is interested in. Users can in this case
decide to forget all activities that are older than a specific age.

Known Uses BSCW (Bentley et al. 1997) maintains an Activity Log to
visualize modified artifacts using Change Indicators→3.
These indicators however do not vanish unless the local user
decides to catch up all changes. This results in the situation
where the change warnings are no longer shown.

Motorola E1000 is a mobile phone in which the SMS configu-
ration may be appropriated in order to keep only a specific
number of short messages and skip old messages.1

Firefox http://www.mozilla-europe.org/en/products/

firefox/ is a web browser that is able to automatically forget
all visited pages after a user specified period of time. Links to
these pages will then be displayed as unseen again.

4 4 4

Related Patterns Activity Log→: The Activity Log stores all activities that
were performed in a collaboration space. The importance to
consider not all of these activities is raised by the Activity
Expiration pattern.

1http://direct.motorola.com/ENG/web_producthome.asp?Country=GBR&language=
ENG&productid=29265

THE ABSENT PARTICIPANT
August 26, 2006 1 Activity Expiration 8

2 Activity Indicator

Interest Agent

Replay

Life Indicator

Activity Indicator

Activity MonitoringActivity Expiration

Away Message

Change Indicator

Activity Log

Periodic Report

Timeline

Alternative name(s): Ticker Tape

Provide an explanation about other user’s activities while not yetIntent
showing the activity’s intermediate result.

Users are geographically distributed and interact in a highly syn-Context
chronous session that involves frequent turn taking and request-
response interaction.

4 4 4

Users need time to perform a task but only the results areProblem
shared among the users. In a co-located setting users are
used to perceive non-verbal signals such as movements or
noises if another user is active. If the users are distributed,
these signals are missing. Users are therefore not aware of
other users’ activities which can result in conflicting work
or unnecessary delays.

Paul and Martin both decided to work on graphical aspects ofScenario
the game engine project. Paul starts to work on the rendering of
places while Maurice looks at the rendering of actors. At one point
in time, Maurice starts changing some code that he has currently
checked out to his workspace. He plans to check the code in again
after he has tested his modifications. However, if Paul also wants
to modify the same bit of code, the changes of both users will need
to be merged after both users have finished their tasks.

You should consider to apply the pattern when . . .Symptoms

– users dislike distributed interaction as they do not know what
the other users are doing.

– users perform concurrent actions.

– users wait too long for another user’s action although the other
user does not act at all.

– users act at the same time but do not necessarily share the
same focus.

THE ABSENT PARTICIPANT
August 26, 2006 2 Activity Indicator 9

– users do not want to be distracted from their current task but
still feel the need of staying aware of other users.

Therefore: Indicate the current activities of the otherSolution
users in the user interface. To reduce interruptions, use a
peripheral place.

Provide an user interface element in a peripheral place that showsCollaborations
that remote users are active and what they are currently doing.
Ensure that the remote users’ activities are shown in the user in-
terface immediately after they started the action. Hide the activity
if no more activities are detected from the remote users (e.g., no
keyboard input for a specific period of time).

The activity indicator shows up immediately after a remote userRationale
started an activity. This signals to the local user that the remote
user is now active and that additional local actions could lead to
conflicts.

When applying this pattern, you should answer these questions:Check

– Where are you going to display the other users’ activities?
Commonly used places are

. the status bar of the collaborative application,

. the status bar of the desktop,

. a pop-up note on the desktop’s task bar that disappears
automatically after a short period of time, or

. a notification pane in your application (comparable to an
Embedded Chat→10).

– What kind of activities are you going to indicate? Is it only
important to show modifying activities or do you also indicate,
e.g., navigation activities of the users.

If many users collaborate, displaying the different activities be-Danger Spots
comes difficult. Therefore, reduce the provided information and
cluster the information, e.g. when several users are performing the
same activity.

Known Uses MSN Messenger shows when another user is typing a message
in the status bar of the chat window. This helps the local user
to better understand if he can expect a reply.

Palant́ır (Sarma et al. 2003) is a group awareness component that
extends a software configuration management system. Palant́ır
tracks the activities of the group members to provide knowl-
edge about the team members’ actions.
Each activity that is of interest to the local user runs through
a ticker tape of the awareness client. This view is intended
to stay on the user’s desktop and constantly update the user
on the newest activities. Using a scrolling text will probably

THE ABSENT PARTICIPANT
August 26, 2006 2 Activity Indicator 10

Figure 3: An activity status bar in the MSN Messenger.

Figure 4: The ticker tape of Palant́ır.

result i a higher attention level spent on the information.
A comparable visualization is used in the Elvin system (Par-
sowith et al. 1998) that tracks and visualizes activities in a
shared workspace.

Mail Clients like Thunderbird http://www.mozilla.com/

thunderbird/ provide an status icon whenever a new message
arrived. This prevents the local user from polling his mailbox
manually. Compared to more prominent forms of new-mail
alerts, the icon in the status bar will not distract the user
too much: ’By having only the new email icon in the system
tray, employees’ attention would be attracted only when the
concentration level is less demanding and the interruption
would occur at a more convenient time.’ (Jackson et al. 2003).

4 4 4

Related Patterns Attention Screen→10 can be used to filter the awareness infor-
mation shown in the status line.

Activity Monitoring→ describes how users’ actions c an be de-
tected at a technical level. Although the pattern has the goal
of storing records on the detected activities in an Activity
Log→, one can use the described mechanism as well to inform
other users on the detected activity.

THE ABSENT PARTICIPANT
August 26, 2006 2 Activity Indicator 11

3 Change Indicator

Periodic Report

Timeline

Interest Agent

Replay

Activity Log

Life Indicator

Activity Indicator

Activity MonitoringActivity Expiration

Away Message

Change Indicator

Indicate that a shared document has been changed by another user.Intent

Users work on independent copies of the shared artifacts.Context

4 4 4
While a user works on an independent local copy of theProblem
artifact, her checkout frequency may be low. So she may
work on an old copy, which leads to potentially conflict-
ing parallel changes. The conflict is worse if two parallel
modifications had contradicting intents.

Paul has done some major improvements on the graphics engine.Scenario
The most important was that he changed the coordinate system
from a cartesian to a polar coordinate system. Paul documented
this change in the manual of the game engine. Martin however was
not aware of this change since he knew the game engine before and
does not frequently read the manual. Thus, he uses the graphics
engine part with cartesian coordinates and is confused that the
images look very strange.

You should consider to apply the pattern when . . .Symptoms

– Users apply changes to artifacts based on their old knowledge
of the artifact’s state.

– Users tell that they would have done the change differently, if
they had known the newer state of the artifact.

– Users frequently change artifacts.

Therefore: Indicate to the local user whenever an artifactSolution
has been changed by another user. Show this informa-
tion whenever the artifact is shown on the screen. The
information should contain details about the kind of the
change and access to the new version of the artifact.

Figure 5 shows how the different participants collaborate. User 1Collaborations
checks out a document A from the shared document server. This

THE ABSENT PARTICIPANT
August 26, 2006 3 Change Indicator 12

document has the version 1. Later on, user 2 also checks the doc-
ument A. Both users, now have an independent copy of the doc-
ument A which has the same version. User 1 modifies the local
version of the document A and transfer this modified version to
the shared document server. The server creates a new version of
document A and informs user 2 about the new version of docu-
ment A. As user 2 has not modified the local copy of document
A, she checks out the new version, before performing her planned
modifications.

User 1 Document server User 2

Check-out document A with version 1

Return document A

Modify document A

Check-in modified document A

Confirm check-in

Create version 2

of document A

Return document A

Check-out document A with version 1

Indicate change of document A

Return document A

Check-out document A with version 2

Modify document A

Figure 5: Two users are working on a shared document

There are two main reasons, why the pattern works: a technologicalRationale
reason and a cognitive reason.

From a technical point of view, indicating changes alters the
point in time, when integration is performed. Whenever an arti-
fact was changed, all older versions will be marked to tell the user
that the artifact was changed by another user. In most cases, the
second user will integrate the change of the first user immediately
to base his changes on the most recent version. If this is not pos-
sible, he can at least inspect the newer version and model his own
change in a way that an integration is easy. This reduces the cost
of integration. He can also get in contact with the person, who ap-
plied the first change (remember to respect the user’s privacy and
smoothly approach him using an Intimacy Gradient→10). Both
users can then discuss and align their changes and – if considered
useful – work together in a tightly coupled mode. In any of the
mentioned ways, the cost of integration is reduced because there
have not yet been conflicting changes.

THE ABSENT PARTICIPANT
August 26, 2006 3 Change Indicator 13

The cognitive reasoning is often much more important. Con-
sider a system, where artifacts are not explicitly stored in a local
workspace. At a first glance, such systems do not fit into the
context of this pattern. But if one takes a closer look on the in-
teraction, one can define an implicit local workspace: the local
user’s knowledge because he remembers how the artifacts look like.
Whenever an artifact is perceived by the local user, it leaves traces
in his memory. All future activities on shared artifacts will be
influenced by these memory traces. In many cases, the user will
be confident to know a specific artifact and thus not look at this
artifact again.

