
 1

 APPLYING PATTERNS TO BUILD
A LIGHTWEIGHT MIDDLEWARE

FOR EMBEDDED SYSTEMS

D. Bellebia
CEDRIC-CNAM

292, rue Saint Martin
75141 Paris cedex 03

France
bellebia@cnam.fr

J-M. Douin
CEDRIC -CNAM

292, rue Saint Martin
75141 Paris cedex 03

 France
douin@cnam.fr

Abstract – Today, patterns are used in several domains (distributed applications,
security, software requirements, architecture…). Our purpose is double: first, to know if
existing patterns can be applied in the particular domain of embedded systems
middleware; second, to establish the groundings towards a patterns language for that
domain.
This paper reports on designing and building a lightweight middleware for embedded
systems with well known patterns such as Composite, Proxy, Visitor, Observer,
Publish/Subscribe, Leasing, Evictor or Configurator. The patterns that we have selected
and implemented have allowed keeping the memory footprint reduced. Yet, they were
relevant to address the need to create views of networked embedded systems, monitor
and manage them. As result, the middleware is modular, flexible, extensible, and
lightweight (< 128 kb) according to requirements of targeted embedded systems.
In addition, this article describes a concrete case study that illustrates how to select
appropriate patterns in order to build a dedicated middleware to interconnect
numerous small devices.

Key words – Patterns, Lightweight Middleware for Embedded Systems, Requirements for
Embedded Systems’ Middleware, Use cases, Architecture, JavaCard

1 Introduction
Embedded systems are specific-purpose computer, which are completely encapsulated by the
device they control. They are ubiquitous in our everyday life, in form of many devices such as
cars, medical components, clothes, personal mobile devices, sensors [26].

 2

Advances in electronic and wireless communications (e.g. Wifi, Bluetooth, Wireless USB…)
enabled the advent of Networked Embedded Systems (NES), i.e. systems comprised of
interconnected devices [50].

Besides, there is a real trend now to use middleware technologies in order to interconnect
NES. Indeed, middleware is a distributed software layer sits above the network operating
system and below the application layer [16]. It provides common abstractions that can be
reused across different applications within a specific domain. Yet, it supports tailoring in
order to meet the requirements of each application [10 p30-3]. In addition, it hides the
heterogeneity of the underlying environment, it simplifies the task of programming, and
managing distributed applications. In other words, middleware is about integration and
interoperability of applications and services running on heterogeneous computing and
communication devices.

However, trying to develop a middleware for embedded systems introduces many challenging
problems that we must deal with. There is no stable network infrastructure, the disconnections
are inopportune and it is required that devices to discover each other in ad-hoc manner.
Furthermore, embedded systems are severely constrained by scarce resources such as low
battery, few memory and slow CPU [44, 50].

Since their introduction, a decade ago, patterns are providing proven solutions for many
software design problems. Yet they enable to reduce the complexity and improve the
flexibility of software products in particular connection management, data transfer, de-
multiplexing and concurrency control [51].

What motivated our work can be summarized in three points. The first one is the realization of
an embedded systems’ middleware providing all required functionalities with non-volatile
memory footprint les than 128 kilobytes. The second one is the description of how to apply
patterns resolves the problems introduced above. The last one is to know if existing patterns
are applicable in NES middleware and then to establish groundings of a corresponding pattern
language.

With Regard to previous works related to this topic, two1 middleware JINI and TAO are the
most significant because they quietly present the required capabilities and their design was
driven by patterns.
JINI is a Java based middleware to build services oriented solutions. It provides ‘plug and
play’ mechanism and supports ad-hoc networking by allowing services to be added to a
network spontaneously [4 p185].
TAO [27, 12] is a CORBA (Common Object Request Broker Architecture) [54] compliant
middleware built over ACE (Adaptive Communication Environment). It implements entire
CORBA functionalities and provides real-time QoS (Quality of Service).
However, both of them were not suitable because of their memory footprint was higher than
128 kilobytes.

Our middleware is designed with patterns such as Composite, Proxy, Visitor, Observer,
Publish/Subscribe, Leasing, Evictor or Configurator, etc. It is lightweight (68 kb in ROM for
interconnecting JavaCards) and keeps the common qualities of patterns such as loose coupling
and flexibility.

1 The reader can refer to [50] for a complete survey of middleware for networked embedded systems.

 3

This paper is organized as follows: section 2 presents the requirements, the use cases of the
middleware and an overview of a case study using it. Section 3, reviews designs patterns
applied to build that middleware. Section 4, summarizes achieved results. Section 5,
concludes this paper and suggests an outlook to future work.

2 Embedded systems middleware
In the following subsections, we give first the NES middleware requirements that we have
selected basing on [10 chapter 30, 12, 16 chapter 11 and 50]. Next, we present the use cases
derived from that requirements. Finally, we introduce a case study as a particular application
of our middleware.

2.1 Requirements
Functional requirements
Composition support: There are many breeds of embedded systems and they are ubiquitous.
Therefore, it is required to the middleware to have capabilities that facilitate the organization
and the grouping of devices as form of trees.

Event notifications: Many of embedded systems are interacting continuously with their
environment through sensors and actuators. They must react when an event occurs
accordingly. The middleware has to provide mechanisms to notify any interested embedded
system.

