
 

Drag-And-Dock Design Pattern 

Paulo Santos Ademar Aguiar Authors 
EFACEC FEUP 
paulo.santos@se.efacec.pt ademar.aguiar@fe.up.pt 

The Drag-And-Dock design pattern provides a structured solution for designing 
graphical software applications with multiple content views that end users can 
freely arrange following a dragging and docking interaction approach.  

More and more usability concerns are in place when it comes to develop complex 
graphical applications that maximize end users’ satisfaction, learnability, and 
effectiveness while working with them. 

Example 

Much of these usability aspects can be achieved by an intuitive and well laid out 
graphical user interface. However, many modern applications aren’t focused on a 
single content view, but rather on several other content views interrelated (or not) 
with a main one. Integrated Development Environments (IDE), such as NetBeans 
[1], Visual Studio .NET [2], or Eclipse [3] (see Figure 1), are just examples of such 
kind of applications. Most IDE’s have a main content view the user is mostly 
focused on, and simultaneously a few others the user commutes focus with, such 
as navigation views, properties views, or status message views, to mention a few. 

At startup, such applications provide their default content views arranged in the 
way considered the best suited for most of the users. Many times, an easy way to 
exchange layouts is provided, so that it’s not too restrictive and let users switch 
between predefined content views disposition schemas and order. However, 
advanced users often demand even more, expecting more freedom to organize the 
views of the software applications they use everyday as they see as fitting better. 

Such user freedom can be accomplish by allowing them to drag individual (or 
groups of) content views within the software application, and docking it to the 
sides of any other content view, or even into any other group of content views, 
thus enabling users to arrange the application content views, into almost an infinite 
number of different layout schemas (see Figure 2). 

This paper presents a design pattern that provides a solution for the problem of 
designing graphical software applications supporting multiple content views that 
uses a simple drag and dock mechanism for arrangement flexibility. 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  2 

 
Figure 1.  Eclipse IDE 

 

 
Figure 2.  Eclipse: four different arrangement layouts 

 

Graphical software applications with multiple and distinct content views displayed 
at the same time, which end users are able to freely organize by docking them to 
each other. 

Context 

 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  3 

Personal Object Space [5] in general, and in particular Movable Panels [4], states a 
Human-Computer Interaction (HCI) pattern to allow end users organize user 
interface pieces (content views) at will, within a graphical application. This is 
accomplished by inducing the user to grab an individual content view, drag it 
around the application, and drop it wherever they would like (Drag-And-Drop [6]), 
forming as many different layouts as possible. 

Problem 

Movable Panels allows for content views to float within the application, even 
superimposing each other. However, restrictions can be applied to where a content 
view can be dropped, and how it behaves by then.  

Such restrictions can state that a content view can only be dropped precisely onto 
the edges of other content views, or on top of them. After being dropped onto a 
valid dropping location (edge), the dropped content view will set aside the target 
content view, with a sliding edge between them that the end user can later use to 
resize the surrounding views. If dropped on top of other content view, the 
dropped content view will set on top of it, while the target remains in the same 
place but now identified by a special graphical handler (such as a tab). 

How to structure the implementation of user interfaces employing Movable Panels HCI pattern 
with docking behaviour and related restrictions? 

 

A solution to this problem must balance the following forces: Forces 

 clear separation between the interaction roles required to support the 
dragging, and docking mechanism, and the specificities of the content 
views being manipulated 

 flexibility to support any type of content views 

 versatility to arrange any layout schema 

 maintain layout schema consistency 

 independency from the design of graphical user interface libraries 

 

To support a Movable Panels interaction model with docking restrictions, provide 
the following four key design elements:  

Solution 

 View, the content view itself;  

 Draggable, the content view handler the end user can grab and drag around 
the application;  

 Dockable, the content view container where content views can be stacked 
or docked onto the sides;  

 SplitContainer, the frontier between two content view containers. 