When the artifact was changed, it is important to inform the
user that he can no longer be confident in knowing the artifact.
The version of the artifact that he remembers can lead to other
interpretations than most recent version. The user therefore needs
to reprocess the changed artifact and update his semantic repre-
sentation of the artifact and its context.

When applying this pattern, you should answer these questions:Check

– How do you visualize the change warning? Can you add a
decorator to the icon representing the changed artifact?

– How important is the awareness of the changed artifact? In
case of low importance, you can consider to simply change the
artifacts visualization after another user changed it while in
case of a high importance, you should consider a more obtru-
sive change indicator such as a dialog window.

Danger Spots – The calculation of conflicting activities may be complicated if
users are allowed to select their desired version (which is true
for most environments). Consider the case where a user Alice
performed a change on an artifact. Later on, she notices that
her change was not right. She thus loads the older version
of the artifact. But the Activity Log→ still remembers the
activity that described the change for the artifact. This activ-
ity will be considered as a conflicting activity even for Alice
(since she now works on a version, which has been changed in
between). But the version, which was created by the activity
is no longer used by any user. Thus, one should ignore these
activities when calculating conflicting activities.

– Even when indicating changes to the users, the users might ig-
nore the indications. To overcome this problem, it is necessary
to establish a social protocol for the collaborating users which
defines how Change Indications must be handled.

– Changes can be complex and providing details about the can
be complex, too. In that case, consider to provide a comparison
view for the local user’s state of the artifact with the remote
user’s state of the artifact.

THE ABSENT PARTICIPANT
August 26, 2006 3 Change Indicator 14

– If changes occur too frequently, most artifacts will be visualized
as changed artifacts. The user will then constantly look for
the changes and might not find time to perform constructive
actions. One solution could be to indicate that an artifact
has not been changed allowing the use to skip processing this
artifact again.

Known Uses TUKAN: The programming environment TUKAN (Schümmer
2001) uses a weather metaphor to display change warnings.
A heavy lightning symbol tells the programmer that a specific
artifact has been changed. The symbol shows better weather
for possible conflicts caused by changes on artifacts that are
further away (following the Active Neighbors→10 pattern).
If there is no near conflict, a sun is shown to indicate that
everything is up to date and confirm the user’s self-confidence.

Figure 6: Change-warnings in the collaborative software development
environment TUKAN.

Figure 6 shows a browser in TUKAN, where the method day:

was changed by another user (indicated by a heavy lightning
symbol in front of the method name).
By indication of possible configuration conflicts, parallel
changes of the same artifact can be avoided. Changes made by
other programmers are not instantly reflected in the local pro-
grammer’s code, but rather in the visualization of the method
identifier. Whenever a newer version is signalled, the user may
decide to integrate this version before she changes the artifact
itself and thus avoid parallel versions.

WinEdt: The text editor WinEdt (http://www.winedt.com/) as
many other editors buffers the current file in memory, while
the user performs edit operations on the possibly shared file.
When another user or application changed the file, it displays a

THE ABSENT PARTICIPANT
August 26, 2006 3 Change Indicator 15

warning that informs the user that the current file was modified
(fig. 7).

Figure 7: Change-warnings in single user applications.

It offers two possible ways for resolving the conflicting change:
loading the new version or working on with the current version
and thus overwriting the changes when the document is saved.

BSCW (Bentley et al. 1997) is a shared workspace system that
displays change indicators for documents that were modified
since the last visit. Although it does not model an explicit local
workspace, it remembers, which artifacts have been read by a
specific user. These versions of the artifacts form the user’s
implicit local workspace. The change indicators then lead the
user to new or changed information on the BSCW server.

4 4 4

Related Patterns Active Neighbors→10 should be used, if artifacts are semanti-
cally related. In this case, it is important to inform a user not
only on changes on the current artifact, but also on changes
that might have an impact to the current artifact (on a seman-
tic level).

Activity Log→: Use an Activity Log to store the activities
that are used for calculating conflicting activities.

Presence Indicator→10: The presence indicator is comparable
to the Change Indicator with respect to the fact that it
also visualizes activities on artifacts. The main difference is
that Presence Indicators only consider activities that are
still active. In most cases, Change Indicators inform on
activities that are completed.

THE ABSENT PARTICIPANT
August 26, 2006 3 Change Indicator 16

4 Life Indicator

Activity Monitoring

Replay

Away Message

Activity Indicator

Change Indicator

Activity Expiration

Periodic Report

Timeline

Activity Log

Life Indicator

Interest Agent

Alternative name(s): Virtual Tamagotchi

Include an indicator in a virtual environment that reflects a user’sIntent
activity.

User collaborate asynchronously on shared artifacts or in sharedContext
virtual or non-virtual collaboration spaces.

4 4 4

Users who work mainly asynchronously only experience aProblem
small subset of activities that take place in the collabo-
ration space. Especially, they cannot easily see whether
other users were active during their absence. This makes
it hard to experience the group’s progress.

Maurice just returned from a business trip. He enters his officeScenario
and wants to continue with the work on the graphics component
that he started last week with Paul. However, he does not know
whether or not Paul has also done some work in this area while
Maurice was out of office.

You should consider to apply the pattern when . . .Symptoms

– users complain that other users have stopped to participate
although these users still follow the interaction.

– users ask the whole group to state whether or not they still
participate.

– users ask other users to visit the collaboration space but are
not sure whether or not the other users followed their request.

Therefore: Show a Life Indicator together with the user’sSolution
virtual representation. If a user participated in the col-
laboration space recently, use a picture for the indicator
that looks very alive. Use gradually less lively pictures
to represent the period of inactivity. Let the picture look
like something for which the user can take responsibility.

THE ABSENT PARTICIPANT
August 26, 2006 4 Life Indicator 17

The system keeps track of a user’s last activity in the collaborationCollaborations
space. When visualizing the members of the collaboration space (in
the context of the collaboration space), the system calculates the
time span from now to the time of the user’s last activity. Depend-
ing on the length of the time span, the system selects a different
indicator that is shown together with the user’s representation. In
cases of a short time span, the indicators connotates a high level
of life while a long time span is visualized by a less lively picture.

Figure 8: Examples for life indicators.

Figure 8 provides examples for life indicators: a withering
flower, a declining bar chart, a fading picture, and a candle that
burns down.

Optionally, the indicator provides additional information (e.g.,
using a tool tip). It can show the time when the user was active or
it can provide details on what the user did when he was active. The
indicator can have different scopes. For a shared workspace system,
there can be one indicator for each user in each workspace. In this
case, it makes sense to use an indicator that represents an artifact
that the user takes care of (e.g., the flower in Figure 8). In systems
where the collaboration space is less important, there can be one
global scope. This means that the user has the same indicator in
the whole system. The fading user image is one example for such
a visualization.

The second decision for the scope is whether the indicator is
bound to an individual or to an artifact or a region in the col-
laboration space. An example for the latter is that the place has
a virtual flower and that every activity in the place waters this
flower.

THE ABSENT PARTICIPANT
August 26, 2006 4 Life Indicator 18

The knowledge of other users’ latest time of participation helpsRationale
to better understand how close the group is collaborating. Espe-
cially, it shows if there are users who have not been present in the
workspace for a long time. Since all group members see this infor-
mation, the group can think about ways to contact the absent user,
analyze why the user did not participate and reassign the group’s
tasks accordingly.

Having indicators at different scopes can support the group to
distinguish between the situation where a user was offline for a
while from the situation where a user was engaged in a different
space. Again, this can help to better understand the user’s context.

Finally, the indicator can motivate group members to at least
enter the collaboration space in order to keep their indicators alive
(which could be considered as a tamagotchi effect2).

Danger Spots – The mentioned tamagotchi effect can be problematic since
users could only pretend to participate.

– The indicators can create a large social pressure to partici-
pate. In contexts where the participation is less mandatory,
you should think about using the Masquerade→10 pattern to
allow users to turn their indicator off. In any case, this should
be coupled with the Reciprocity→10 pattern so that users
who turn their indicator off cannot see other users’ indicators.

– Using two many life indicatory, i.e., at every place in the col-
laboration space, can lead to a situation where the users con-
stantly chase their indicators so that they stay alive. Con-
sider, e.g., the example of the virtual flower that is bound to a
workspace. If a user is allowed to enter many workspaces, he
would also have many flowers and he would need to look for
them even if the workspace was deserted for a longer time. A
solution to this problem could be either to reduce the number
of places that have flowers for the user or to slow down the
ageing of the flowers so that they only fade when other users
are active and the owner of the flower is absent. This however
complicates the calculation of the flower’s age.

When applying this pattern, you should answer these questions:Check

– What metaphor do you use to visualize the life indicator?

– Will you support different scopes? What are the scopes?

– Should the life indicator be bound to people or to collaboration
spaces?

– What is the time scale for your indicator? This is dependent

2A Tamagotchi (see http://www.tamagotchieurope.com/) is a popular digital toy that was
invented in 1997 by Aki Maita. The idea of the toy is that a small creature is living in an agg-
shaped computer that the player can carry along with him over several weeks. The player can feed
the Tamagotchi or play with it. Depending on how well the player took care of his tamagotchi
over several weeks, it evolves to other creatures or died.