Reduced memory footprint: The middleware is intended to be deployed on small devices such
as mobile phones. However, those devices are very constrained by limited resources such as
small memory footprint. The middleware has to take into account those scarce resources and
its memory footprint must not exceed 128 kilobytes.

Reliability: In NES, it is not rare that one device relies on another to perform seamlessly its
task. However, more and more of embedded systems are connected through a wireless
connection. Therefore, the middleware must ensure at least a minimal reliability because
network connections may be broken due to several reasons.

Asynchronous communication: The middleware supports the synchronous communication
model. That it is. However, it has also to support the asynchronous communication paradigm
in order to allow messages to be exchanged whether or not each endpoint is on operation at
the same time.

Ad-hoc discovery: The middleware should implement a mechanism to let devices to discover
each other and to discover services and available protocols.

Non-functional requirements
Location independence: When an embedded system asks for a service, it must not care that
service resides locally or remotely. In other words, the middleware has to hide the network
distribution.

Security: Embedded systems’ resources are shared. Therefore, the middleware has to provide
mechanism for monitoring shared resources both in term of authentication and concurrency.

 4

Heterogeneity support: There are many kinds of embedded systems: mobile phones, sensors,
music players, cars, Personal Digital Assistant (PDA). Some of them are java-based and
accept only IrDA connections. Others are running over Windows or Linux and accept
Bluetooth or Wifi connections. Therefore, the middleware has to be concerned about the
environment heterogeneity, which involves hardware platforms, programming languages and
operating systems.

Adaptability: Two factors motivate the need of adaptability: changes in environmental
conditions and users requirements. The middleware has to be concerned about that and
changes its behavior accordingly.

Configuration: The middleware should accept dynamic configuration and reconfiguration.

Evolutions Support: The environment of NES is constantly changing. Indeed, the user’s needs
change over time and technologies evolve. Thus, the middleware has to provide a way to
upgrade or add new functionalities.

Modularity: The middleware should be modular enough tailoring it.

Scalability: As already mentioned, embedded systems are omnipresent and their proliferation
is still going on. Therefore, the middleware has to scale according to the number of nodes or
service.

2.2 Derived use cases

System

Compose

Configure

Publish

Subscribe

SysAdmin

EmbeddedThing

Join

Exit

Propose

Upgrade

Renew

Grant

User

Monitor

Composite
LeafEvict

Hold

System Controller

Observe

Notify

Lease

Sign

1. The middleware use cases diagram

 5

The figure above depicts the use cases derived from the middleware requirements.
We have identified six possible roles that interact with the system an²d a set of use cases.

Actors

EmbeddedThing is used as an abstraction of any embedded system. It can both fire and react
to events and it can receive and send messages. It proposes its services to the other actors. In
addition, it can connect and disconnect from the network (join and exit).

Composite is an extension of the EmbeddedThing actor. Therefore, it inherits the behavior of
an EmbeddedThing. It regroups several embedded systems; it accepts composition operations
such as remove and add children. In addition, it is responsible for managing and providing
resource references to its children.

Leaf is an extension of the EmbeddedThing actor. Therefore, it inherits the behavior of an
EmbeddedThing. It is an abstraction of only one embedded system and is responsible for
resource references inquiring.

User represents any user interested by the services provided by the middleware or by
applications built over it. He initiates actions and waits for results. He can subscribe to
events that may occur.

SysAdmin represents the application designer. He configures, composes and upgrades the
application. He has to propose the implementation code corresponding to actions.

Controller is in charge of monitoring that the system is correctly performing.

Use cases derived from functional requirements
The next table shows, which use cases, are derived from which functional requirements.

Use case Derived from
Compose Composition support
Lease
Evict
Hold
Renew

Small footprint

Observer/Notify Events notification
Publish/Subscribe Asynchronous communication
Join/Exit Ad-hoc discovery
Monitor Reliability

Use cases derived from functional requirements

Compose provides to the SysAdmin actor all operations related to how to regroup embedded
systems in order to build hierarchical views such as tree facilitating the traverse and the
upgrade of the embedded systems.

Lease provides methods to create and manage resources by using leases. Since resources in
embedded systems are limited, this use case provides to Composite all operations (create,
delete, set duration, etc.) for how manage its resources using time-based leases.

 6

Evict manages the lifecycle of a resource. It implements mechanisms to control resources
usage. In addition, it allows freeing and recycling used resources.

Hold describes a way to acquire resources and leases. This use case symbolizes how an
EmbeddedThing that needs to use resources of another EmbeddedThing, obtains a reference of
this resource and a time to live of the reference.

Renew allows renewing leases according to strategies, e.g. a time-based strategy. When an
EmbeddedThing obtained a resource reference and if it wants to keep it, it has to renew this
reference

Observe and Notify allow to an EmbeddedThing, the observer to register with another
EmbeddedThing, the observable. The observer has to be notified when the state of the
observable has changed.

Publish and Subscribe allow to an EmbeddedThing to subscribe with filters to a publisher
EmbeddedThing. The subscriber EmbeddedThing is notified according to its filters.

