APPLYING PATTERNS TO BUILD
A LIGHTWEIGHT MIDDLEWARE
FOR EMBEDDED SYSTEMS

D. Bellebia J-M. Douin
CEDRIC-CNAM CEDRIC -CNAM
292, rue Saint Martin 292, rue Saint Martin
75141 Paris cedex 03 75141 Paris cedex 03

France France
bellebia@cnam.fr douin@cnam.fr

Abstract — Today, patterns are used in several domains (disbuted applications,
security, software requirements, architecture...). Oupurpose is double: first, to know if
existing patterns can be applied in the particulardomain of embedded systems
middleware; second, to establish the groundings taavds a patterns language for that
domain.

This paper reports on designing and building a liglweight middleware for embedded
systems with well known patterns such as CompositeProxy, Visitor, Observer,
Publish/Subscribe, Leasing, Evictor or Configurator The patterns that we have selected
and implemented have allowed keeping the memory fgarint reduced. Yet, they were
relevant to address the need to create views of mairked embedded systems, monitor
and manage them. As result, the middleware is modau, flexible, extensible, and
lightweight (< 128 kb) according to requirements otargeted embedded systems.

In addition, this article describes a concrete casstudy that illustrates how to select
appropriate patterns in order to build a dedicated middleware to interconnect
numerous small devices.

Key words —Patterns, Lightweight Middleware for Embedded SysteRequirements for
Embedded Systems’ Middleware, Use cases, ArchitecliavaCard

1 Introduction

Embedded systems are specific-purpose computechvene completely encapsulated by the
device they control. They are ubiquitous in ourrgday life, in form of many devices such as
cars, medical components, clothes, personal mdbilees, sensors [26].

Advances in electronic and wireless communicati@eng. Wifi, Bluetooth, Wireless USB...)
enabled the advent of Networked Embedded SystenEsSYNi.e. systems comprised of
interconnected devices [50].

Besides, there is a real trend now to use middlewachnologies in order to interconnect
NES. Indeed, middleware is a distributed softwarget sits above the network operating
system and below the application layer [16]. Ityides common abstractions that can be
reused across different applications within a dpedomain. Yet, it supports tailoring in
order to meet the requirements of each applicaidh p30-3]. In addition, it hides the
heterogeneity of the underlying environment, it @ifres the task of programming, and
managing distributed applications. In other wordsddleware is about integration and
interoperability of applications and services rumgnion heterogeneous computing and
communication devices.

However, trying to develop a middleware for embetsigstems introduces many challenging

problems that we must deal with. There is no stabteork infrastructure, the disconnections

are inopportune and it is required that deviceglistover each other in ad-hoc manner.

Furthermore, embedded systems are severely coredrdly scarce resources such as low
battery, few memory and slow CPU [44, 50].

Since their introduction, a decade ago, patteres pmoviding proven solutions for many

software design problems. Yet they enable to redihee complexity and improve the

flexibility of software products in particular coaction management, data transfer, de-
multiplexing and concurrency control [51].

What motivated our work can be summarized in tip@ats. The first one is the realization of
an embedded systems’ middleware providing all megufunctionalities with non-volatile
memory footprint les than 128 kilobytes. The setone is the description of how to apply
patterns resolves the problems introduced above.ld$t one is to know if existing patterns
are applicable in NES middleware and then to estalgiroundings of a corresponding pattern
language.

With Regard to previous works related to this tppieo' middleware JINI and TAO are the
most significant because they quietly present #tpiired capabilities and their design was
driven by patterns.

JINI is a Java based middleware to build services w@ikgolutions. It provides ‘plug and
play’ mechanism and supports ad-hoc networking lhywing services to be added to a
network spontaneously [4 p185].

TAO [27, 12] is a CORBA (Common Object Request BroRetchitecture) [54] compliant
middleware built over ACE (Adaptive Communicationvitonment). It implements entire
CORBA functionalities and provides real-time QoSu@lty of Service).

However, both of them were not suitable becaushaf memory footprint was higher than
128 kilobytes.

Our middleware is designed with patterns such ampbsite, Proxy, Visitor, Observer,
Publish/Subscribe, Leasing, Evictor or Configuragdc. It is lightweight (68 kb in ROM for
interconnecting JavaCards) and keeps the commditiggiaf patterns such as loose coupling
and flexibility.

! The reader can refer to [50] for a complete survey of middleware for networked embedded systems.

This paper is organized as follows: section 2 prssthe requirements, the use cases of the
middleware and an overview of a case study usingettion 3, reviews designs patterns
applied to build that middleware. Section 4, sumpes achieved results. Section 5,
concludes this paper and suggests an outlook woefutork.

2 Embedded systems middleware

In the following subsections, we give first the NEfddleware requirements that we have
selected basing on [10 chapter 30, 12, 16 chaptemdl 50]. Next, we present the use cases
derived from that requirements. Finally, we introdwa case study as a particular application
of our middleware.

2.1 Requirements

Functional requirements

Composition supportThere are many breeds of embedded systems andrieypiquitous.
Therefore, it is required to the middleware to heapabilities that facilitate the organization
and the grouping of devices as form of trees.

Event notifications:Many of embedded systems are interacting contislyowith their
environment through sensors and actuators. Theyt meesct when an event occurs
accordingly. The middleware has to provide mechmasiso notify any interested embedded
system.

Reduced memory footprinthe middleware is intended to be deployed on sdwlices such

as mobile phones. However, those devices are \@rgti@ined by limited resources such as
small memory footprint. The middleware has to take account those scarce resources and
its memory footprint must not exceed 128 kilobytes.

Reliability: In NES, it is not rare that one device relies anther to perform seamlessly its
task. However, more and more of embedded systemsca@mnected through a wireless
connection. Therefore, the middleware must enstrieast a minimal reliability because
network connections may be broken due to seveasbres.