THE ABSENT PARTICIPANT
August 26, 2006 4 Life Indicator 19

on the level of synchronicity that you want to communicate.
In asynchronous systems, this may be a week while in more
synchronous systems several minutes of inactivity can result
in a faded life indicator.

– Will you provide context information?

– Where will you include the indicator? Which parts of your
collaboration space should be free of indicators?

Known Uses Flowers in CURE: In the web-based collaboration space
(Schümmer 2005), flowers are used to visualize when a user
was active in a group’s collaboration space (fig. 9).

Figure 9: Flowers and fading user pictures in CURE.

Each space has a property page that lists all users who are
allowed to enter the space. The property page shows the user’s
picture together with a flower, the user’s name, and the user’s
rights in the collaboration space. Whenever a user performs an
activity in the space (e.g., reads a page or modifies content),
her flower is refreshed so that it blooms. The flower gets older
over time until it has no head anymore (after 7 days).
In Figure 9, the users Till Schümmer and Thomas Jarmer have
been active recently. Stephan Lukosch has a slightly darker
flower showing that his activity is a short while ago. Stephan
Frysch’s flower went limp and the flowers of Petra Kösters
and Mike Wilhelm lost their head visualizing that these users
were inactive for a long time. The flowers provide context
information stating the last time when the user was active.
CURE also shows the global activity of the user by means
of fading user pictures. For example, in Figure 9, the user
Stephan Frysch has been inactive in the shown place but his
user picture is still colorful. This implies that he is currently
working in another space.

openBC http://www.openBC.de is a social networking system
that shows an Activity Meter on each user’s contact page. This
represents how active a user has been recently.

THE ABSENT PARTICIPANT
August 26, 2006 4 Life Indicator 20

Figure 10: An activity meter at openBC.

4 4 4

Related Patterns Activity Counter→10 collects the overall number of activities
that took place at a specific location. In contrast to the Life
Indicator it does not show when these activities took place.

Change Indicator→3 depicts a modification on the selected arti-
fact. The difference is that only modifying activities are shown
and that time in most cases does not play an important role
in the Change Indicator pattern.

Activity Log→ allows to collect activity information about users
and thus to calculate how the Life Indicator has to be vi-
sualized.

Hall of Fame→10 collects the most prominent places where ac-
tivities took place.

Presence Indicator→10 helps to better understand the presence
of a user. The Life Indicator is also applicable in semi-
synchronous or asynchronous settings.

User Gallery→10 provides a place to integrate a Life Indica-
tor.

Virtual Me→10 can be combined with Life Indicator. When-
ever other users browse the page describing the user, they can
also see how alive this user is.

THE ABSENT PARTICIPANT
August 26, 2006 4 Life Indicator 21

5 Replay

Interest Agent

Life Indicator

Activity Monitoring

Activity Indicator

Away Message

Change Indicator

Activity Expiration

Periodic Report

Replay

Activity Log

Timeline

Alternative name(s): What Has Happened Here?

Replay how the current state of a collaboration has evolved toIntent
update latecomers.

You allow users to join, leave, and rejoin a collaboration at differentContext
points of time.

4 4 4

When users join a collaboration as a latecomer or whenProblem
users rejoin a collaboration after a time of absence, it
is hard for them to understand how the current state of
the collaboration has been reached or what has changed
since their last participation by only perceiving the cur-
rent state of the session.

Paul and Susan performed an extremely successful pair program-Scenario
ming session. On the next day, Susan wants to continue the ses-
sion but Paul caught the flu and cannot participate in the session.
Therefore, she asks Liam. Unfortunately, Liam does not know what
has been going on in Paul’s and Susan’s session which gives him a
hard time to start collaborating with Susan.

You should consider to apply the pattern when . . .Symptoms

– users often join a collaboration as latecomer, i.e. they have
problems to participate in a collaboration from its beginning.

– users have problems to understand how the current state of a
collaboration has been reached.

Therefore: Capture all changes to the shared objects thatSolution
are used in the collaboration. When a user joins or rejoins
a collaboration, replay the captured changes to show the
user how the current state of the collaboration has been
reached.

To replay how the current state of a Collaborative Session→10Collaborations

THE ABSENT PARTICIPANT
August 26, 2006 5 Replay 22

has been reached, it is necessary to keep a log of all changes that
were applied to the shared state.

Two cases have to be distinguished, with or without existence
of a central server. In the simplest case, there is a well-known site
that can be used as a provider for the latecomer. This is, e.g.,
the case when using Centralized Objects→10 but also when
using Mediated Updates→10 to communicate state changes. In
both cases, the well-known site, i.e. the central server or the me-
diator, has to be enhanced to keep a log of all state changes that
were already applied to shared state. Depending on how state
changes are distributed, this might either be a log of Distributed
Commands→10 or a set of Immutable Versions→10 for all shared
objects.

When a central server is available, the latecomer can contact
this server as provider and request the log of state changes. When
the latecomer has contacted the provider, the provider includes
the latecomer in the complete communication concerning state
changes. From that point of time, the latecomer buffers all mes-
sages concerning state changes.

After including the latecomer in the communication, the
provider supplies the latecomer with log of state changes. As soon
as the latecomer has received the log, it starts to re-execute all state
changes and visualize the execution in the user interface. While re-
executing the state changes, the latecomer displays a control panel
that allows the user to set the speed that is used to re-execute the
state changes. After replaying the log, the latecomer checks if it
received state changes. If there state changes in the buffer, the
latecomer also re-executes these state changes. When the buffer is
empty, the latecomer has a consistent current state, stops buffering
state changes, and participates in the session.

If there is no central server, there is not necessarily a partic-
ipant that has participated in the session from its beginning and
thereby knows all state changes. To solve this issue, all or a subset
of all clients have to keep the log of state changes, e.g., as a set
of replicated objects (Offline Replication→10). Then State
Transfer→10 can be used to provide the latecomer with a copy of
the log.

By keeping a log of all state changes, transmitting this log to late-Rationale
comer, and re-executing the state changes in a speed selected by
the latecomer, the latecomer can perceive how the current state of
the session has been reached.

When applying this pattern, you should answer these questions:Check

– How does the latecomer identify the provider? Is there a site
that is well-known to all latecomers?

– Will users be able to control the replay? Will they see all

THE ABSENT PARTICIPANT
August 26, 2006 5 Replay 23

changes? Will they be able to adjust the replay speed?

Danger Spots – Transmitting the complete log of state changes might cost a
lot of time, especially when the latecomer is joining very late
in the session. To overcome this issue, make regular copies of
the shared state and let the latecomer choose the point of time
at which the replay has to start. Then select the copy of the
shared state that is closest before the point of time selected
by the latecomer. Transmit this copy and only the commands
that have been executed afterwards to the latecomer. The
latecomer uses the copy to initialize the shared objects and
starts re-executing the commands from the selected point of
time.

– If the collaboration is going on for a long time, the size of the
log might require a lot memory. To overcome this issue, reduce
the size of the log by compressing it. Another possibility is to
make a snapshot of the shared state and remove all changes
that led to this state from the log. Then latecomers can only
request a replay from the last snapshot.

Known Uses Collaboration Bus (Chung et al. 1998) is a groupware develop-
ment environment that offers a service that allows to replay
how the current state of a session has been reached. The ser-
vice is based on a latecomer accommodation server which is
called the logger. At the site of a participant, a so-called log-
gable captures all events that change the local user interface
and sends these events to the logger. So the logger is informed
about all changes that a client applies to the user interface
of a shared application. When a latecomer wants to join a
session, the logger replays all logged events to the latecomer’s
loggable. Based on these events, the latecomer’s loggable cre-
ates the user interface. As the log can become very large, the
system uses log compression techniques. These compression
techniques depend on semantic information about the events
that a loggable has to provide. Instead of replaying all events,
e.g. mouse movements, the logger can provide the latecomer
with the events that resulted in a state change.

DreamObjects (Lukosch 2003a) (Lukosch 2003b) is a groupware
framework that keeps the log as a replicated object. Thereby,
it does not need a central server as provider of the log. When
joining users can choose how many percent of the current
should be replayed and the delay between visualizing two dif-
ferent state changes. Figure 11 shows a sequel of screenshots
taking while a latecomer was joining with a replay.

ReplayKit (Manohar and Prakash 1995a) (Manohar and Prakash
1995b) is a groupware environment that encapsulates and
records a single-user in a so-called session object. Users col-
laborate asynchronously by annotating, by modifying, and by

THE ABSENT PARTICIPANT
August 26, 2006 5 Replay 24

exchanging these session objects. The runtime system allows
to replay a session object at different speeds according to a
user’s requirements.

CatchUp (Henkel and Diwan 2005) is a plugin for the Eclipse de-
velopment environment that allows to record and replay refac-
torings.

4 4 4

Related Patterns Centralized Objects→10 allows to choose the central server as
provider for the latecomer.