Join and Exit use cases address the mobility requirement introduced by wireless devices. It
allows detection of arrival and departure of devices.

Monitor describes how to provide a minimal mechanism to ensure minimal reliability.

Use cases derived from non-functional requirements
The table below shows patterns that derived from non-functional requirements. One can
notice that some non-functional requirements have no corresponding use cases. In fact, these
correspond to the properties that the middleware must have.

Use case Requirement
Grant
Sign

Security

Configure Adaptability
Upgrade/Propose

Evolutions support

Configure Configuration
Use cases derived from non-functional requirements

Grant implements the security mechanisms such as authentication, authorization and
accounting in order to control access to the EmbeddedThing.

Sign implements authentication mechanism to access to restricted EmbeddedThing.

Configure provides the ability to configure and reconfigure dynamically the middleware
according to for different topics (type of the system, set of services, lease duration…).

Upgrade and Propose allow to SysAdmin to modify or add new services.

 7

2.3 Case study overview
JavaCard is a credit card-sized plastic card with an integrated micro controller chip inside. It
is capable both to store information and run Java programs within the JavaCard Runtime
Environment (JCRE) [16 chapter 15] it contains. Thereby, it is a perfect specimen of an
embedded system. However, JavaCard suffers from it is isolated from the network.
Nevertheless, when it is combined with an additional network-based device: called Card
Acceptance Device (CAD), it can turn then into a node like others within the network.
Although it is severely constrained by memory limitations, this does not prevent us to upload
cardlets2 inside it and invoke them as services from the web.

At CNAM Paris, there are several JavaCards widespread among the different buildings. Most
of them are embedded within iButton™ or TINI cards. In addition, there are some students
possessing their own JavaCards.

It is possible using our middleware to group all these JavaCards to build new collaborative
applications to provide useful services (such as authentication, courses planning, exams
results, labs solutions, etc.) for both the students and the teachers.

By now, we have concretely used the middleware to offer to students a Web-Based JavaCard
Development Platform (WBJDP), helping them getting more practice with this technology.
The picture below depicts the architecture of the WBJDP.

2. WBJDP Architecture

The JavaCard contains several cardlets and it is plugged in a CAD. The CAD runs a Brazil
[53] web server and is reachable via the web for other students.

3 Patterns to build the middleware
According to [18], design patterns and middleware complement each other. They describe a
generalized solution to a commonly occurring problem [8]. The patterns that we present here,
address the architectural concerns and the requirements outlined in the previous section. In the
following sections, we describe first the patterns we have selected for our middleware and
how we concretely applied them (subsections 3.1 to 3.7). Next, we bring your attention on the
relations between the patterns and the underlying pattern language (subsection 3.8).

3.1 Architectural patterns
We deal first with the architectural patterns since they have governed the whole middleware
design [2 p26, 8 142]. Those patterns deal with the organization of the system’s elements into

2

 8

subsystems and components. They also specify the responsibilities of each element and the
rules defining their relationship. Both the Layers and the Microkernel patterns fall into this
category. The first one helps to structure systems into groups of subtasks. The second one is
considered as a specialization of the Layers pattern.

Layers Pattern
When we are facing a large or complex system, we intuitively try to decompose it
progressively into smaller and more manageable entities. The Layers pattern described in [2
p31, 8 p142] is suitable for such decomposition. It allows to structure systems, so that they
can be decomposed into groups of subtasks in which each subgroup is at a particular level of
abstraction. There are three ways to implement this pattern:

� Closed layered, one layer can only invoke its own services or those provided by the
next layer down.

� Open layered, one layer can invoke its own services or those provided by any layer
below it.

� Layering through Inheritance, lower layers are implemented as base classes from
which higher layers inherit.

We applied this pattern to decompose the middleware architecture onto two layers (cf. figure
3): the lowest layer is dedicated to the core functionalities of the middleware while the higher
is concerned with user application. Doing so, we isolated the core services such as resource
management from the application’s services.

3. The middleware multi-layered architecture

Microkernel Pattern
The Microkernel pattern [2, 8] is considered as a specialized layer among the layers of the
Layers pattern. In order to build an adaptable system, it allows defining minimal core services
of a system that can be extended at build-time with a variety of additional services.
First, it allows decomposing a whole system onto three subsystems:
� The Microkernel subsystem, which provides the minimum core set of services such as

communication facilities and resource management,
� The Internal Services subsystem, which comprises the core functionalities having

incidences both on the complexity and the memory footprint of the Microkernel,
� The External Services subsystem, which provides optional services, bound to the

Microkernel.
Next, it surrounds the whole system with an API shared by the three subsystems, which is
accessible from the outside scope of the system.
We have implemented the main-core layer according to Microkernel pattern. Therefore, it was
possible to start the system only with a minimal core required elements such as the web server
and service for the resource management. Other services are invoked just in time according to
occurring events or incoming requests.

Microkernel Layer

Application Layer

 9

3.2 Topology management
Composite
By using Composite [1], one can recursively create with composites - i.e. containers - and
leaves either complex or hierarchical structures like trees. From the user’s point of view, this
pattern provides a unique interface. So, the user can address in the same way leaves and
containers.
For our middleware, we applied Composite in order to organize elements hierarchically. The
following picture shows a typical composition of a Networked Embedded Systems (NES).