Asynchronous communicatiolhe middleware supports the synchronous communicati
model. That it is. However, it has also to supplogt asynchronous communication paradigm
in order to allow messages to be exchanged whetheot each endpoint is on operation at
the same time.

Ad-hoc discoveryThe middleware should implement a mechanism tdédetces to discover
each other and to discover services and availablteqols.

Non-functional requirements

Location independencéVhen an embedded system asks for a service, it nmistare that
service resides locally or remotely. In other woridi® middleware has to hide the network
distribution.

Security:Embeddedsystems’resources are shared. Therefore, the middlewar&oha®vide
mechanism for monitoring shared resources botarim bf authentication and concurrency.

Heterogeneity supporffhere are many kinds of embedded systems: mobdegs) sensors,
music players, cars, Personal Digital AssistantAPC5ome of them are java-based and
accept only IrDA connections. Others are runninggroWindows or Linux and accept
Bluetooth or Wifi connections. Therefore, the mildare has to be concerned about the
environment heterogeneity, which involves hardwaetforms, programming languages and
operating systems.

Adaptability: Two factors motivate the need of adaptability: aes in environmental
conditions and users requirements. The middlewa® tb be concerned about that and
changes its behavior accordingly.

Configuration The middleware should accept dynamic configuradiod reconfiguration.
Evolutions SupportThe environment of NES is constantly changing. étjeéhe user’'s needs
change over time and technologies evolve. Thusniltglleware has to provide a way to
upgrade or add new functionalities.

Modularity: The middleware should be modular enough tailoring i

Scalability: As already mentioned, embedded systems are ormseiprand their proliferation

is still going on. Therefore, the middleware hasd¢ale according to the number of nodes or
service.

2.2 Derived use cases

X

System Controller

System

Observe

i
)

!
1

//

N AT

Compose
— <

i

2 X
Composite Leaf

X

EmbeddedThing

R\

|

1. The middleware use cases diagram

The figure above depicts the use cases derivedtiermiddleware requirements.
We have identified six possible roles that intewsith the system an2d a set of use cases.

Actors

EmbeddedThings used as an abstraction of any embedded sy#team both fire and react
to events and it can receive and send messagawplbses its services to the other actors. In
addition, it can connect and disconnect from thevaek (join and exit).

Composites an extension of thEmbeddedThingctor. Therefore, it inherits the behavior of
an EmbeddedThing. It regroups several embeddedragsit accepts composition operations
such as remove and add children. In addition, regponsible for managing and providing
resource references to its children.

Leafis an extension of the EmbeddedThing actor. Theeefit inherits the behavior of an
EmbeddedThing. It is an abstraction of only one emded system and is responsible for
resource references inquiring.

User represents any user interested by the servicesideeh\vby the middleware or by
applications built over it. He Iinitiates actionsdawaits for results. He can subscribe to
events that may occur.

SysAdminrepresents the application designer. He configuremposes and upgrades the
application. He has to propose the implementatamtecorresponding to actions.

Controlleris in charge of monitoring that the system is ectlly performing.

Use cases derived from functional requirements
The next table shows, which use cases, are defriesdwhich functional requirements.

Use case Derived from
Compose Composition support
Lease Small footprint

Evict

Hold

Renew

Observer/Notify | Events notification
Publish/Subscribé Asynchronous communicatign
Join/Exit Ad-hoc discovery

Monitor Reliability
Use cases derived from functional requirements

Composeprovides to thesysAdmiractor all operations related to how to regroup ealed
systems in order to build hierarchical views sushtrge facilitating the traverse and the
upgrade of the embedded systems.

Leaseprovides methods to create and manage resourcesify leases. Since resources in
embedded systems are limited, this use case pva@€ompositeall operations (create,
delete, set duration, etc.) for how manage itsuess using time-based leases.

Evict manages the lifecycle of a resource. It implemenézhanisms to control resources
usage. In addition, it allows freeing and recyclisgd resources.

Hold describes a way to acquire resources and lea$es.ufe case symbolizes how an
EmbeddedThinthat needs to use resources of anoimebeddedThingobtains a reference of
this resource and a time to live of the reference.

Renewallows renewing leases according to strategieg, &time-based strategy. When an
EmbeddedThingbtained a resource reference and if it wantsetpkit, it has to renew this
reference

Observe and Notifyallow to an EmbeddedThingthe observer to register with another
EmbeddedThingthe observable. The observer has to be notifiednwihe state of the
observable has changed.

Publish and Subscribellow to anEmbeddedThingo subscribe with filters to a publisher
EmbeddedThingrhe subscribeEmbeddedThings notified according to its filters.

Join and Exituse cases address the mobility requirement intexiloy wireless devices. It
allows detection of arrival and departure of desice

Monitor describes how to provide a minimal mechanism taensinimal reliability.

Use cases derived from non-functional requirements

The table below shows patterns that derived from-famctional requirements. One can
notice that some non-functional requirements havearresponding use cases. In fact, these
correspond to the properties that the middlewarst iave.

Use case Requirement
Grant Security

Sign

Configure Adaptability

Upgrade/ProposgEvolutions support

Configure Configuration
Use cases derived from non-functional requirements

Grant implements the security mechanisms such as autl#iotn, authorization and
accounting in order to control access toEmebeddedThing

Signimplements authentication mechanism to accessstactedEmbeddedThing

Configure provides the ability to configure and reconfigurgnamically the middleware
according to for different topics (type of the gyat set of services, lease duration...).

Upgrade and Proposallow to SysAdmirto modify or add new services.

2.3 Case study overview

JavaCard is a credit card-sized plastic card witlingegrated micro controller chip inside. It
is capable both to store information and run Janagnams within the JavaCard Runtime
Environment (JCRE) [16 chapter 15] it contains. rEbg, it is a perfect specimen of an
embedded system. However, JavaCard suffers frons itsolated from the network.
Nevertheless, when it is combined with an additiometwork-based device: called Card
Acceptance Device (CAD), it can turn then into aledike others within the network.
Although it is severely constrained by memory latiins, this does not prevent us to upload
cardletsinside it and invoke them as services from the.web

At CNAM Paris, there are several JavaCards widespaenong the different buildings. Most
of them are embedded within iButton™ or TINI cartisaddition, there are some students
possessing their own JavaCards.