Collaborative Session→10 allows users to plan and coordinate
synchronous collaboration. Users that join a session not on
time are called latecomer and need the current state of the
session.

Distributed Command→10 allows to encapsulate state changes.

Immutable Versions→10 allows to identify different versions of
a shared object and thereby implement a set of versions.

Mediated Updates→10 allows to choose the mediator as provider
for the latecomer.

Speed Replication→10 or Offline Replication→10 can be
used to keep a replicated log of state changes.

Activity Expiration→1 describes how to reduce the size of the
log.

Peer-to-Peer Update→10 requires that all or a subset of all
clients keep the log of state changes as the participants of
a Collaborative Session→10 communicate in a P2P net-
work and thus there is no central server that can be chosen as
provider by the latecomer.

State Transfer→10 directly transfer the current state to a late-
comer.

Timeline→6 shows the orchestration of different activities in a dia-
gram. The Timeline can be compared to a script of activities,
while Replay executes or animates the script.

THE ABSENT PARTICIPANT
August 26, 2006 5 Replay 25

Figure 11: Replay in DreamObjects

THE ABSENT PARTICIPANT
August 26, 2006 5 Replay 26

6 Timeline

Periodic Report

Timeline

Interest Agent

Replay

Activity Log

Life Indicator

Activity Indicator

Activity MonitoringActivity Expiration

Away Message

Change Indicator

Visualize who has been active at a specific point in time.Intent

Your system supports long-term asynchronous and/or synchronousContext
interaction.

4 4 4
Participation in a groups is different. This makes it hardProblem
to understand who is working with whom on what topic.
But without such an understanding, users lack orientation
and coordination required for group interaction.

Maurice tries to understand what Paul and his colleagues imple-Scenario
mented last week while Maurice was on vacation. He knows that
the other developers discussed the strategies for their work fre-
quently and then split work among them. He decides to examine
the change notifications mailed around but even after this he still
lacks a holistic picture of the development activities.

You should consider to apply the pattern when . . .Symptoms

– users complain that other users do not participate although
they participate.

– users stop participating but this is not detected by the group.

Therefore: Visualize the activities of a workspace in aSolution
timeline.

The timeline is a two-dimensional diagram that relates the timeCollaborations
of an activity with either the artifact used in the activity or the
performer of the activity.

First group the activities monitored in the Activity Log→ by
the days on which the activity took place. Then show for each day
the activities that took place on that day. Separate the different
days using bars.

Visualize each activity as an icon or a dot in the diagram. Use
different icons for different users when showing the artifacts ac-
cessed by the activities in one of the axes. When showing the users

THE ABSENT PARTICIPANT
August 26, 2006 6 Timeline 27

in one of the axes, think about different icons for the different
artifacts that were accessed.

Use dynamic data visualization techniques such as Datatips
or Local Zooming (Tidwell 2006) to support the visualization of
long activity logs with many artifacts. This means that additional
information is provided on request. Connect the visualization of
the activities with the documents that were accessed so that the
timeline can be used for navigating to shared objects.

The visualization of the group’s activities supports the users inRationale
understanding the group’s actions. It helps him to understand on
what topics the users were acting and to what extent they were
collaborating. It also helps the user to see who has been active in
which area of the collaboration space.

Interaction between users and subgroups can often be recog-
nized when artifacts are shown in one of axes and these are ac-
cessed by different participants. The same is true vice versa when
the users are shown in one of the axes.

When applying this pattern, you should answer these questions:Check

– Are you more interested in people or in artifacts, i.e. are you
going to show the users or the artifacts in one of the axes?

– How do you code the elements in the diagram? How many
different targets will your activities have? Is ist suitable to use
color codes or different icons?

– Can you provide tool tips that provide details on the activities
shown in the diagram?

– Can you link the points in the diagram to the artifacts or the
performers of the activity?

– Does it male sense to distinguish between modifying and read-
ing activities (e.g., by using a different color of the diagram
entry)?

– Can you support zooming of the timeline or will it be a static
image?

Ensure that you select the data set with the higher cardinality forDanger Spots
the y-axis. If your group, e.g., has five members who work on 50
documents, the documents should be shown on the y-axis and the
members should be visualized using different colors or icons. This
leads to a diagram with 50 lines and five different icons. Otherwise,
one would have a diagram with just five lines but 50 different icons
that will probably be harder to distinguish.

One problem of the pattern can be the scalability. As Ganoe
et al. (2003) evaluated in a field study, the time line can become
“less effective (and even cluttered) if there are frequent changes to
all the documents.”

THE ABSENT PARTICIPANT
August 26, 2006 6 Timeline 28

Known Uses Babble Timeline (Erickson and Laff 2001) shown in Figure 12
is a visualization widget for better understanding the history
of chat conversation. It shows up to one week of the chat log
recorded in a Babble chat.

Figure 12: Timeline in the Babble chat environment (from Erickson
and Laff (2001)).

Each user is represented in a row. When users send messages
to the chat, thy leave a peak on their row of the time line.
Different colors are used to distinguish contributions to the
currently viewed chat from contributions to other chats. Ad-
ditional information on the time of the contribution and the
identity of the user is provided by means of tool tips.
The Babble time line was evaluated with mixed results. Some
users reported that they had problems understanding the time
line and that they would not use it on a regular basis. On
the other hand, a small set of users reported that the time
line gave them valuable insights on the “heart beat” of the
community: “I noticed that I missed <userl> by an hour on
Monday morning <User 2> comes in every so often as a
blip. <User 3> jumps from space to space....” (Erickson and
Laff 2001). This user comment reflects a user with exactly the
problem addressed by the Timeline pattern.

Virtual School is a collaboration space for student interaction.
In a user study (Carroll et al. 2003) the authors of the Virtual
School environment found several collaboration breakdowns
that had their reasons in a lack of activity awareness. One
Solution was to integrate a time line as shown in Figure 13 to
the students’ workspace (the resulting system was then called
the BRIDGE awareness center (Ganoe et al. 2004)).
For each project, the time line showed the different documents
in the rows of the timeline. Changes to the documents were
represented by the icons on the time axis. To access docu-
ments, the users could no longer select them from a list of doc-
uments but had to select them in the time line instead. Each
version could be accessed by clicking on the different icons for
a document (using Immutable Versions→10). This made the
time line an integral part of daily work.

THE ABSENT PARTICIPANT
August 26, 2006 6 Timeline 29

Figure 13: Timeline in the Virtual School context (from Carroll et al.
(2003)).

In addition to achieving history awareness, the timeline could
be used to plan the future mile stones of the project.
User studies (Ganoe et al. 2003) have shown that the time-
line was of high value for people observing the group progress.
When there were, e.g., white areas on the time line, teachers
queried the students responsible for these documents about
problems in their group process and provided help.

4 4 4

Related Patterns Replay→5 also addresses the problem of explaining an absent user
what activities took place in the collaboration space. The
difference is that the Timeline visualizes the activity infor-
mation, while the Replay pattern shows what the activities
changed.

Periodic Report→7: The Periodic Report provides a more
detailed view on changes in a collaboration space. It is well
suitable for short time spans but will become very complex
when it shows a longer period. The Timeline further ab-
stracts from the activities and is therefore capable of providing
a larger overview of activities.

Activity Log→: The Timeline visualizes the activities stored
in the Activity Log.

Life Indicator→4 helps to detect that a user stopped to partic-
ipate. This can be seen in the Lifeline when there are no
more entries for a specific user (especially when the visualiza-
tion shows the users on the y-axis).

THE ABSENT PARTICIPANT
August 26, 2006 6 Timeline 30

Immutable Versions→10: For each activity, you should be able
to link to the version of the document that resulted from the
activity. This requires that you keep all versions of the shared
artifact (which is described in the Immutable Versions pat-
tern).

Activity Expiration→1 is used to discard activities that are no
longer required This can ensure that the timeline does bot get
too long.

THE ABSENT PARTICIPANT
August 26, 2006 6 Timeline 31

7 Periodic Report

Timeline

Interest Agent

Replay

Life Indicator

Activity Indicator

Change Indicator

Activity MonitoringActivity Expiration

Away Message

Periodic Report

Activity Log

Alternative name(s): Change Report, Newsletter

Inform the user about changes on relevant artifacts in a user definedIntent
frequency (e.g., once a day).

Users collaborate asynchronously by modifying shared objects.Context

4 4 4
Changes in indirect collaboration are only visible by in-Problem
specting the changed artifact. Users want to react to other
users’ actions but they cannot predict when these actions
take place.

In January, Weigang has filed a bug report on a security problemScenario
of the login mechanism of the game engine. From then on, he
frequently checked the affected components for an update. In Jan-
uary he did this daily since he really needed the security fix. But
since nothing happened, Weigang reduced the frequency of update
checks. Now, 4 months later, he only scans the files every fort-
night and does not dare to hope for a fix. Reflecting on the last
months, Weigang regrets that he spent so much efforts on looking
for changes.

You should consider to apply the pattern when . . .Symptoms

– Users rely on each others’ activities but cannot predict when
the activity will take place.

– Users frequently scan for changes but rarely find changes.