Netmaster

TINI Card

IButton

IButton

Cardlets

Sensor

4. The use of Composite

At the left side, the Netmaster [47] is hosting the IButton JavaCard containing several
cardlets. The TINI card [48], in which we have plugged a sensor, is added as child to the
Netmaster. From the right side, the logical tree corresponding to this composition is appeared.
Colored box represents a composite: the Netmaster, the TINI card and the IButton. While
blank box represents leaves: cardlets and sensors.

Visitor
The Visitor [1, 7] is related to the Composite. Suppose, on one hand, you have an operation
applicable both on leaves and on containers objects of the structure. On the other hand,
suppose also that the implementation of this operation depends on the type of the object, i.e.
composite or leaf. Applying the Visitor pattern, i.e. implement the operation in a separate
subclass, it allows you to keep the structure loosely coupled with the operation. Furthermore,
as this pattern is aware about the underlying Composite structure, you can easily adapt the
operation accordingly [20].
All operations that imply the propagation through the topology structure (devices grouping,
updating…) are implemented as concrete visitors.

Netmaster

IButton

Cardlet

Cardlet

Tini Card

IButton

Sensor

 10

3.3 Resource management
Leasing
It is commonly admitted that managing resources in distributed systems is more complicated
than in the centralized systems. In deed, errors may be occurred for different reasons in
distributed systems: resource corruption, network congestion or failure, remote host crashing,
etc. For this purpose, the Leasing [4] allows managing resources by using time-based leases.
Concretely, that occurs as follows:

� Step 1: a lease is associated with a resource as it is acquired.
� Step 2: if the lease is never renewed, the resource is automatically released when the

time-lease expires.
When an embedded system is added as child to a composite children table (c.f. figure 4: the
TINI card is added to the Netmaster), the composite creates a time-based lease for that child
and send back to the child the duration of the lease. If the child never renews the lease before
its expiration, the composite suppresses the child from its children table.

Evictor
The resource management is a key concern in embedded systems [25]. Therefore, in order to
cope with that, one can use the Evictor pattern as described in [4]. Indeed, this pattern focuses
on how and when to release resources. Furthermore, it allows you to apply different strategies
to determine automatically and optimally, which resources should be released and when they
should be released.
In order to optimize system resources, this pattern is applied to evict leases that have been
never renewed and those that have been least recently used.

3.4 Reliability
Heartbeat
Consider a system composed by two subsystems: a subsystem A and a subsystem B. Actually;
Heartbeat [6 p209] is useful when A is performing an operation on behalf B or when it is
used by B for providing reliability. Concretely, the subsystem A must periodically send
signals to B in order to indicate that it is still alive.
Critic nodes in NES have to send “still-alive” notifications to nodes monitoring them. For
example, we configured a node hosting a sensor to send periodically you a message to a
cellular phone.

Watchdog
Watchdog [30, 8] is closely related to the Heartbeat pattern. It is intended to control that the
whole system is processing as required. Consider once again the system we discussed above,
where B is using A in order to provide reliability. In this case, Watchdog is commonly
implemented in B and it monitors that “still-alive” messages, coming from A, are received at
the right time: neither too quickly nor too slowly. Otherwise, it moves the part-whole system
into a fail-safe state.
In NES, some nodes such as those hosting sensors are critic. Thereby, to provide the
reliability, it is required those systems to be checked periodically. We applied the Watchdog
for this purpose,

 11

3.5 Events notification
Observer
The intent of Observer [1, 7] is keeping a set of objects, i.e. the observers, up to date when the
state of an object they depend on, i.e. the subject, has changed. In other words, this pattern
implements a one-to-many dependency between the subject and the observers. Concretely, it
allows you first, attach to anonymously a set of observers to a subject. Next, when the state of
the subject changes it automatically invokes the callback update method of each observer.
For instance, we wanted to log any modification of a JavaCard in a HSQLDB [52] database.
In this case, the database is registered as an observer with the Netmaster and the TINI card.
Thus, every time the state of those is updated, a notification is sent to the database.

Publish Subscribe
Publish Subscribe (Pub/Sub) is a special case of the Observer. It is applicable when there are
several distributed entities, which should communicate with each other and remain loosely
coupled. It exposes four primitives: pub, sub, unsub and notify [36]. One can implement the
Pub/Sub according to two different strategies: topic-based and content-based. The first
strategy is fairly the same as newsgroups strategy. The system notifies the subscribers
whenever a publication related topic occurs. The second strategy gives to the subscribers the
ability to specify predicates over what they exactly want to be notified about [14].
We applied this patter in order to provide asynchronous communication. Indeed, some
notifications are important they must thus be delivered even the receiver is not present.
Concretely, these notifications are queued in a Distributed Hashtable (DHT) replicated in
some identified stable nodes.

3.6 Network communication
Proxy
The intent of the Proxy [5 p79, 4 p199] is to provide a surrogate object to a real object.
Actually, the surrogate receives client method calls and invokes the same method on the real
object. The surrogate object and the real object share the same interface or super class.
Therefore, the client is unaware that is calling Proxy s rather than the methods of real object.
We have applied this pattern for remote invocation. More precisely, we created in the
Netmaster and TINI nodes (from the picture 4) a proxy to the HSQLDB database. When these
nodes receive a request, they automatically notify the database using this proxy.