It is possible using our middleware to group adgh JavaCards to build new collaborative
applications to provide useful services (such athemdication, courses planning, exams
results, labs solutions, etc.) for both the stuslantd the teachers.

By now, we have concretely used the middlewareffer ¢o students a Web-Based JavaCard

Development Platform (WBJDP), helping them gettingre practice with this technology.
The picture below depicts the architecture of tHe\WYP.

] A=
SEe

2. WBJDP Architecture

The JavaCard contains several cardlets and ituggeld in a CAD. The CAD runs a Brazil
[53] web server and is reachable via the web foeostudents.

3 Patterns to build the middleware

According to [18], design patterns and middlewaseplement each other. They describe a
generalized solution to a commonly occurring prob[8]. The patterns that we present here,
address the architectural concerns and the regeimenoutlined in the previous section. In the
following sections, we describe first the pattewes have selected for our middleware and
how we concretely applied them (subsections 337 Next, we bring your attention on the

relations between the patterns and the underlyattgrn language (subsection 3.8).

3.1 Architectural patterns
We deal first with the architectural patterns sitloey have governed the whole middleware
design [2 p26, 8 142]. Those patterns deal withotiganization of the system’s elements into

2

subsystems and components. They also specify g#pomsibilities of each element and the
rules defining their relationship. Both th@yersand theMicrokernel patterns fall into this
category. The first one helps to structure systemnesgroups of subtasks. The second one is
considered as a specialization of tagerspattern.

Layers Pattern
When we are facing a large or complex system, waeitively try to decompose it
progressively into smaller and more manageabldientiTheLayerspattern described in [2
p31, 8 pl42] is suitable for such decompositiorallbws to structure systems, so that they
can be decomposed into groups of subtasks in wdach subgroup is at a particular level of
abstraction. There are three ways to implementphitern:
= Closed layeredone layer can only invoke its own services orsthprovided by the
next layer down.
= Open layeredpne layer can invoke its own services or thoseigenl by any layer
below it.
= Layering through Inheritancelower layers are implemented as base classes from
which higher layers inherit.
We applied this pattern to decompose the middlewerkitecture onto two layers (cf. figure
3): the lowest layer is dedicated to the core fionetities of the middleware while the higher
is concerned with user application. Doing so, wiaied the core services such as resource
management from the application’s services.

Application Layer
Microkernel Layer

3. The middleware multi-layered architecture

Microkernel Pattern

The Microkernel pattern [2, 8] is considered as a specializedrlayeong the layers of the

Layerspattern. In order to build an adaptable systemljaivs defining minimal core services

of a system that can be extended at build-time sariety of additional services.

First, it allows decomposing a whole system ontedlsubsystems:

= The Microkernel subsystem, which provides the mummcore set of services such as
communication facilities and resource management,

= The Internal Services subsystem, which comprises dbre functionalities having
incidences both on the complexity and the memooypiont of the Microkernel,

= The External Services subsystem, which providesooplt services, bound to the
Microkernel.

Next, it surrounds the whole system with an APIretaby the three subsystems, which is

accessible from the outside scope of the system.

We have implemented the main-core layer accordimdgitrokernelpattern. Therefore, it was

possible to start the system only with a minimako®quired elements such as the web server

and service for the resource management. Otheicesrare invoked just in time according to

occurring events or incoming requests.

3.2 Topology management

Composite

By using Composite[1], one can recursively create with composités - containers - and
leaves either complex or hierarchical structurks trees. From the user’s point of view, this
pattern provides a unique interface. So, the useraddress in the same way leaves and
containers.

For our middleware, we applig@iompositein order to organize elements hierarchically. The
following picture shows a typical composition oNatworked Embedded Systems (NES).

Netmaster TINI Card

Netmaster

—1 IButton

Cardlet

Cardlet

— Tini Card

—| IButton

Cardlets Sensor

—| Sensor

4. The use of Composite

At the left side, the Netmaster [47] is hosting tiButton JavaCard containing several
cardlets. The TINI card [48], in which we have pgled a sensor, is added as child to the
Netmaster. From the right side, the logical treeezsponding to this composition is appeared.
Colored box represents a composite: the NetmaisterTINI card and the IButton. While
blank box represents leaves: cardlets and sensors.

Visitor

The Visitor [1, 7] is related to th€omposite Suppose, on one hand, you have an operation
applicable both on leaves and on containers objetctthe structure. On the other hand,
suppose also that the implementation of this oferatepends on the type of the object, i.e.
composite or leaf. Applying th¥isitor pattern, i.e. implement the operation in a separat
subclass, it allows you to keep the structure llyoseupled with the operation. Furthermore,
as this pattern is aware about the underly@mnpositestructure, you can easily adapt the
operation accordingly [20].

All operations that imply the propagation througie topology structure (devices grouping,
updating...) are implemented as concrete visitors.

3.3 Resource management
Leasing
It is commonly admitted that managing resourcedistributed systems is more complicated
than in the centralized systems. In deed, errorg bea occurred for different reasons in
distributed systems: resource corruption, netwarkgestion or failure, remote host crashing,
etc. For this purpose, theasing[4] allows managing resources by using time-bdsases.
Concretely, that occurs as follows:

= Step 1: a lease is associated with a resourcasaadtjuired.

= Step 2: if the lease is never renewed, the resaaraatomatically released when the

time-lease expires.

When an embedded system is added as child to acsw@hildren table (c.f. figure 4: the
TINI card is added to the Netmaster), the compagiates a time-based lease for that child
and send back to the child the duration of thedekHghe child never renews the lease before
its expiration, the composite suppresses the ¢tdhd its children table.