– Collaboration takes longer than needed since users do not scan
for changes as frequently as they appear.

– The community performs many modifications each day so that
direct notifications for each change would consume too much
of the user’s attention or would be too expensive.

Therefore: Inform the user periodically about changesSolution
that took place between the last notification and the time
of the current report.

THE ABSENT PARTICIPANT
August 26, 2006 7 Periodic Report 32

The user defines an interest profile manually or automatically basedCollaborations
on his access rights in the collaborative system. He also defines
a notification interval and a communication channel by which he
would like to be notified.

After the interest interval has passed (in most cases at night),
the system checks if artifacts matching the interest profile have
been modified within the last time interval. If this is the case, the
system puts meta-information on the change into a periodic report.
The periodic report with information on all matching modified ob-
jects is sent to the user using the provided communication channel.

Meta information can, e.g., contain a short description of the
artifact, information regarding the person who modified the arti-
fact, and the time and type of the modification. It should include
a quick reference to the changed artifact to ease the process of
accessing it.

The check for changed artifacts can take place in two alterna-
tive ways: (1) the system can query the time stamps of all objects
and search for those time stamps that fall in the notification inter-
val. This has the advantage that the artifacts only have to carry a
time stamp and no additional data structures are needed to track
changes. Information regarding the performer of the change needs
to be stored with the artifact if such information is desired in the
periodic report. Alternative (2) is to track all changes in an Ac-
tivity Log→ and query the Activity Log for activities that
took place in the notification interval. Since the activities carry
all required meta information (performer, time stamp, and type of
the activity), this information does not need to be part of the ar-
tifact. However, the number of recorded activities may soon grow
and slow the system down.

Users get informed on changes. This allows them to react to otherRationale
users’ actions. The fixed interval of change notifications ensures
that other users can predict when the local user will read the
changes. Compared to immediate change notifications the inter-
val reduces the number of interruptions. Since users are able to
tailor their report it will only contain relevant information. For
that reason, the user will probably read the report.

When applying this pattern, you should answer these questions:Check

– How frequently do changes occur and how long do users accept
to wait until first reactions?

– How can you represent artifacts in the report medium (e.g. in
a mail)? Can you provide URLs that let the user access the
specific artifact by just one click?

– What is the best time to send your report? Is there a period
of low system use in which the report can be sent?

– Should users have to register for the report or do you send it

THE ABSENT PARTICIPANT
August 26, 2006 7 Periodic Report 33

automatically (consider SPAM concerns)?

– How can users turn the report off?

– How do you support your users in specifying their interests?

– Is the report personalized (because of different interest profiles)
or will all users share the same report?

The report can be considered as spam. Make sure that the usersDanger Spots
know how to tailor the report to their needs.

In most cases it is advisable to avoid empty reports. However,
users could think that the report got lost if they don’t receive any
report.

Make sure that the report is structured in a way that can be
easily grasped. Provide enough information on the artifacts to al-
low a user to filter irrelevant changes without looking at the specific
artifact in the system.

Known Uses BSCW (Bentley et al. 1997) sends reports by e-mail after each
day on that the content of a workspace to which the user has
access changed or users were active in the workspace (reading).

Figure 14: A daily report in the BSCW Shared Workspace System.

The user can define which types of events (e.g., move events,
read events, or create events) should appear in his daily report
and which events should be sent immediately (by individual
e-mails).

THE ABSENT PARTICIPANT
August 26, 2006 7 Periodic Report 34

e-Commerce Web Sites often allow users to store their interests
and their e-mail address on the server. Whenever a new item is
added to the system or an old item is changed, the system sends
a notification mail informing the potential customer that there
might be a an opportunity for a customer-vendor interaction
(e.g., changes in relevant auctions at eBay shown in Figure 15
– http://www.eBay.com).

Figure 15: A daily summary sent by the auction platform eBay –
ToDo: Substitute with English Screenshot.

Mailing lists like the Yahoo Groups (http://groups.yahoo.
com) often provide options for controlling the frequency of mes-
sages sent to the user. The user can decide if he wants to re-
ceive individual messages or periodic reports. The reports can
contain all message contents or just the headers with links to
the individual messages in the web-based mail folder.

4 4 4

Related Patterns Attention Screen→10 : An attention screen filters notifications
and contact requests in order to ensure a user’s privacy. It can
be combined with the Periodic Report to ensure that the
user stays informed on the activities in the collaborative envi-
ronment. It can also enhance the acceptance of the Periodic
Report since it allows the users to define which information
should reach them via the periodic report.

Change Indicator→3 : The change indicator provides informa-
tion on changed artifacts in the same context as the artifact
itself. The notification that the artifact has changed is at-
tached to the artifact. In contrast, the Periodic Report ex-

THE ABSENT PARTICIPANT
August 26, 2006 7 Periodic Report 35

ternalizes this information and transmits it to the user’s work
context outside the system (e.g., the user’s mail box).

Activity Log→ : The Activity Log keeps track of all activities
in the system. The Periodic Report can be generated from
the Activity Log by querying it for activities that took place
on relevant artifacts in the period of the last report interval.

THE ABSENT PARTICIPANT
August 26, 2006 7 Periodic Report 36

8 Interest Agent

Activity Expiration Activity MonitoringActivity Log

Timeline

Periodic Report

Interest Agent

Life Indicator

Replay

Away Message

Activity Indicator

Change Indicator

Collect relevant group activities for an absent user.Intent

Users interact in a long-term topic-based interaction.Context

4 4 4

In order to be able to follow and understand long-termProblem
interaction, users often have to participate in the evolu-
tion of the topic. But for time reasons not all users can
participate in the group throughout the whole process.

At the kick-off meeting for the new game engine, the main officeScenario
invited all potential customers to participate in the specification
of the engine. Martin flew to London for this purpose and shared
their thoughts with Paul and Maurice. Martin would have liked
to stay updated on the project’s progress since this will make it
probably easier to use the game engine in his next project. But
unfortunately, Martin had to return to his office and spend all his
time in the other project his company is working on.

You should consider to apply the pattern when . . .Symptoms

– Interaction that is relevant to many group members takes place
with only a small set of group members present.

– Users want to react to group activities but they don’t know
when such activities will happen.

– Users interact in a general purpose interaction space but are
only interested in a specific subset of topics.

Therefore: Allow the users to place an interest agent atSolution
the interaction space that keeps track of relevant changes.

A user participates with other users in an interaction space. WhenCollaborations
the user temporarily leaves the interaction space (e.g., because he
wants to interact with another group), his interest agent takes his
place.

THE ABSENT PARTICIPANT
August 26, 2006 8 Interest Agent 37

The interest agent is a software component that is capable of
observing an interaction space. It acts in this space as a represen-
tative of the user. Whenever there is an activity in the interaction
space observed by the interest agent, the agent informs the corre-
sponding user.

The interest agent should be tailorable so that the user can
decide, which activities in the interaction space are of interest for
him.

In case of small groups, the interest agent should be shown
to the remaining group so that the other group members stay
aware that the absent user follows the interaction (Visible
Audience→10).

From a technical perspective, the interest agent is an Ob-
server (Gamma et al. 1995) of an event stream. New events trig-
ger the interest agent which then checks whether the event matches
one or more of the interest agent’s trigger conditions. If this is the
case, the interest agent creates a notification for the absent user.

Since the interest agent follows the interaction, the owner of theRationale
agent can be sure that he will not miss important actions in the
interaction space.

When applying this pattern, you should answer these questions:Check

– How can you make the interest agent tailorable?

. Are there specific topics that can serve as filters for relevant
interaction?

. Are there different types of activities that are of different
interest to the owner of the interest agent (the creation of
an object could, e.g., be of greater importance than the
removal of the object).

. Does it make sense to follow only specific users’ actions?

– How do you inform the owner of the interest agent? Is a daily
notification (using a Periodic Report→7) sufficient or should
the interest agent provide immediate feedback?

– Is it important that other users stay aware of the absent user?

Danger Spots

– Selecting the appropriate level of detail for the report is dif-
ficult. The reported information can range from the changes
to artifacts that are reported in a Periodic Report→7 up
to communication content or navigation activities that are re-
ported by using Replay→5. Therefore, users must be able to
tailor the reported information to their needs.

– Often important information is captured semantically, e.g. in
a audio discussion among team members. This kind of infor-
mation is difficult to capture and report.

THE ABSENT PARTICIPANT
August 26, 2006 8 Interest Agent 38

Known Uses Netnews: Many news readers allow the user to tag relevant
threads. The reader will track changes in this thread and in-
form the user when new messages are added to the thread.

ELVIN (Fitzpatrick et al. 1999a) is an event notification infras-
tructure that allows users to configure interest agents to ob-
serve the stream of events in the collaboration space.

4 4 4

Related Patterns Periodic Report→7: The notifications of the interest agent can
be accumulated in a periodic report. This has the advantage
that the owner of the agent will not be disturbed during the
day.

Change Indicator→3 also addresses the problem that a user is
unable to perceive all changes immediately. But instead of
informing the user when the change occurs, the Change In-
dicator attributes the visualization of the changed artifact
in order to show that this artifact has not been seen by the
interested user.