Strategy
Strategy [1] let us to define a family of algorithms, encapsulate each one and make them
interchangeable. In fact, it allows the algorithm to be unaware about the client that using it.
In NES, there are several protocols to connect peers: Ethernet, Wifi, Bluetooth, IrDA, and
Serial… Thereby, we applied Strategy in order to let applications to use one protocol or
another according to the device network interfaces.

3.7 System and Services configuration
Configurator
In order to achieve more flexibility, the Services Configuration or Configurator [35, 3 p75]
provides a way for decoupling the behavior of services from the moment at which their
implementations are configured into applications. It allows services to evolve independently
of configuration issues such as concurrency model or location. In addition, it allows linking
and unlinking services implementation to an application at runtime without having to modify,
recompile, or statically relink the application. Besides, it centralizes the administration of the

 12

services that it configures, allowing therefore automatic initialization and termination of
services.
This pattern is used to define the eviction strategy and the list of services and interceptors per
embedded system. In addition, it is applied to set the nature of each system (i.e. composite or
leaf) and other metadata such as listening port.
Hereafter, an example of a TINI card’s configuration file is shown.

5. The TINI card configuration file
One can see that the TINI card is defined as a composite node and it can have until five
children. In addition, it has a set of interceptors and a set of services.

Interceptor
Interceptor as described in [3 p109, 37] is suitable when designing frameworks or middleware
systems. Indeed, the intent of this pattern is to allow services to be added dynamically and
triggered only when certain events occur. Therefore, applications using the frameworks or
middleware can add services addressing their own functional or non-functional requirements
without changing the system implementation. Besides, services provided by the system can be
modified without altering its core architecture.
We applied this pattern in order to provide adaptability.

Chain of Responsibility
The Chain of Responsibility (CoR) [1, 7] pattern aims at to decouple the request sender from
the receiver by interposing a chain of object handlers between them. Each handler in the chain
may either handle the request; pass it on to the next handler or both. This pattern allows
greater flexibility since it let handlers decide what to do with the request and users to
dynamically modify or add handlers in the chain.
This pattern is applied in order to compose a chain of interceptors.

 13

3.8 Putting all together
No pattern is an island
The picture below shows an overview of the patterns we applied to build the middleware. The
dashed arrows are used to represent the connections between the patterns.

Layers

Microkernel

Configurator

Watchdog

Interceptor

Visitor

Composite

Pub/Sub

Strategy

Proxy

Observer

CoR

Leasing

Evictor

Core

Lifecycle

Operation

Heartbeat

Monitoring

Interceptors List

Chain of Interceptors

Topology

Architecture

Network

Relliability

Memory

Configuration

Notification

6. Patterns relationship

Layers uses Microkernel to conceive a multi-layered architecture of the middleware in order
to separate core concerns (protocol implementation, or resource management) from user’s
concerns (how to configure applications or select the services needed).

Microkernel is a specialized layer from Layers. It uses: Watchdog for ensuring reliability,
Leasing for memory management, Observer for synchronous notifications, Pub/Sub for
asynchronous communication, Composite for topology management and Configurator for
system and services configuration.

Watchdog and Heartbeat are both used for implementing reliability. Watchdog is a daemon
running on System Controller monitoring that “still-alive” notifications are received at the
right time. Heartbeat uses Proxy to send “still-alive” messages to the Watchdog.

Leasing and Evictor are applied in order to optimize memory usage. Leasing is used in order
to manage memory resource with time-based leases; it uses Proxy when a resource holder has
to renew leases with a remote resource provider. Evictor manages the lifecycle of the
memory resource.

Observer and Pub/Sub are respectively applied for synchronous and asynchronous
notifications. Both of them use Proxy for remote communications.

Composite is actually applied with Visitor in order to achieve a loosely coupling between the
topology structure and operations that must be performed on it. Composite uses Observer to
notify its state change and to observe changes that may occur within the network. In addition,

 14

it uses Pub/Sub for publishing and subscribing to events; and Proxy to have surrogates to
remote devices.

Proxy and Strategy are applied to deal with network distribution. Proxy takes a place as a
surrogate of remote devices. Strategy subclasses provide protocol communication
implementation to Proxy and they implement eviction strategies, which are useful to the
Evictor.

Configurator, Interceptor and CoR are applied to implement the adaptability. Configurator
provides mechanisms to access and modify the system configuration. CoR uses Interceptor
and Configurator to define the interceptors list in order to compose a chain of interceptors.