These four elements can then be managed by a Mediator element, that monitors 
Draggable elements being dragged hover Dockable elements, at the same time it 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  4 

checks for an eligible docking area, and finally to request undock and dock actions 
onto the two Dockable elements involved (source and target). 

Figure 3 identifies the solution basic design elements on top of their graphical 
output. 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 

 

Draggable

View SplitContainer 

Dockable

dock onto left dock onto right    

dock onto top 

dock onto bottom

dock as a tabbed stack 

Figure 3.  Basic elements for docking multiple content views 

 

The solution provided defines and relates six major roles to be played by the 
solution participants, described in this section: Draggable, Dockable, Mediator, View, 
Container, and SplitContainer. Figure 4 shows an overview of the whole Drag-And-
Dock design pattern structure. 

Structure 

 



Drag-And-Dock Design Pattern  5 

 
Figure 4.  Overview of the Drag-And-Dock structure 

 

A Draggable has the ability to be visually grabbed and dragged around the 
application by an end user. It directly represents a unique View and can be docked 
onto a Dockable. At all times, a Draggable resides within a Dockable so it always 
knows its current parent.  

Draggable 

While being dragged, a Draggable must publish its current position to a Mediator, as 
well as when that action ends with a release event.  

Role 

Draggable 

Responsabilities 

 Wrap an individual View with the 
ability to be dragged and docked onto a 
Dockable 

 Knows which Dockable it is docked 
onto 

 Triggers drag and drop events, into a 
Mediator 

Collaborations 

 View 

 Dockable 

 Mediator 

 
  

A Dockable harbors multiple Draggables piled altogether (only one content visible at 
a time), distinguished normally by individual tabs. 

Dockable 

A Dockable is able to accept docking actions of a Draggable, required by a Mediator, 
to one of its four edges or to add it to its stack of Draggables. It is also capable of 
undocking a specific Draggable from its stack. 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  6 

Furthermore, a Dockable provides visual feedback of docking possibilities, given a 
set of coordinates within its boundaries. 

Role 

Dockable 

Responsabilities 

 Harbor Draggables 

 Docking Draggable onto its sides 

 Adding Draggables to its stack 

 Undocking Draggables from its stack 

 Validate docking possibility 

Collaborations 

 Draggable 

 Mediator 

 

 
 

A Mediator monitors when and where a Draggable is being dragged, at the same time 
it verifies which Dockable is directly under the dragging position, calling for docking 
validation onto the target Dockable. 

Mediator 

Moreover, it monitors when and where a Draggable being dragged is released, calling 
for undocking and docking actions (onto source and target Dockables, respectively), 
once docking possibility is confirmed by the Dockable directly under the release 
position. 

Role 

Mediator 

Responsabilities 

 Monitor drag and drop events from 
Draggables 

 Assess which Dockable is the target of a 
drag hover and docking action 

 Request docking and undocking 
actions 

Collaborations 

 Draggable 

 Dockable 

 

 
 

A View is in fact a unique content view integrated within the multiple content view 
application environment. It is part of a single Draggable so it can take advantage of 
Drag-And-Dock capabilities. 

View 

When desired, it is the View responsibility to define integration restrictions, such as 
preferred dimensions, maximize and minimize permission, display name, etc. 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  7 

Role 

View 

Responsabilities 

 Define integration restrictions  

Collaborations 

 Draggable 

 

 
 

The Container role is an abstraction representing a generic container in the layout 
hierarchy of the Drag-And-Dock design pattern. Its only duty is to retain a reference 
to a Container parent, a SplitContainer. 

Container 

 Role 

Container 

 Keep track of its parent SplitContainer  

Responsabilities 
 SplitContainer 

 Dockable 

Collaborations 

 

 

 

 

 

A SplitContainer main purpose is to provide a visual sliding edge between two other 
Containers, in a vertical or horizontal manner. Thus, it is able to set and remove its 
Containers, as well as to replace one Container with another. 