Visible Audience→10 covers the aspect of the interest agent pat-
tern that argues to visualize an absent user’s agent. However,
there is one big difference: The Interest agent shows users who
are interested but not there while the Visible Audience pat-
tern shows users who are currently following the group process
(by being there).

Replay→5 can be used by an Interest Agent to provide a very
detailed report of the activities.

THE ABSENT PARTICIPANT
August 26, 2006 8 Interest Agent 39

9 Away Message

Timeline

Interest Agent

Life Indicator

Activity Monitoring

Activity Indicator

Away Message

Change Indicator

Activity Expiration

Periodic Report

Replay

Activity Log

Alternative name(s): Auto reply

Inform active users that a response to their request will be delayed.Intent

Users interact in a request response scheme with differing levels ofContext
synchronicity.

4 4 4

Users expect that their interaction partners quickly re-Problem
spond to their actions. But sometimes, the interaction
partner is unable to respond quickly. The longer the initi-
ating users has to wait, the bigger is his disappointment.

Martin has encountered problems to use the graphics componentsScenario
of the game engine. He thus contacts Paul and asks him a question.
Normally, Paul responds after several minutes, but at the evening
of Martin’s working day, there is still no response.

You should consider to apply the pattern when . . .Symptoms

– senders ask recipients whether they received a message because
the senders did not get a response.

– senders wait for a recipient’s action but this action does not
happen.

– senders are used to quick replies of their interaction partners
based on previous experience. This means that they expect a
specific responsiveness of their interaction partner.

– users stay away from the interaction space from time to time.

Therefore: Respond to an action of another user with anSolution
automatic away message whenever the normal response
time cannot be guaranteed. Provide information when
the requesting user can expect a response.

Basically, the Away Message pattern proposes to follow a threeCollaborations

THE ABSENT PARTICIPANT
August 26, 2006 9 Away Message 40

step process when temporarily leaving an interaction context:

Setup: Before a user leaves the interaction space, he thinks about
the time of absence. He creates an away message that explains
why the user cannot respond and that includes information on
the earliest possible reply.
In most cases, the user also provides an explanation how to
handle urgent requests (e.g., by sending the message to a
deputy).

Execution: When a sender sends a message to an absent receiver,
the receiver’s system automatically replies with the away mes-
sage. To avoid duplicate notifications, the receiver’s system
in addition remembers that the sender was notified. Further
mails of the sending user will not be automatically replied.

Tear Down: When the user returns, he deactivates the away mes-
sage.

The problem of responsiveness to activities has been studied byRationale
Tyler and Tang (2003) in the context of e-Mail communication.
The authors performed a field study in a large technology company
and interviewed employees about their e-mail usage habits. Of the
24 interviewed subjects, 17 used away messages frequently to signal
absence. One user reported his expectations of away messages as
follows: “You ask someone for information that they know, and
you sit around waiting and waiting for them to get back to you,
and you find out that they’ve been out of town.”. The authors’
analysis showed that one third of the subjects turned their away
messages on if they were out of office for one day. One subject left
it on even after returning from the trip until he managed to catch
up with all messages sent to him.

The authors finally proposed an expectation-to-breakdown time-
line that visualizes the perception of responsiveness. The basic idea
is that users have an expectancy of the time that they wait for a
reply. When they did not receive a reply after this threshold was
passed, they will perceive a breakdown of collaboration. They will
start to think about reshaping the collaboration in order to reach
the goal. This can mean that they send a follow up message or
that they try to reach the recipient using another media.

Figure 16 visualizes this understanding. The left part shows
the normal behavior. A user sends a message (ore more general
performs an activity) and the receiver processes the message and
generates a reply. The middle part of Figure 16 shows the situa-
tion where the receiver is unable to create a reply. In this case, the
sender will wait a specific time before he tries to remind the re-
ceiver that the sender is still expecting a reply. If the receiver still
does not reply, the sender will probably try to reach the receiver
using another communication channel. Each of these waiting times
represent efforts at the sender’s site.

THE ABSENT PARTICIPANT
August 26, 2006 9 Away Message 41

Figure 16: Communication patterns in a request-reply interaction.

The Away Message pattern reduces these waiting times as
shown in the right part of Figure 16. Since the system automat-
ically generates a reply, the sender can enter the breakdown han-
dling immediately. The message provided by the receiver helps the
sender to better understand the receiver’s context and provides
hints how to handle the breakdown.

When applying this pattern, you should answer these questions:Check

– How do you let users configure their away message?

– How do you ensure that the away message contains all required
information (e.g., the time when normal communication would
reconvene)?

– Will users be informed about who has received an away mes-
sage while they were absent?

One of the largest problems with away messages is that they of-Danger Spots
ten do not distinguish between bilateral and group communication.
When communicating by, e.g., a Mailing List→10, the receiver’s
system may reply with an away message that is received by the
whole group instead of the individual sender. The reason for that
is that many mailing lists modify the e-mail headers so that the
sender field is different to the reply-to field. The receiver’s sys-
tem keeps track of the senders but replies to the reply-to address.
This address is again multiplexed to all members of the mailing
list. Mailing list members may therefore receive multiple away
messages, which is annoying.

A solution would be to keep track of the addresses to which
an away message was sent instead of the senders to which the
message was a reaction. An alternative solution that is often used
is not to auto-reply an away message if the original message was
not personally directed to the user. For e-mails this is, e.g., the
case if the recipient is set to the address of the mailing list and the
member of the mailing list is only added as a blind cc receiver to
the message.

THE ABSENT PARTICIPANT
August 26, 2006 9 Away Message 42

The groupware should ensure that the user switches the away
message off when he is available again. You should also be aware of
the problem that users might reply with a faked Away Message
if they do not want to answer a message.

It is important that relevant context information is provided
with the away message. A bad example of an away message can
be found in the opening picture. The user stated that he would
be back in 20 minutes. Some of the context information of this
message is quite easy to reconstruct: Since the post-it is located
at a door, one can assume that the owner of the room behind that
door has placed the post-it there. But even this can be ambiguous
if more people live behind that door. More difficult is the notion of
time: Since the receiving user does not know when the absent user
has created the away message, he will not be able to restore the
context of the absent user and reconstruct the date information.
A better message would name an exact date when the user will be
back (e.g., the 17th of June 2007, 21:00h). In this case, no time
context is required to understand the message.

Known Uses Vacation (Costales 2002) is probably the most widely used im-
plementation of an away message. In the activation phase, the
users can specify a message body that is from then on sent to
all users who send the receiver an e-mail.
Whenever replying with an away-message, the system keeps
track of the sender and ensures that no duplicate messages are
created.
Return-Path: <MAILER-DAEMON@mailstore.fernuni-hagen.de>

Received: from cl-mailhost.FernUni-Hagen.de ([132.176.114.188] verified)

by mailstore.fernuni-hagen.de (CommuniGate Pro SMTP 5.0.2)

with ESMTP id 15785207 for schuemm@mailstore.FernUni-Hagen.de; Sun, 07 May 2006 18:13:32 +0200

... Additional path headers ...

From: "Stephan Lukosch" <Stephan.Lukosch@FernUni-Hagen.de>

Date: Sun, 07 May 2006 18:13:32 +0200

Message-ID: <react-15785210@mailstore.fernuni-hagen.de>

X-Autogenerated: Reply

MIME-Version: 1.0

Content-Type: text/plain; charset="ISO-8859-1"

To: schuemm@mail.pi6.fernuni-hagen.de (Till Schuemmer)

Subject: Re: Committed new files -- please have a look

In-Reply-To: <445E1CAB.mail73B11SJ9K@afrika.pi6.fernuni-hagen.de>

I am out of the office until the 15th of May 2006. In urgent cases

please contact Simone Buecker (Simone.Buecker@FernUni-Hagen.de, +49

2331 987 4365). Your e-mail will not be forwarded.

Kind regards

Stephan Lukosch

Instant messaging systems like Trillian http://www.

trillian.cc/ allow the user to add a message that ex-
plains that the user is currently away. When another user
initiates a chat communication, the system automatically
replies with the provided away message. Note that Trillian
only keeps track of the sessions to which an away message was
sent. Messages are thus not sent twice in the same session but
can be repeatedly sent to the same user in different sessions.

4 4 4

THE ABSENT PARTICIPANT
August 26, 2006 9 Away Message 43

Related Patterns Interest Agent→8 is also configured by the absent user to act on
his behalf. The difference is that the Interest Agent keeps
track of changes and therefore helps the user to stay informed
instead of helping the group to stay aware of the absent user’s
absence.

Availability Status→10 also helps the senders to stay aware of
the status of their request. However, the availability status
normally does not reveal the temporal estimation of return.

THE ABSENT PARTICIPANT
August 26, 2006 9 Away Message 44

10 Additional Thumbnails

Active Neighbors
Problem: The Local Awareness→10 pattern only signals confocal users on the same artifact.
If users work on related artifacts, they are not aware of each other, which implies that no col-
laboration will be established. On the other hand, especially collaboration on relate topics can
support creative processes and mutual learning.