Towards a Pattern Language for embedded systems middleware

CompositeThing

EmbeddedThing

LeafThing

ResourceUser

ResourceProvider

Lease

renew

create

ResourceEvictor

EvictionStrategy

Visitable

Visitor

Interceptor

+next

Visite

Error

accept

ThingProxy

RemoteThing

Composition

Observer
Subject Component

compose

Configuration

Application Layer

ObservationEvent

Publisher Subscriber

Heartbeat

attachment

INTERNAL SERVICES

Protocol

HTTPProtocolEventChanel

AbstractEvent Filter

subscribepublish delegates

Configurable

configure

Watchdog

EXTERNAL SERVICES

LoggingService

SecurityService

DiscoveryService

Monitor

change

Composite Leasing Evictor Visitor Pub/sub Observer Proxy

Heartbeat Watchdog

Startegy

Interceptor/CoR

ThingVisitor

update

Dispatcher

Server

1..*

Discovery

apply

Resource

use

evicts

MICROKERNEL

Microkernel Layer

visit

Service
ResourceMgmt

Logging

Security

ServiceInvocator

ServiceLocator

Configurator

ServiceRepositery
invoke

7. Towards a pattern language for embedded systems middleware

 15

The previous picture shows which patterns we applied and how we arranged them among the
middleware layers. The MICROKERNEL, within the microkernel layer, is the core of the
middleware. It allows composing (Composite) NES topology views, resource management
(Leasing and Evictor) and operations performing (Visitor). It uses the INTERNAL
SERVICES subsystem for remote connection (Proxy) and protocol adapter (Strategy), as well
as for asynchronous events subscribing and publishing (Pub/Sub). The EXTERNAL
SERVICES provides additional services such as monitoring (Watchdog and Heartbeat). One
can observe that the CompositeThing class can act as resource provider and resource evictor.
This “schizophrenia” can also be seen with the EmbeddedThing class that can at the same
time act as a subject and an observer (Observer) or publisher and subscriber (Pub/Sub). In
addition, the EmbeddedThing class, which is in fact an abstraction of any embedded system,
may change its configuration according to the context (Configurator). At the application
layer, one can notice that both the Interceptor and CoR are applied for user’s requests or
events handling.

4 Case study implementation
4.1 A dedicated Pattern Language
Not all functionalities of the middleware are needed to the implement the WBJDP (Web-
Based JavaCard Development Platform) case study. Actually, according to the requirements3
of this application, only the memory management, the topology composition, the synchronous
events notifications and the configurations support functionalities are required.
The next picture shows the dedicated Pattern Language for WBJDP.

Layers

Microkernel

Configurator

Interceptor

Visitor

Composite

Strategy

Proxy

Observer

CoR

Leasing

Evictor

Core

Lifecycle

Operation

Interceptors List

Chain of Interceptors

Topology

Architecture

Network

Memory

Configuration

Notification

8. WBJDP dedicated Pattern Language

3 The requirements of the case study are very based on the middleware requirements. That is why we chose voluntary
not detail them here.

 16

4.2 The Pattern Language application
Hereafter, an excerpt of the network topology tree corresponding to application of Composite.

9. A tree of JavaCards (from [11])
The figure above shows how, behind each node, we attached indifferently cards or other
nodes. We assume that cards can contain more than one cardlet. Each cardlet is stored in
binary format.

The following picture shows a logs view that illustrating a server-side application of
Observer.

10. Journal’s view (from [11])

The application logs in a HSQLDB database each event corresponding to the JavaCards
plugging-in or plugging-off. It also logs all events related to the modification of a JavaCard.
From above, you can see a generated view from the journal table.

 17

The next figure is an applet screenshot showing the client-side application of Observer.

11. An applet as an observer (from [11])

When the applet starts, it registers itself with a node hosting a JavaCard as an observer. When
the state of the JavaCard changes, it calls back the notify method of the applet.

The picture below shows the events propagation tree corresponding to the application of
Visitor.

12. Request forward-propagation (from [11])

When a node receives stimuli, it propagates them forward to all its children. In the picture,
above, you can see such propagation.

 18

Hereafter, the table shows the non-volatile memory footprint of the case study dedicated
pattern language.
Module Size in kilobytes
Brazil Server tailored for TINI (implementing:
Configurator, CoR)

43

Interceptor 4.471
Composite & Observer 5.994
Proxy 2.663
Leasing 3.727
Evictor 1.448
HTTP command 4.494

The final size of the middleware compressed jar file is about 68 kilobytes:
The middleware jar file’s size is about 24 kilobytes.
The configuration file is 1 kilobyte.
Brazil-TINI Server library is 43 kilobytes.

5 Conclusion and outlook
Synopsis
Embedded systems technologies are an ever-changing field. That it is. Therefore, it is a
challenge for us to find a solution to interconnect them. That solution has to take in account
their constraints (limited memory) and their constant evolution.
We stated in this paper that the middleware technologies are the suitable solution to build
that. Besides, we agreed that design patterns are a good approach for the construction of the
middleware since they represent proven techniques. Furthermore, they enable loosely
coupling and object oriented structure.

However, despite patterns provide solutions to almost software design problems; they do not
yet deal with specific embedded systems topic such ad-hoc networking. Yet, that did not
prevent us to apply them to design JavaCards’ middleware with a memory footprint less than
70 kilobytes in ROM.
In addition, we tried to establish groundings toward NES pattern language.