Evictor

The resource management is a key concern in embesydéems [25]. Therefore, in order to
cope with that, one can use theictor pattern as described in [4]. Indeed, this pattecnses

on how and when to release resources. Furtherma@i&gws you to apply different strategies
to determine automatically and optimally, whichaexes should be released and when they
should be released.

In order to optimize system resources, this patierapplied to evict leases that have been
never renewed and those that have been least Isxeasat!.

3.4 Reliability
Heartbeat

Consider a system composed by two subsystems:sgsain A and a subsystem B. Actually;
Heartbeat[6 p209] is useful when A is performing an operaton behalf B or when it is
used by B for providing reliability. Concretely,etrsubsystem A must periodically send
signals to B in order to indicate that it is stlive.

Critic nodes in NES have to send “still-alive” rfmations to nodes monitoring them. For
example, we configured a node hosting a sensoend eriodically you a message to a
cellular phone.

Watchdog

Watchdog[30, 8] is closely related to theeartbeatpattern. It is intended to control that the
whole system is processing as required. Considez again the system we discussed above,
where B is using A in order to provide reliabilitin this case Watchdogis commonly
implemented in B and it monitors that “still-aliveiessages, coming from A, are received at
the right time: neither too quickly nor too slowl@therwise, it moves the part-whole system
into a fail-safe state.

In NES, some nodes such as those hosting sensersriic. Thereby, to provide the
reliability, it is required those systems to bealtexl periodically. We applied th&atchdog

for this purpose,

10

3.5 Events notification

Observer

The intent ofObserver1, 7] is keeping a set of objects, i.e. the obses, up to date when the
state of an object they depend on, i.e. the subfes changed. In other words, this pattern
implements a one-to-many dependency between thecswdnd the observers. Concretely, it
allows you first, attach to anonymously a set cfaskiers to a subject. Next, when the state of
the subject changes it automatically invokes thibaek update method of each observer.

For instance, we wanted to log any modificatioraafavaCard in a HSQLDB [52] database.
In this case, the database is registered as amvebseith the Netmaster and the TINI card.
Thus, every time the state of those is updatedtifiaation is sent to the database.

Publish Subscribe

Publish SubscribéPub/Sub) is a special case of Mleserver It is applicable when there are
several distributed entities, which should commatgcwith each other and remain loosely
coupled. It exposes four primitives: pub, sub, tmnand notify [36]. One can implement the
Pub/Subaccording to two different strategies: topic-basawl content-based. The first
strategy is fairly the same as newsgroups strat@pe system notifies the subscribers
whenever a publication related topic occurs. Theoise strategy gives to the subscribers the
ability to specify predicates over what they exaetant to be notified about [14].

We applied this patter in order to provide asynobrts communication. Indeed, some
notifications are important they must thus be dmld even the receiver is not present.
Concretely, these notifications are queued in aribiged Hashtable (DHT) replicated in
some identified stable nodes.

3.6 Network communication

Proxy

The intent of theProxy [5 p79, 4 p199] is to provide a surrogate objecttreal object.
Actually, the surrogate receives client methodscald invokes the same method on the real
object. The surrogate object and the real objeeteslthe same interface or super class.
Therefore, the client is unaware that is callHrgxys rather than the methods of real object.
We have applied this pattern for remote invocatiblore precisely, we created in the
Netmaster and TINI nodes (from the picture 4) apro the HSQLDB database. When these
nodes receive a request, they automatically nttéydatabase using this proxy.

Strategy

Strategy[1] let us to define a family of algorithms, ensafate each one and make them
interchangeable. In fact, it allows the algorittorbe unaware about the client that using it.

In NES, there are several protocols to connectspdethernet, Wifi, Bluetooth, IrDA, and
Serial... Thereby, we applieStrategyin order to let applications to use one protocol o
another according to the device network interfaces.

3.7 System and Services configuration

Configurator

In order to achieve more flexibility, th&ervices Configuratiolwr Configurator [35, 3 p75]
provides a way for decoupling the behavior of smsifrom the moment at which their
implementations are configured into applicationsallows services to evolve independently
of configuration issues such as concurrency modébaation. In addition, it allows linking
and unlinking services implementation to an apgilicaat runtime without having to modify,
recompile, or statically relink the application.dB#es, it centralizes the administration of the

11

services that it configures, allowing therefore omuatic initialization and termination of
services.

This pattern is used to define the eviction strat@gd the list of services and interceptors per
embedded system. In addition, it is applied talsetnature of each system (i.e. composite or
leaf) and other metadata such as listening port.

Hereafter, an example of a TINI card’s configuratfibe is shown.

#

TINI card configuration.
#

handler=main

log=5

root=.

port=1111

host=localhost

#
main.class=sunlabs . brazil.server.ChainHandler
main.handlers=thing

feuilles
thing.class=application.interceptor.Dispatcher
thing.prefix=/thing/

#may be empty, SimpleThing, CompositeThing
_INTERFACE=CompositeThing
_CHILDREN_TABLE_SIEE=5

#Token use to split strings
_TOKENS_SEPA=,

#Interceptors list
_INTERCEPTORS PKAG=application.interceptor.interceptors.
_INTERCEPTORS LIST=ResourceManagment,Logging,Security,RequestToService,Servicelocator,Servicelnvocator

#oervices list

_SBERVICES PKAG=kernel.external.service.services.

_SBERVICES LIST=discovery,configuration,composition,reaction,visite,upgrade,
_SERVICES _LIST SIEE=5

#Resource optimisation
_EVICTION STRATEGY=LastReccent lvUse
LEASING DEFAULT TIME=30

5. The TINI card configuration file
One can see that the TINI card is defined as a ositgpnode and it can have until five
children. In addition, it has a set of interceptansl a set of services.