SplitContainer 

Role 

SplitContainer 

Responsabilities 

 Separate vertically or horizontally two 
other Containers 

 Exchange Containers immediately within 

Collaborations 

 Container 

 

 
 

There are four main actions in this pattern: dragging a Draggable hover a Dockable; 
dropping a Draggable on a Dockable; docking a Draggable onto a Dockable specific 
location; and undocking a Draggable from a Dockable. 

Dynamics 

A Mediator gets notified whenever a Draggable is being dragged over some 
coordinates. It then assesses which Dockable is directly under those coordinates, 
reporting to it that there is a Draggable hover. The target Dockable, then verifies if it’s 
possible to dock the Draggable, providing some visual feedback to the end user 
(mouse pointer indication, or drawing the target docking area), and returns the 
possible docking location (left, top, right, bottom, or stack), if any (see Figure 5). 

Dragging 

 

 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  8 

When a Draggable ends a drag action, by being released, a Mediator gets notified. It 
then assesses which Dockable is directly under those coordinates, reporting to it that 
there is a Draggable hover. If a valid docking location was returned, it then starts by 
undocking the released Draggable from its parent, and finishes by docking it onto 
the target Dockable specific location (see Figure 6). 

Dropping 

 

Undocking a Draggable from its parent Dockable is as straightforward as unsetting its 
parent.  

Undocking 

However, there’s more to it if the Dockable has no more Draggables stacked on. In 
this case the Dockable itself must be destroyed, while the layout structure remains 
coherent. The Dockable removes itself from its parent Container (SplitContainer), 
which in turn replaces itself with the remaining Container on its own parent 
Container (SplitContainer). In the end, both Dockable and its parent get destroyed (see 
Figure 7). 

 

Docking a Draggable occurs on one of several docking locations, usually five, in a 
Dockable. 

Docking 

Docking onto stack requires setting the Draggable parent to the new Dockable one 
and adding the Draggable to the Dockable pile of Draggables. Graphically, only one of 
the Dockable stack of Draggables is visible, but all are graphically accessible and 
identified, frequently through tabs.  

Docking onto top or left edges, requires the creation of a new Dockable to hold 
(stack) the Draggable, and the creation of a new SplitContainer (vertical fashion, if top 
location, horizontal otherwise). Then there’s the need for the new SplitContainer, to 
take the place of the Dockable on its parent SplitContainer. Finally the new Dockable 
must be set as the first element (top/left) on the new SplitContainer, and the 
Dockable the second element (bottom/right). 

Docking onto bottom or right edges is like docking onto top or left, it has the 
same steps, except for setting the first and second elements on the new 
SplitContainer. In this case, the first element (top/left) must be the Dockable, and the 
second (bottom/right) the new Dockable (see Figure 8). 

 

 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  9 

 

 

 
Figure 5.  Dragging action 

 

draggable mediator dockable dockable'

drop(draggable, coordinates)

find target dockable

hover(draggable, coordinates)

docking location

[valid docking location]

getParent

dockable'
undock(draggable)

dock(draggable, location)

 
Figure 6.  Dropping action 

 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  10 

dockable draggable splitcontainer

setParent(null)

undock(draggable)

[draggable count == 0]

parent.remove(this)

splitcontainer'

parent.replace(this, container == second ? first : second)

destroy

:Container:

getParent

:Container:

getParent

setParent(null)

setParent(null)

 
Figure 7.  Undocking action 

 

Figure 8.  Docking action 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  11 

A possible implementation of the Drag-And-Dock design pattern using Java and 
Swing can be like the following: 

Implementation 

 SplitContainer, a specialization of a javax.swing.JSplitPane class. 

 Dockable, a specialization of a javax.swing.JTabbedPane class, which 
implements a hover listener triggered by a Mediator, and a dock listener also 
triggered by a Mediator object. 

 Draggable, a JTabbedPane tab that triggers java.awt.event.MouseEvent when it is 
being dragged or released.  

 View, any kind of java.awt.Component class, e.g. a javax.swing.JPanel. 

 Mediator, a listener for Draggable objects’ drag and drop events that assesses 
which Dockable object has the mouse cursor within its boundaries and 
triggers a hover or dock event onto it. 