Work in progress
Security and ad-hoc networking represent two important topics to focus on. Even there are not
yet patterns to settle the matter of ad-hoc networking; [9] describes a set of patterns to solve
security issues. Therefore, we are working on how to apply those security patterns.
Also, basing on previous work [29, 41], we are investigating on how AOP (Aspect Oriented
Programming) can help us to improve our middleware and reduce the overall memory
footprint and best address the modularity. As for autonomic computing, we are waiting results
from another project in progress in order to integrate such technologies.
Yet, we have already identified other patterns like Factory Method, Lazy loading, and
Coordinator to implement in the near future.

Acknowledgments
We would to express our great gratitude to our PLoP 2006 shepherd Uwe Zdun. In addition,
we thank all persons who have reviewed this document to help to improve either the
correctness of the English language or technical aspects.

 19

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns – Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional, 1995

[2] F. Buschmann, R. Meunier, R. Rohnert, P. Sommerlad, M. Stal: Pattern-Oriented
Software Architecture – A System of Patterns, John Wiley & Sons, 1996

[3] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern oriented software
Architecture – Patterns for Concurrent and Networked Objects, John Wiley & Sons, 2000

[4] P. Jain, M. Kircher: Pattern oriented software Architecture – Patterns for Resource
Management, John Wiley & Sons, 2004

[5] M. Grand: Patterns in Java, John Wiley & Sons, 1998

[6] M. Grand: Java Enterprise Design Pattern, John Wiley & Sons, 2001

[7] O. Maassen, S. Stelting: Applied JAVA Patterns, Prentice Hall, 2001

[8] B. P. Douglass: Real-Time Design Patterns – Robust Scalable Architecture for Real-Time
Systems, Addison-Wesley, 2003

[9] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad:
Security Patterns – Integrating Security and Systems Engineering, John Wiley & Sons, 2005

[10] R. Zurawski: Embedded Systems Handbook, Taylor & Francis, 2005

[11] N. Bonardelle : Motifs de Conception et Intergiciel pour Systèmes embarqués, in
Conférence Française sur les Systèmes d’Exploitation (CFSE’05), Croisic, April 2005

[12] F. Eliassen, A. Andersen, G. S. Blair & co: Next Generation Middleware –
Requirements, Architecture, and Prototypes,
p. 60, The Seventh IEEE Workshop on Future Trends of Distributed Computing
Systems, 1999

[13] G.S. Blair, G. Coulson, P. Robin, M. Papathomas, An Architecture for Next Generation
Middleware, Proc. IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’98), Kluwer, September 1998.

[14] P.Triantafillou, Ioannis Aekaterinidis:
Content-based publish-Subscribe over Structured P2P networks,
In DEBS, 2004
http://www-serl.cs.colorado.edu/~carzanig/debs04/debs04triantafillou.pdf

[15] Microsoft: Patterns and practices – Publish/Subscribe
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnpag/html/despublishsubscribe.asp

 20

[16] Q. H. Mahmoud: Middleware for Communications, John Wiley & Sons, 2004

[17] C. Britton, P. Bye: IT Architectures and Middleware – Second Edition, Addison-Wiley,
2004

[18] U. Zdun, M. Kircher, M. Volter: Remoting Patterns, IEEE Internet Computing, vol. 08,
no. 6, pp. 60-68, Nov/Dec, 2004

[19] J. Rees, P. Honeyman: Webcard: a Java Card web server, (Proc. IFIP CARDIS 2000
http://www.citi.umich.edu/techreports/reports/citi-tr-99-3.pdf

[20] J-M. Douin, J-M. Gilliot: Collaboration patterns for networked embedded servers, in
ETFA, 2003
http://www-info.enst-bretagne.fr/publication/2003-06.pdf

[21] S. Vinoski: Chain of Responsibility, EEE Internet Computing, vol. 6, no. 6, 2002, pp. 80–
83 http://csdl.computer.org/dl/mags/ic/2002/06/w6080.pdf

[22] Sun Microsystems: Why Jini Now?, 1998
http://www.di.uniovi.es/~falvarez/whyjininow.pdf

[23] J. Barber: The Smart Card URL Programming Interface,
Proceedings of Gemplus Developer Conference (GDC’99), Paris, France, 21-22 June 1999

[24] F. Fahrion: Embedded Ethernet Systems – Application tips for 2004, TechOnLine, 2004
http://www.techonline.com/community/ed_resource/tech_paper/36916

[25] J-M. Douin, J-M. Gilliot: A Pattern Oriented Lightweight Middleware for Smartcards, in
CARDIS’04, 2004
http://www-info.enst-bretagne.fr/publication/2004/ENSTBrINFORR2004.019.pdf

[26] ERCIM: Special Embedded Systems, News No 52, 2003
http://www.ercim.org/publication/Ercim_News/enw52/EN52.pdfm

[27] TAO, http://www.theaceorb.com/

[28] D. Bakken: MicroQoSCORBA: A Configurable Middleware Framework for small
Embedded Systems that Support Multiple Quality of Service Properties, Washington
University, 2005
http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/papers/MicroQoSCORBA-
Lancaster-25April2005.ppt

[29] J. Hannemann and G. Kiczales: Design Pattern Implementation in Java and AspectJ, in
OOPSLA 2002
http://www.cs.ubc.ca/labs/spl/papers/2002/oopsla02-patterns.pdf