Interceptor

Interceptoras described in [3 p109, 37] is suitable whengiesg frameworks or middleware
systems. Indeed, the intent of this pattern islimrvaservices to be added dynamically and
triggered only when certain events occur. Therefapplications using the frameworks or
middleware can add services addressing their owatifunal or non-functional requirements
without changing the system implementation. Besidesvices provided by the system can be
modified without altering its core architecture.

We applied this pattern in order to provide adaifitgb

Chain of Responsibility

The Chain of ResponsibilitfCoR) [1, 7] pattern aims at to decouple the retjgender from
the receiver by interposing a chain of object harsdbetween them. Each handler in the chain
may either handle the request; pass it on to the Im@ndler or both. This pattern allows
greater flexibility since it let handlers decide avhto do with the request and users to
dynamically modify or add handlers in the chain.

This pattern is applied in order to compose a cbainterceptors.

12

3.8 Putting all together

No pattern is an island

The picture below shows an overview of the patt@rasapplied to build the middleware. The
dashed arrows are used to represent the connebebrsen the patterns.

Configurator

i Interceptors List

Chain of I erceptors ~ Configuration
Interceptor
— composite
‘ """
:Operation
Topology

Relliabili

Watchdog

Monitoring :

Heartbeat

emory

Lifecycle

6. Patterns relationship

LayersusesMicrokernelto conceive a multi-layered architecture of theldieware in order
to separate core concerns (protocol implementatiorresource management) from user’s
concerns (how to configure applications or seleetdervices needed).

Microkernel is a specialized layer frorhayers It uses:Watchdogfor ensuring reliability,
Leasing for memory managemenbserverfor synchronous notificationsPub/Sub for
asynchronous communicatiogompositefor topology management ar@onfigurator for
system and services configuration.

Watchdogand Heartbeatare both used for implementing reliabilitfatchdogis a daemon
running onSystem Controllemonitoring that “still-alive” notifications are ceived at the
right time. HeartbeatusesProxyto send “still-alive” messages to tidatchdog

Leasing and Evictoare applied in order to optimize memory usdgeasingis used in order
to manage memory resource with time-based leasese$Proxywhen a resource holder has
to renew leases with a remote resource providerictor manages the lifecycle of the
memory resource.

Observer and Pub/Sub are respectively applied for synchronous and dsymous
notifications. Both of them uderoxyfor remote communications.

Compositas actually applied witlisitor in order to achieve a loosely coupling between the

topology structure and operations that must beopaed on it.CompositeusesObserverto
notify its state change and to observe changesrhgtoccur within the network. In addition,

13

it usesPub/Subfor publishing and subscribing to events; d@bxy to have surrogates to
remote devices.

Proxy and Strategyare applied to deal with network distributioRroxy takes a place as a
surrogate of remote devicesStrategy subclasses provide protocol communication

implementation toProxy and they implement eviction strategies, which are uséfuthe
Evictor.

Configurator, Interceptor and CoRre applied to implement the adaptabilitg@onfigurator
provides mechanisms to access and modify the systarfiguration.CoR uses Interceptor
andConfiguratorto define the interceptors list in order to congaschain of interceptors.

Towards a Pattern Language for embedded systems ndtéware

ServiceLocator

| 0bservation|

attachmjent
Configuration
change ThingVisitor
o Application Layer
accept
configure ® P
date © =N @)
< s Q visitable
Obsdrver Subtiect Configurable Comglonent visit
| EmbeddedThing |
O CompositeThin LeafThin
ResourceProvider | o g| | g |
icreate
EvictionStrategy

renéw

use apply
O evicts O
ResourceUser i
MICROKERNEL ResourceEvictor O

publish | | subscribe elegates Heartbeat
A\
Publisher Subscriber RemoteThing
gL N Monitor
Protocol ,Wl
HTTPProtocol Watchdog

INTERNAL SERVICES EXTERNAL SERVICES

Microkernel Laye

{ Evictor] (ViSitOl’) [Pub/sub] { Observer] { Proxy] { Startegy]
{ Heartbeat] [Watchdog) (COHﬁgUFatOF) Interceptor/CoR

7. Towards a pattern language for embedded systentienidre

%

14

The previous picture shows which patterns we aggied how we arranged them among the
middleware layers. The MICROKERNEL, within the nukernel layer, is the core of the
middleware. It allows composingcomposit¢ NES topology views, resource management
(Leasing and Evictor) and operations performingVigitor). It uses the INTERNAL
SERVICES subsystem for remote connectiBroky) and protocol adapteB{rategy, as well

as for asynchronous events subscribing and pubgstiPub/Sul. The EXTERNAL
SERVICES provides additional services such as maong (WatchdogandHeartbeaj. One
can observe that theompositeThinglass can act as resource provider and resouic®rev
This “schizophrenia” can also be seen with BrabeddedThinglass that can at the same
time act as a subject and an obser@serve) or publisher and subscribePyb/Sub. In
addition, theEmbeddedThinglass, which is in fact an abstraction of any endeedsystem,
may change its configuration according to the cdan{€onfiguratol). At the application
layer, one can notice that both theerceptorand CoR are applied for user’'s requests or
events handling.

4 Case study implementation

4.1 A dedicated Pattern Language

Not all functionalities of the middleware are negde the implement the WBJDP (Web-

Based JavaCard Development Platform) case studyaky, according to the requiremehts

of this application, only the memory managemerd,ttdpology composition, the synchronous
events notifications and the configurations suppaorttionalities are required.

The next picture shows the dedicated Pattern Lageyta WBJIDP.

Architecture Configurator

Core Interceptors List
Chaln of I(;erceptors

Interceptor

If.cauon

Configuration

e.,,,w

Llfecycle

Operatlon

8. WBJDP dedicated Pattern Language

3 The requirements of the case study are very based on the middleware requirements. That is why we chose voluntary
not detail them here.

15

4.2 The Pattern Language application

Hereafter, an excerpt of the network topology teeesponding to application Gomposite

9. A tree of JavaCards (from [11])

The figure above shows how, behind each node, veehad indifferently cards or other
nodes. We assume that cards can contain more tharcardlet. Each cardlet is stored in

binary format.