 

One slight variant of Drag-And-Dock design pattern is for a Dockable to be itself a 
Draggable also. This means, a stack of Draggables within a Dockable could be dragged 
as a whole, and docked onto some other Dockable. 

Variants 

Also, depending on the programming language capabilities, the Mediator role can be 
directly carried out by each Dockable. For that a Dockable has to recognize itself, if it 
has a Draggable dragged hover it, or dropped onto.  

 

Commercial applications/solutions tend not to disclose their internal architecture 
or source code, so is quite hard to ascertain their use of Drag-And-Dock design 
pattern, unless they recognize so. 

Known Uses 

The exception are open source applications/solutions, in particular Java based 
solutions.  Among them, three well known docking frameworks can be traced as 
having their core based on Drag-And-Dock design pattern. They are: VLDocking 
Framework [8]; FlexDock [9]; and JDock [10]. 

A few other solutions are expected to use Drag-And-Dock design pattern, but due to 
the lack of available architecture documentation about them it wasn’t possible to 
confirm: LidorSystems Collector [11]; SandDock [12]; DotNetMagic [13]. 

 

 Consequences 

 Independency from graphical libraries and programming languages is easy 
to achieve, considering that beyond minimal support for mouse events 
(positioning, button state), and graphical tabbed components, there’s no 
additional restrictions/requirements on programming languages and 
graphical libraries. 

 Flexibility to assemble any layout schema and integrate any type of content 
view. The five docking areas provide broad options to assemble any 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 



Drag-And-Dock Design Pattern  12 

rectangular based layout schema. Also, as long as each content view shares 
a common type of graphical component, it is guaranteed their integration. 

 Consistency of layout schema upon drag and dock actions. Removing and 
replacing an empty Dockable within its parent assures the layout schema 
integrity because it can ruled consistently by the mediator participant. 

 

Decorator, Composite, Mediator, Observer, Personal Object Space [4], Movable 
Panels [5], Drag-And-Drop [6][7]. 

See Also 

 

 References 

[1] NetBeans  
http://www.netbeans.org/products/ide 

[2] Visual Studio .NET  
http://msdn.microsoft.com/vstudio 

[3] Eclipse 
http://www.eclipse.org 

[4] Jenifer Tidwell, Personal Object Space  
http://www.mit.edu/~jtidwell/language/personal_object_space.html 

[5] Jenifer Tidwell, Movable Panels 
http://designinginterfaces.com/Movable_Panels 

[6] Ajax Patterns, Drag-And-Drop 
http://ajaxpatterns.org/Drag-And-Drop 

[7] Yahoo! Design Pattern Library, Drag and Drop Modules Pattern 
http://developer.yahoo.com/ypatterns/pattern.php?pattern=dragdropmodules 

[8] VLDocking Framework 
http://www.vlsolutions.com/en/products/docking/index.php 

[9] FlexDock  
https://flexdock.dev.java.net 

[10] JDock  
http://www.swingall.com/jdock.html 

[11] LidorSystems Collector  
http://www.lidorsystems.com/products/collector/default.html 

[12] SandDock  
http://www.divil.co.uk/net/controls/sanddock/dockablewindows.aspx 

[13] DotNetMagic  
http://www.crownwood.net/features_docking.html 

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides 
Design Patterns – Elements of Reusable Object-Oriented Software 
Addison-Wesley, 1995 

[15] Eric Freeman, Elizabeth Freeman 
Head First - Design Patterns 
O’Reilly, 2004 

Copyright © 2006 Paulo Santos, Ademar Aguiar 2006.07.24 
All rights reserved. Permission granted to copy for all purposes of PLoP’2006. 


	Authors
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Draggable
	Dockable
	Mediator
	View
	Container
	SplitContainer

	Dynamics
	Dragging
	Dropping
	Undocking
	Docking

	Implementation
	Variants
	Known Uses
	Consequences
	See Also
	References