Solution: Provide awareness on peripheral activities that take place on related artifacts. Use a
Semantic Distance→10 to show how relevant those activity are. Rate activities on artifacts with
a short semantic distance more important than activities with a long semantic distance. Ensure
that activities on related artifacts do not distract the user’s attention too much from the focused
artifact.

Activity Counter
Problem: In a collection of shared objects, there may be more and less important objects.
Especially for a newcomer there is no easy way to distinguish important from less important
objects. This may result in a situation where the newcomer gets lost.

Solution: Add an activity counter to the visualization of the shared artifact. Artifacts that are
important for the community will have a high number of activities such as visits, downloads, or
updates. Unimportant artifacts may not attract as many visitors and therefore have a low activity
counter value.

Attention Screen
Problem: Every request for attention needs to be processed by the user. Thus, it already takes
some of his attention. But in situations, where the user needs to focus his attention on other
things, this is disturbing.

Solution: Enable the user to filter the information which reaches him. Use meta-information
(e.g. sender details) or content information (e.g. important keywords) to distinguish important
information from unimportant information. Collect the less important information at a place
where the user can process it on demand and forward relevant information directly to the user.

Availability Status
Problem: To allow spontaneous interaction, users have to be open for contact requests. But each
request disturbs the contacted user or group in their current task. In addition, the importance of
contact request may make it vital that the contact takes place.

Solution: Include an indicator in the application that signals the user’s availability and how the
user would react to an interaction.

Centralized Objects
Problem: To enable collaboration users must be able to share the data.

Solution: Manage the data necessary for collaboration on a server that is known to all users.
Allow these users to access the data on the server.

Collaborative Session
Problem: Users need a shared context for their synchronous collaboration. But computer-
mediated environments are neither concrete nor visible. This makes it difficult to define a shared
context and thereby plan synchronous collaboration.

Solution: Model the context for synchronous collaboration as a shared session object. Visualize
the session state and support users in starting, joining, leaving, and terminating the session.
Automate the selection and start of tools.

THE ABSENT PARTICIPANT
August 26, 2006 45

Distributed Command
Problem: Clients can locally apply changes to replicated objects. When you distribute the new
versions of locally changed replicated objects, you might distribute to much information than is
necessary to keep the other replicas consistent. Especially, if only a small part a the replicated
object has changed. This unnecessarily increases the network load and the response time of your
application.

Solution: Encapsulate the users’ changes as Commands (Gamma et al. 1995) and distribute
the Commands via the network. Let other clients re-execute the Commands on their replica.

Embedded Chat
Problem: Users need to communicate. They are used to send electronic mail. But since e-
mail is asynchronous by nature, it is often too slow to resolve issues that arise in synchronous
collaboration.

Solution: Integrate a tool for quick synchronous interaction in your cooperative application. Let
users send short text messages, distribute these messages to all other group members immediately,
and display these messages at each group member’s site.

Hall of Fame
Problem: Motivation for participation in a community is often related to the feedback that par-
ticipants receive from the community. But often very active participants are not enough recognized
by the community members.

Solution: Provide a list of those participants who participate most. Calculate the partici-
pants’s participation level with respect to the degree that the participants helped others. Let each
participant compare himself to those participants shown in the Hall of Fame.

Immutable Versions
Problem: Performing complex modifications on a shared object usually takes time and requires
cognitive efforts of the user. If more users act on the same shared objects, the probability for
conflicting changes increases. However, to rollback one of the conflicting changes is inappropriate
since the user already spent too much efforts on performing the change.

Solution: Store copies of all artifacts in a version tree. Make sure that the versions stored in
the version tree cannot be changed afterwards. Instead, allow users to store modifications of the
version as new versions. Ask the users to merge parallel versions in the version tree unless they
explicitly branch the version tree.

Intimacy Gradient
Problem: If users can always approach other users, the approached user may feel disturbed or
even offended by the other user’s interaction. Especially, they are drawn into an interaction that
is not based on a mutual agreement to interact.

Solution: Arrange the interactions in an online community in a sequence which corresponds to
their degrees of privateness. Require that users have succeeded in less private interaction before
they can enter more private settings.

Local Awareness
Problem: Although most systems that work on shared data provide support for coordinating
shared access, they often don’t tell the user, who is working on a specific artifact. Such information
is needed to establish ad-hoc teams that share a common focus. Without such information, users
assume to work alone – and do not see the possibility or urge for collaboration.

Solution: Provide awareness in context. This means that the system tells the local user, who
else is currently interested in the local user’s focussed artifact and what they do with this artifact.
Show this information whenever the artifact is shown on the screen. The information should
contain details about the user drawn from his user profile, the artifact, and details on the activity,

THE ABSENT PARTICIPANT
August 26, 2006 46

which the user is performing. Ensure that the information is always valid.

Mailing List
Problem: Managing the set of recipients for group communication in a geographically distributed
group is difficult and error-prone.

Solution: Establish a Mailing List for the group.

Masquerade
Problem: Your application monitors the local user. The gathered information is used to provide
awareness information to remote users. While this is suitable in some situations, users often do not
act as confident if they know that they are monitored. Users may feel the need of not providing
any information to other users.

Solution: Let users control which information is revealed from their personal information in
a specific interaction context. This means that the user should be able to filter the information
which is revealed from his personal information. Remember to consider Reciprocity→10.

Mediated Updates
Problem: Clients want to propagate update messages to other clients who keep replicas of
the same data. If they contact the other clients directly, they have to maintain information who
those clients are and have to establish communication with these clients. This is complicated and
error-prone. Especially if some clients may disconnect and reconnect in an unpredictable way (if
the set of clients changes over time).

Solution: After changing a replicated object inform a mediator which will distribute an update
message to all interested clients.

Peer-to-Peer Update
Problem: Users change their local copies of the replicated artifacts and the other users cannot
notice these local changes. This makes collaboration impossible.

Solution: After changing a replicated object locally send an update message for this object to
all clients that also maintain a replica, take care that all clients receive this update message, and
let these clients change their replica according to the information in the update message.

Personalized Attributes
Problem: When users work on shared data, they all have the same state. This implies that all
views that are based on the shared model are showing the same content. Thus, the only way of
interaction is tightly coupled interaction (WYSIWIS – What You See Is What I See). But there
may be the need to relax this coupling so that users can for instance scroll to different screen
regions (relaxed WYSIWIS).
Solution: Model application specific attributes of the shared data as personalized value holders
that store the value for each user.

Presence Indicator
Problem: To provide awareness you connected other users’ activities with artifacts which the
local user focuses. But the surrounding of the artifacts provides only limited space for information.
Awareness information thus competes with application data.

Solution: Limit the size of the awareness information’s representation so that it uses only a
small part of the available information channels. For a GUI system, this means that you should
represent the confocal or peripheral users as a single icon instead of a long textual form. Focus
on telling that there are other users, rather than providing much information on the other users’
identity or task. Ensure that the indicator differs from the other artifacts representing application
data.

THE ABSENT PARTICIPANT
August 26, 2006 47

Reciprocity
Problem: It is easy to agree on participation, if the goal is lucrative for everyone. But in many
work situations, some people benefit more than others from a reached goal. This may frustrate
active users.

Solution: Establish reciprocity. Ensure that all group members’ activities result in an improved
group result that is beneficial for all group members again. Prohibit people to benefit from group
results if they are not willing to help the group in return.

Speed Replication
Problem: The response time of interactive applications has to be short. The network latency
and delay wastes time in distributed systems. Thus interactive applications are inappropriate if
the response time depends on client-server communication.

Solution: Replicate the shared data to the users’ sites. Let a user change its local replicas and
ensure consistency by using a Peer-to-Peer Update→10.

Offline Replication
Problem: Users may not have a permanent connection to the system, where relevant data is
kept. Without a permanent or just a poor connection to the data, users will not be able to finish
their work, if the data cannot be accessed.

Solution: Replicate the data to the user’s device. Update the replicas whenever two systems
which hold copies of the data connect.

Semantic Distance
Problem: Your Semantic Net→10 is very dense in a sense that artifacts have a semantic
relation to many other artifacts. But not all artifacts have the same importance for the user. If
the user sees only the semantic net, he might get lost in the diversity of relations.
Solution: Use weighted edges to describe the strength of the semantic relation. Interpret these
edges as distances. If two artifacts are semantically strong related, ensure that the connecting
edge in the Semantic Net represents a short distance.

Semantic Net
Problem: Detecting short semantic distances between artifacts based on a similarity measure
often leads to ineffective and inexact results. It is time consuming, when there are many artifacts
with large distances because this would involve much unnecessary computation. In addition it
fails, if two artifacts are related by means of an intermediate artifact.

Solution: Produce a semantic net that contains artifacts and relations between artifacts. Relate
two artifacts, if they have much in common (as in the Semantic Distance→10 pattern). Define
the distance between two artifacts as the length of the shortest path between these artifacts.

State Transfer
Problem: Users are collaborating in a Collaborative Session→10 but not all users partic-
ipate from the beginning. Due to this, these users do not know the intermediate results of the
Collaborative Session→10 which makes it difficult for them to collaborate.