The following picture shows a logs view that ili@ing a server-side application of

Observer

9 Les rencontres auront licu au Croisic du 5 au & Avril 2005 - Mozilla Firefox =1ol>|

File Edit Yiew Go Bookmarks Tools Help 1 % | |Bookmarks | |HTML4.01 | |Css52 | | Butimeur | | Quickmark | | Ant | | DocBook || Ant-Contrib 3>

@ x5 - g 31 ||_| http:/163.173,228.59:8765/javacard/monitor/ C 1009000001 26496,/ CFSE0N4 -1 |GLksoap tini

[e=i
Ci dessous, un exemple d'interrogation par la java card d'un observateur de notifications n

notifications émises par la java card C100900000126496

DATE TIME OBSERVABLEURL ~ ARGEVENT
2005-02-0% [15:24:27 http /163,173 228 598765 javacard/monitor! ||ADD_ SERWVLET http /163 173 228 598765 avacardimeoniter/C 10030000017
2005-02-07 |15:31:02 hitpy/ 1632 1732, 228,58 8765 javacardimonitor/ |ARRIVAL C10050000012645%6

2005-02-03 (12:02:41 httpf163.173.228. 14487 65 javacard/monitor/ [ARRIV.AT._C1009000001264%6

2005-02-03 [10:54:24 http /163,173 228 1448765/ javacard/meoniter/ [AREIV.AT, C100900000126496

2005-02-02 | 14:23:28 hitps/1632. 172, 2281448765 javacardfmeniter/ | ARRIVAL C100500000126456

2005-02-01 |10:56:16 hitpy/163.173.228. 144.87 65 Javacard/monitor/ | ARRIVAL _C10090000012645%6

2005-01-31 [10:42:01 http/F163. 173 228 1448765 javacard/meoniter/ [ARRIV.AT, C1009000001264%6

2005-01-28 |15:04:25 hitp/ 1632 172, 2281448765 javacar dfmeniter/ | ARRIVAL C100500000126456

2005-01-28 |15:02:58 httpd/1632. 172,228,589 8765 javacar dfmonitor! |DEPARTURE_C100%0000012645%6

2005-01-28 [10:18:53 http /163,173 228 5% 8765 avacard/monitory |[AREIVAT, C1009000001264%6

2005-01-26 |19:1548 hitp /1632 1732 228 5% 8765 javacardfmonitor/ |ARRIVAL C100%000001264%6

2005-01-26 |15:15:45 httpd/ 1632 172, 228,55 8765 javacardfmonitor! |DEPARTURE_C100%0000012645%6

2005-01-18 [15:34:54 http /163,173 228 5% 8765 avacard/monitory [AREIVAT,_C1009000001264%6

2005-01-18|15:25:58 http#f 163 173 228 5% 8765 javacard/monitor/ |DEPARTURE _C100%000001264%6

2005-01-17 |18:0%:55 hitpy/163. 1732, 228,53 8765 javacardimonitor/ |ARRIVAL_ C10050000012645%6

o __ _ | _»ILI

| aiting For 163,173 228.59. .. =1 | Friday, February 11, 2005 -S:24PM

10. Journal’s view (from [11])

The application logs in a HSQLDB database each tegerresponding to the JavaCards
plugging-in or plugging-off. It also logs all ewsrrelated to the modification of a JavaCard.

From above, you can see a generated view fronotiragl table.

16

The next figure is an applet screenshot showinglibat-side application ddbserver

(NiNetscape T R S ST =10l x|
. File Edit View Go Bookmarks Tools Window Help |

i ~ =2 e .
| Bacl Reload Stop | http:HlE-S.l?E‘.EZﬁ.S"‘ [Q._Sea_rch | PrintD (A
| i "2
.

;! B, (Amal 3 AIM & Home &3 Radio telNetscape © Search (24 Shop Bookmarks % Instant Message »!

date obsewahble arg

09/12/03-11:04 hitp:/163.173.228.59:8765/avacard/monitorf DEPARTURE_S600C0000018B796 _:’

0971 2i03-11:04 hitpM163.173.228.59:8765/avacard/monitor/ ARRIVAL_8600C0000013B796

09/12/02-11:06 hitp/163.173.228 808765/ avacard/monitor ARRIVAL_1C00900000205536

| 1091 203-11:06 hitp:163.173.228.80:8765/avacard/monitor) ARRIVAL_A10090000025D296
09/12/03-11:06 httpM163.173.228.80:8765/javacard/monitor ARRIVAL_GENDCO0000173B496

| 09/12/03-11:06 hitp163.173.228.80:8765/avacard/monitor ARRIVAL_3800C0000018CE96

A A &) | Applet Consolelib [1} i = =) !ﬁm 4
11. An applet as an observer (from [11])

When the applet starts, it registers itself witoale hosting a JavaCard as an observer. When
the state of the JavaCard changes, it calls bachdtify method of the applet.

The picture below shows the events propagation ¢aeesponding to the application of
Visitor.

http://adsl/update/ |

Iittp://Imi80/ap date/

http://Imi73/update/ |

http://vivaldi/motify/ http://lmi7 1/ap date/

http:/Imi74/apdate/ |

‘1 http://Imi72/up date/ http://Imi7S/update/ |

http://lmi76/update/ |

12. Request forward-propagation (from [11])

When a node receives stimuli, it propagates themvard to all its children. In the picture,
above, you can see such propagation.

17

Hereafter, the table shows the non-volatile menfootprint of the case study dedicated
pattern language.

Module Size in kilobytes
Brazil Server tailored for TINI (implementingd3

Configurator, CoR)

Interceptor 4.471
Composite & Observer 5.994

Proxy 2.663

Leasing 3.727

Evictor 1.448

HTTP command 4.494

The final size of the middleware compressed jarifilabout 68 kilobytes:
The middleware jar file’s size is about 24 kiloks/te

The configuration file is 1 kilobyte.