[30] C. Webel, I. Fliege, A. Geraldy, R. Gotzhein: Developing Reliable Systems with SDL
Design Patterns and Design Components, in ISSRE04 Workshop on Integrated-reliability
with Telecommunications and UML Languages, 2004
http://www.sdl-forum.org/issre04-witul/papers/witul04_developing_reliable_systems.pdf

 21

[31] G. Hohpe, B. Woolf: Enterprise Integration Patterns – JMS Publish/Subscribe Example
http://www.enterpriseintegrationpatterns.com/ObserverJmsExample.html

[32] L. Aldred, Wil M.P. van der Aalst, M. Dumas, and A. H.M. ter Hofstede: On the Notion
of Coupling in Communication Middleware, In Proceedings On the Move to Meaningful
Internet Systems - 7th International Symposium on Distributed Objects and Applications
(DOA), pages pp. 1015-1033, 2005

[33] STARUML, http://www.staruml.com

[34] Wikipedia: http://en.wikipedia.org/wiki/Embedded_system

[35] P. Jain, D. C. Schmidt: Dynamically Configuring Communication Services with the
Service Configurator Pattern, in Third USENIX Conference on Object-Oriented
Technologies (COOTS), 1997
http://www.cs.wustl.edu/~schmidt/PDF/O-Service-Configurator.pdf

[36] L. Fiege1, F. C. Gärtner, O. Kasten, and A. Zeidler: Supporting Mobility in Content-
Based Publish/Subscribe Middleware, Proceedings of the 8th ACM international symposium
on Modeling, analysis and simulation of wireless and mobile systems, 2005
http://lpdwww.epfl.ch/upload/documents/publications/neg--
1241122820log_mobility_mw03.pdf

[37] P. Aschenbrenner, M. Förster: The POSA Interceptor Pattern, in Conceptual
Architecture Patterns Seminar, 2003
http://wendtstud1.hpi.uni-
potsdam.de/SCAP/presentations/ThePOSAInterceptorPatternNEU.pdf

[38] F .A. Rosa, A. R. Silva: Component Configurer: A Design Pattern for Component-Based
Configuration, in Proceedings of the 2nd European Conference on Pattern Languages of
Programming (EuroPLoP '97). Siemens Technical Report 120/SW1/FB. Munich, Germany:
Siemens, 1997
http://francisco.assisrosa.com/pubs/europlop97-1.ps

[39] S.Baehni1, P. Th. Eugster, R. Guerraoui : OS Support for P2P Programming: a Case for
TPS, in ICDCS 2002 (Vienna, Austria, 2002).

[40] E. A. Lee: What’s Ahead for Embedded Software?,
IEEE Computer Magazine, September 2000, pp. 18-26, 2000
http://www.cs.utah.edu/classes/cs6935/papers/lee.pdf

[41] C. Zhang, H-A. Jacobsen, Refactoring Middleware with Aspects, IEEE Transactions on
Parallel and Distributed Systems, vol. 14, no. 11, pp. 1058-1073, Nov., 2003.

[42] D. Harel, M. Politi: Modeling Reactive Systems with Statecharts, Mcgraw-Hill, 1998

 22

[43] M. Panahi, T. Harmon, R. Klefstad, Adaptive Techniques for Minimizing Middleware
Memory Footprint for Distributed, Real-Time, Embedded Systems, Proceedings of the IEEE
18th Annual Workshop on Computer Communications. 18, pp. 54-58.
10.1109/CCW.2003.1240790, 2003
http://repositories.cdlib.org/postprints/656

[44] M. Kircher, C. Schwanninger Enterprise meets Embedded, Workshop - Reuse in
constrained environments, OOPSLA 2003, Anaheim, USA, 2003
http://www.kircher-schwanninger.de/michael/publications/KircherSchwanninger.pdf

[45] R. Klefstad, M. Deshpande, C. O’Ryan , A. Corsaro, A. S Krishna, S. Rao, K. Raman
Real Time CORBA with ZEN, University of California, 2002
http://doc.ece.uci.edu/publications/zen-performance-2002.pdf

[46] J2ME Specifications
http://jcp.org/en/home/index

[47] Elsist, the Netmaster manufacturer web site, http://www.elsist.net/

[48] TINI web site, http://www.maxim-ic.com

[49] A. Corsaro, D-C. Schmidt, R. Klefstad, C. O’Ryan,
Virtual component – A design Pattern for Memory-Constrained Embedded Applications, 2002
http://www.cs.wustl.edu/~schmidt/PDF/virtual-component.pdf

[50] C.Mascolo, S.Hailes, L.Lymberopoulos, and all,
SIXTH FRAMEWORK PROGRAMME PRIORITY 2 “Information Society Technologies” –
Survey of Middleware for Networked Embedded Systems, 2005
http://www.ist-runes.org/docs/deliverables/D5_01.pdf

[51] D-C. Schmidt, C. Cleeland, Applying a pattern language to Develop Extensible ORB
Middleware,2000
http://www.cs.wustl.edu/~schmidt/PDF/ORB-patterns.pdf

[52] http://www.hsqldb.org

[53] http://www.experimentalstuff.com/Technologies/Brazil/index.html

[54] CORBA, http://www.corba.org/