Solution: Let latecomers ask an informed participant of the group to directly transfer the current
state of a Collaborative Session→10 to them. Ensure the consistency of the state.

User Gallery
Problem: If more than one user interacts with shared data, it is hard to coordinate the interac-
tion - especially with strangers. Without knowing who is using the system, it is hard to establish
collaboration or to become aware of other users’ activities.

Solution: Provide a list of all users who are members of the community. Design this list in a
way that it is interesting to browse.

THE ABSENT PARTICIPANT
August 26, 2006 48

Virtual Me
Problem: In a large user community, account names look similar. But users need to communi-
cate their identity in order to interact with other users.

Solution: Allow the users to play theater! Provide them with means to create a virtual identity
that represents them while they act in the system. Show the virtual identity when the user is
active.

Visible Audience
Problem: Users are providing information for other users by means of shared objects. But
making an object accessible does not ensure that the object was seen by other users.

Solution: Inform the author of a shared object when another user accesses this object.

References

Bentley, R., W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor,
and G. Woetzel (1997). Basic support for cooperative work on the world-
wide web. International Journal of Human-Computer Studies: Special issue
on Innovative Applications of the World-Wide Web.

Carroll, J. M., D. C. Neale, P. L. Isenhour, M. B. Rosson, and D. S. McCrickard
(2003). Notification and awareness: synchronizing task-oriented collaborative
activity. Int. J. Hum.-Comput. Stud. 58 (5), 605–632.

Chung, G., P. Dewan, and S. Rajaram (1998). Generic and composable late-
comer accommodation service for centralized shared systems. In S. Chatty
and P. Dewan (Eds.), IFIP Working Conference on Engineering for HCI,
Heraklion, Crete, Greece, pp. 129–145. Kluwer Academic Publisher.

Costales, B. (2002). sendmail (3 ed.). O’Reilly.

Dourish, P. and V. Bellotti (1992). Awareness and coordination in shared
workspaces. In Conference proceedings on Computer-supported cooperative
work, pp. 107–114.

Erickson, T. and M. R. Laff (2001). The design of the ’babble’ timeline: a social
proxy for visualizing group activity over time. pp. 329–330.

Fernandez, A., T. Holmer, J. Rubart, and T. Schümmer (2003). Three group-
ware patterns from the activity awareness family. In Proceedings of the Sev-
enth European Conference on Pattern Languages of Programs (EuroPLoP’02),
Konstanz, Germany. UVK.

Fitzpatrick, G., T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and B. Segall
(1999a, September). Augmenting the workaday world with elvin. In Proceed-
ings of ECSCW’99, Copenhagen, pp. 431–451. Kluwer Academic Publishers.

Fitzpatrick, G., T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and B. Segall
(1999b). Instrumenting and augmenting the workaday world with a generic
notification service called elvin. In Proceedings of ECSCW 1999.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Ganoe, C. H., G. Convertino, and J. M. Carroll (2004). The bridge aware-
ness workspace: tools supporting activity awareness for collaborative project

THE ABSENT PARTICIPANT
August 26, 2006 49

work. In NordiCHI ’04: Proceedings of the third Nordic conference on Human-
computer interaction, New York, NY, USA, pp. 453–454. ACM Press.

Ganoe, C. H., J. P. Somervell, D. C. Neale, P. L. Isenhour, J. M. Carroll, M. B.
Rosson, and D. S. McCrickard (2003). Classroom bridge: using collaborative
public and desktop timelines to support activity awareness. In UIST ’03:
Proceedings of the 16th annual ACM symposium on User interface software
and technology, New York, NY, USA, pp. 21–30. ACM Press.

Grudin, J. (1991). Cscw introduction. Communications of the ACM 34 (12), 30–
34.

Gutwin, C. and S. Greenberg (1996). Workspace awareness for groupware. In Pro-
ceedings of the CHI ’96 conference companion on Human factors in computing
systems: common ground, Vancouver, BC Canada, pp. 208–209.

Henkel, J. and A. Diwan (2005). Catchup!: capturing and replaying refactorings
to support api evolution. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, New York, NY, USA, pp. 274–283. ACM
Press.

Jackson, T. W., R. Dawson, and D. Wilson (2003). Understanding email interac-
tion increases organizational productivity. Commun. ACM 46 (8), 80–84.

Lukosch, S. (2003a, August). Transparent and Flexible Data Sharing for Syn-
chronous Groupware. Schriften zu Kooperations- und Mediensystemen - Band
2. JOSEF EUL VERLAG GmbH, Lohmar - Köln.

Lukosch, S. (2003b, September). Transparent latecomer support for synchronous
groupware. In J. Favela and D. Decouchant (Eds.), Groupware: Design, Imple-
mentation, and Use, 8th International Workshop, CRIWG 2003, LNCS 2806,
Grenoble (Autrans), France, pp. 26–41. Springer-Verlag Berlin Heidelberg.

Manohar, N. R. and A. Prakash (1995a, November). Dealing with synchronization
and timing variability in the playback of session recordings. In Proceedings of
the Third ACM Multimedia Conference, San Francisco, CA, USA, pp. 45–56.

Manohar, N. R. and A. Prakash (1995b, September). The session capture and
replay paradigm for asynchronous collaboration. In Proceedings of the Fourth
European Conference on Computer Supported Cooperative Work, Stockholm,
Sweden, pp. 149–164.

Parsowith, S., G. Fitzpatrick, S. Kaplan, B. Segall, and J. Boot (1998). Ticker-
tape: Notification and communication in a single line. Volume 00, Los Alami-
tos, CA, USA, pp. 139. IEEE Computer Society.

Sarma, A., Z. Noroozi, and A. van der Hoek (2003). Palant́ır: raising awareness
among configuration management workspaces. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering, Washington, DC,
USA, pp. 444–454. IEEE Computer Society.

Schümmer, T. (2001). Lost and found in software space. In Proceedings of the
34th Hawaii International Conference on System Sciences (HICSS-34), Col-
laboration Systems and Technology, Maui, HI. IEEE-Press.

Schümmer, T. (2004). GAMA – a pattern language for computer supported
dynamic collaboration. In K. Henney and D. Schütz (Eds.), Proceedings of
the Eighth European Conference on Pattern Languages of Programs (Euro-
PLoP’03), Konstanz, Germany. UVK.

THE ABSENT PARTICIPANT
August 26, 2006 50

Schümmer, T. (2005, August). A Pattern Approach for End-User Centered
Groupware Development. Schriften zu Kooperations- und Mediensystemen -
Band 3. JOSEF EUL VERLAG GmbH, Lohmar - Köln.

Schümmer, T. and A. Fernandéz (2005). Patterns for virtual places. In Proceed-
ings of the Tenth European Conference on Pattern Languages of Programs
(EuroPLoP’05).

Schümmer, T. and S. Lukosch (2007). Patterns for Computer-Mediated Interac-
tion. John Wiley and Sons Ltd. to appear.

Tidwell, J. (2006). Designing Interfaces. Sebastopol, CA, USA: O’Reilly.

Tyler, J. R. and J. C. Tang (2003, 14-18 September 2003). When can i expect
an email response? a study of rhythms in email usage. In K. Kuutti, E. H.
Karsten, G. Fitzpatrick, P. Dourish, and K. Schmidt (Eds.), Proceedings of
ECSCW2003, Helsinki, Finland, pp. 239–258. Kluwer Academic Publishers.

THE ABSENT PARTICIPANT
August 26, 2006 51

Index

Active Neighbors, 15, 16, 45
Activity Counter, 21, 45
Activity Expiration, 4, 6, 25, 31
Activity Indicator, 5, 9
Activity Log, 3, 4, 6, 8, 11, 14, 16,

21, 27, 30, 33, 36
Activity Monitoring, 4, 11
Attention Screen, 11, 35, 45
Availability Status, 44, 45
Away Message, 1, 5, 40

BSCW, 34

Centralized Objects, 23, 25, 45
Change Indicator, 5, 12, 21, 35, 39
Collaborative Session, 22, 25,

45, 48

Distributed Command, 25, 46

Embedded Chat, 10, 46

Hall of Fame, 6, 21, 46

Immutable Versions, 23, 25, 29,
31, 46

Interest Agent, 5, 37, 44
Intimacy Gradient, 13, 46

Life Indicator, 1, 5, 17, 30
Local Awareness, 4, 45, 46

Mailing List, 42, 47
Masquerade, 19, 47
Mediated Updates, 23, 25, 47

Offline Replication, 23, 25, 48

Peer-to-Peer Update, 25, 47, 48
Periodic Report, 5, 7, 30, 32, 38,

39
Personalized Attributes, 47
Presence Indicator, 16, 21, 47

Reciprocity, 19, 47, 48
Replay, 1, 5, 22, 30, 38, 39

Semantic Distance, 45, 48, 48
Semantic Net, 48, 48

Speed Replication, 25, 48
State Transfer, 23, 25, 48

Timeline, 1, 5, 25, 27

User Gallery, 21, 48

Virtual Me, 21, 49
Visible Audience, 38, 39, 49

52