Brazil-TINI Server library is 43 kilobytes.

5 Conclusion and outlook

Synopsis

Embedded systems technologies are an ever-chafigidg That it is. Therefore, it is a
challenge for us to find a solution to interconnidem. That solution has to take in account
their constraints (limited memory) and their cons&volution.

We stated in this paper that the middleware tedgies are the suitable solution to build
that. Besides, we agreed that design patterns go®@ approach for the construction of the
middleware since they represent proven techniqikesthermore, they enable loosely
coupling and object oriented structure

However, despite patterns provide solutions to atnsoftware design problems; they do not
yet deal with specific embedded systems topic ;adtimoc networking. Yet, that did not
prevent us to apply them to design JavaCards’ rewdaite with a memory footprint less than
70 kilobytes in ROM.

In addition, we tried to establish groundings talvBIES pattern language.

Work in progress

Security and ad-hoc networking represent two ingodrtopics to focus on. Even there are not
yet patterns to settle the matter of ad-hoc netimgri{9] describes a set of patterns to solve
security issues. Therefore, we are working on hmapply those security patterns.

Also, basing on previous work [29, 41], we are stigating on how AOP (Aspect Oriented
Programming) can help us to improve our middlewanel reduce the overall memory
footprint and best address the modularity. As fdbpaomic computing, we are waiting results
from another project in progress in order to indégisuch technologies.

Yet, we have already identified other patterns Ikactory Method, Lazy loading, and
Coordinator to implement in the near future.

Acknowledgments

We would to express our great gratitude to our PROB6 shepherd Uwe Zdun. In addition,
we thank all persons who have reviewed this doctntenhelp to improve either the
correctness of the English language or technig@as.

18

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissid&esign patterns- Elements of Reusable
Object-Oriented Softwaréddison-Wesley Professional, 1995

[2] F. Buschmann, R. Meunier, R. Rohnert, P. SonederM. Stal: Pattern-Oriented
Software Architecture A System of Patterngohn Wiley & Sons, 1996

[3] D.C. Schmidt, M. Stal, H. Rohnert, and F. Busemn: Pattern oriented software
Architecture — Patterns for Concurrent and Netwark&bjects John Wiley & Sons, 2000

[4] P. Jain, M. Kircher:Pattern oriented software Architecture — Patteras Resource
ManagementJohn Wiley & Sons, 2004

[5] M. Grand:Patterns in JavaJohn Wiley & Sons, 1998
[6] M. Grand:Java Enterprise Design Patterdohn Wiley & Sons, 2001
[7] O. Maassen, S. SteltincgApplied JAVA Patterndrentice Hall, 2001

[8] B. P. DouglassReal-Time Design Patterns — Robust Scalable Arctite for Real-Time
SystemsAddison-Wesley, 2003

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hyben F. Buschmann, P. Sommerlad:
Security Patterns — Integrating Security and SystEmgineeringJohn Wiley & Sons, 2005

[10] R. Zurawski:EEmbedded Systems Handbobaylor & Francis, 2005

[11] N. Bonardelle :Motifs de Conception et Intergiciel pour Systemesbarqués in
Conférence Francaise sur les Systémes d’Explaitg@éSE’05), Croisic, April 2005

[12] F. Eliassen, A. Andersen, G. S. Blair & cbdlext Generation Middleware —
Requirements, Architecture, and Prototypes

p. 60, The Seventh IEEE Workshop on Future Trends Destributed Computing
Systems, 1999

[13] G.S. Blair, G. Coulson, P. Robin, M. Papathem#am Architecture for Next Generation
Middleware Proc. IFIP International Conference on DistribuSygtems Platforms and Open
Distributed Processing (Middleware’98), Kluwer, Sapber 1998.

[14] P.Triantafillou, loannis Aekaterinidis:

Content-based publish-Subscribe over Structured iR orks

In DEBS, 2004
http://www-serl.cs.colorado.edu/~carzanig/debs0gg0étriantafillou.pdf

[15] Microsoft: Patterns and practices — Publish/Subscribe
http://msdn.microsoft.com/library/default.asp?uibrary/en-
us/dnpag/html/despublishsubscribe.asp

19

[16] Q. H. Mahmoud:Middleware for Communicationdohn Wiley & Sons, 2004

[17] C. Britton, P. ByelT Architectures and Middleware Second EditionAddison-Wiley,
2004

[18] U. Zdun, M. Kircher, M. VolterRemoting PatterndEEE Internet Computing, vol. 08,
no. 6, pp. 60-68, Nov/Dec, 2004

[19] J. Rees, P. HoneymanVebcard: a Java Card web serv@Proc. IFIP CARDIS 2000
http://www.citi.umich.edu/techreports/reports/aiti99-3.pdf

[20] J-M. Douin, J-M. Gilliot: Collaboration patterns for networked embedded gssrviea
ETFA, 2003
http://www-info.enst-bretagne.fr/publication/2008-0df

[21] S. Vinoski:Chain of ResponsibilityeEE Internet Computing, vol. 6, no. 6, 2002, @-
83 http://csdl.computer.org/dl/mags/ic/2002/06/w608®.p

[22] Sun MicrosystemaNhy Jini Now?1998
http://www.di.uniovi.es/~falvarez/whyjininow.pdf

[23] J. BarberThe Smart Card URL Programming Interface,
Proceedings of Gemplus Developer Conference (GDCP&is, France, 21-22 June 1999

[24] F. FahrionEmbedded Ethernet Systems — Application tips 04 20echOnLing2004
http://www.techonline.com/community/ed _resourcditgraper/36916

[25] J-M. Douin, J-M. Gilliot:A Pattern Oriented Lightweight Middleware for Snecards in
CARDIS’04, 2004
http://www-info.enst-bretagne.fr/publication/2000ETBrINFORR2004.019.pdf

[26] ERCIM: Special Embedded Systems News No 52, 2003
http://www.ercim.org/publication/Ercim News/enw5RE2.pdfm

[27] TAO, http://www.theaceorb.com/

[28] D. Bakken: MicroQOSCORBA: A Configurable Middleware Framewddd small
Embedded Systems that Support Multiple Quality efvi€e Properties Washington
University, 2005
http://www.comp.lancs.ac.uk/computing/research/medtgction/papers/MicroQoSCORBA-
Lancaster-25April2005.ppt

[29] J. Hannemann and G. Kiczal&esign Pattern Implementation in Java and Aspeat]
OOPSLA 2002
http://www.cs.ubc.cal/labs/spl/papers/2002/oopsiaé@®erns.pdf

[30] C. Webel, I. Fliege, A. Geraldy, R. Gotzhebeveloping Reliable Systems with SDL
Design Patterns and Design Components ISSRE04 Workshop on Integrated-reliability
with Telecommunications and UML Languages, 2004
http://www.sdl-forum.org/issre04-witul/papers/widdl developing_reliable systems.pdf

20

[31] G. Hohpe, B. WoolfEnterprise Integration Patterns JMS Publish/Subscribe Example
http://www.enterpriseintegrationpatterns.com/ObselnsExample.html

[32] L. Aldred, Wil M.P. van der Aalst, M. DumasiédA. H.M. ter Hofstede:On the Notion
of Coupling in Communication Middlewarén Proceedings On the Move to Meaningful
Internet Systems - 7th International Symposium astrbuted Objects and Applications
(DOA), pages pp. 1015-1033, 2005

[33] STARUML, http://www.staruml.com

[34] Wikipedia:http://en.wikipedia.org/wiki/Embedded_system

[35] P. Jain, D. C. SchmidDynamically Configuring Communication Services wiitlke
Service Configurator Pattern in Third USENIX Conference on Object-Oriented
Technologies (COOTS), 1997
http://www.cs.wustl.edu/~schmidt/PDF/O-Service-Ggufator.pdf

[36] L. Fiegel, F. C. Gartner, O. Kasten, and Aidi&gs: Supporting Mobility in Content-
Based Publish/Subscribe Middlewakroceedings of the 8th ACM international sympuosiu
on Modeling, analysis and simulation of wirelesd arobile systems, 2005
http://Ipdwww.epfl.ch/upload/documents/publicatioren--

1241122820log_mobility mwO03.pdf

[37] P. Aschenbrenner, M. FoOrsteifthe POSA Interceptor Patternin Conceptual
Architecture Patterns Seminar, 2003

http://wendtstudl.hpi.uni-
potsdam.de/SCAP/presentations/ThePOSAlIntercepterBNEU. pdf

[38] F .A. Rosa, A. R. SilvaComponent Configurer: A Design Pattern for Compd+izesed
Configuration, in Proceedings of the 2nd European Conference dterRaLanguages of
Programming (EuroPLoP '97). Siemens Technical Rep20/SW1/FB. Munich, Germany:
Siemens, 1997

http://francisco.assisrosa.com/pubs/europlop97-1.ps

[39] S.Baehnil, P. Th. Eugster, R. Guerradds Support for P2P Programming: a Case for
TPS,in ICDCS 2002 (Vienna, Austria, 2002).

[40] E. A. Lee:What's Ahead for Embedded Software?
IEEE Computer Magazine, September 2000, pp. 12Q@0)
http://www.cs.utah.edu/classes/cs6935/papers/lee.pd

[41] C. Zhang, H-A. JacobseRefactoring Middleware with Aspect&EE Transactions on
Parallel and Distributed Systems, vol. 14, no. fft, 1058-1073, Nov., 2003.

[42] D. Harel, M. Politi:Modeling Reactive Systems with Statechatisgraw-Hill, 1998

21

[43] M. Panahi, T. Harmon, R. Klefstaddaptive Techniques for Minimizing Middleware
Memory Footprint for Distributed, Real-Time, EmbeddSystemsProceedings of the IEEE
18th Annual Workshop on Computer Communications. , 1®p. 54-58.
10.1109/CCW.2003.1240790, 2003

http://repositories.cdlib.org/postprints/656

[44] M. Kircher, C. SchwanningerEnterprise meets Embedded/orkshop - Reuse in
constrained environment®OPSLA 2003, Anaheim, USA, 2003
http://www.kircher-schwanninger.de/michael/publicat/KircherSchwanninger.pdf

[45] R. Klefstad, M. Deshpande, C. O'Ryan, A. Gogs A. S Krishna, S. Rao, K. Raman
Real Time CORBA with ZEMNIniversity of California, 2002
http://doc.ece.uci.edu/publications/zen-performa2@@?2. pdf

[46] J2ME Specifications
http://icp.org/en/home/index

[47] Elsist, the Netmaster manufacturer web $ite://www.elsist.net/

[48] TINI web site,http://www.maxim-ic.com

[49] A. Corsaro, D-C. Schmidt, R. Klefstad, C. Od&y
Virtual component — A design Pattern for Memory-§toined Embedded ApplicatiqgriZ002
http://www.cs.wustl.edu/~schmidt/PDF/virtual-compaoh pdf

[50] C.Mascolo, S.Hailes, L.Lymberopoulos, and all,

SIXTH FRAMEWORK PROGRAMME PRIORITY 2 “Informati@ti&y Technologies” —
Survey of Middleware for Networked Embedded Sys200%
http://www.ist-runes.org/docs/deliverables/D5_0%.pd

[51] D-C. Schmidt, C. Cleeland\pplying a pattern language to Develop ExtensibRBO
Middleware2000
http://www.cs.wustl.edu/~schmidt/PDF/ORB-patterds.p

[52] http://www.hsqgldb.org

[53] http://www.experimentalstuff.com/Technologies/Btazdex.html

[54] CORBA, http://www.corba.org/

22

