
A Data-flow Pattern Catalog for Sound and Music Computing

Pau Arumı́
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
parumi@iua.upf.edu

David Garćıa
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
dgarcia@iua.upf.edu

Xavier Amatriain
CREATE

Univ. of California Santa Barbara
Santa Barbara, CA, USA
xavier@create.ucsb.edu

Introduction

The Sound and Music Computing field has a rich and long history of frameworks that in
some way try to offer a more or less complete set of tools for application builders [7, 13, 5,
6, 19]. It turns out that most of these frameworks end up offering some sort of variation
over traditional Data-flow Networks [14].

There have been previous efforts in building pattern languages for the data-flow paradigm,
most noticeably the one by Manolescu [15]. In the present article we take on our own
experience in building generic audio frameworks and models [1, 27] and mapping them to
traditional Graphical Models of Computation (mostly Dataflows but also Petri Nets and
Process Networks, [14, 17, 18]) in order to offer an initial pattern catalog —aiming to grow
into a pattern language— for the audio domain1.

All the patterns presented in this catalog fits within the generic architectural pattern defined
by Manolescu as the Data Flow Architecture pattern.

The Data Flow Architecture pattern solves the problem by designing a system which performs
some number of sorted operations on similar data elements (that we will call tokens) in a
flexible way so they can dynamically change the overall functionality without compromising
performance. The pattern solution is an architecture that can be seen as a network of
modules with strict interfaces at the module boundary, allowing a large number of possible
combinations.

Modules read incoming tokens through their in-ports and writes them through their out-
ports. Module connections are done by connecting out-ports to in-ports, forming a network.

1The only previous efforts in the audio domain that we are aware of are: several Music Information
Retrieval pattens [4] and a catalog with 6 real-time audio patterns presented in a Workshop at the ICMC
2005 —though we are not aware of its publication

1

Tokens flow through modules in two different fashions: at regular (or almost regular) rate,
which is known as a stream flow, and when they flow without any regularity, which is known
as event flow. For example, the flow of data coming from an audio card is a stream flow,
while the flow of note-on and note-off messages from a MIDI keyboard is an event flow.

Each module in a network is periodically executed, which means a call to the module’s
execution method (also known as module’s algorithm).

It is important to note that the Data Flow Architecture pattern does not impose any restric-
tions on issues like message passing protocol, module execution scheduling, or data token
implementation. All these aspects imply different problems that can be addressed in other
fine-grained patterns, like the ones in the present pattern language. This pattern granular-
ity [25] proved very useful because we have been able to incorporate orthogonal patterns
that work synergistically among them and with the existing ones from Manolescu.

Taking into account the previously introduced background, the main contributions of this
paper are:

• General Data-flow Patterns: Address problems about how to organize high-level
aspects of the data-flow architecture, by having different types of modules connections.
Belonging to this category: Semantic Ports address distinct management of tokens by
semantic; Driver Ports address how to make modules executions independent of the
availability of certain kind of tokens. Stream and Event Ports address how to synchro-
nize different streams and events arriving to a module; and, finally, Typed Connections

address how to deal with typed tokens while allowing the network connection maker
to ignore the concrete types.

• Flow Implementation Patterns: Address how to physically transfer tokens from
one module to another, according to the types of flow defined by the general data-
flow patterns. Tokens life-cycle, ownership and memory management are recurrent
issues in those patterns. Cascading Event Ports address the problem of having a high-
priority event-driven flow able to propagate through the network. Multi-rate Stream

Ports address how stream ports can consume and produce at different rates; Multiple

Window Circular Buffer address how a writer and multiple readers can share the same
tokens buffer. and Phantom Buffer address how to design a data structure both with
the benefits of a circular buffer and the guarantee of window contiguity.

• Network Usability Patterns: Address how humans can interact with data-flow
networks. Recursive Networks makes feasible for humans to deal with the definition of
big complex networks; and Port Monitor address how to monitor a flow from a different
thread, without compromising the network processing efficiency.

The proposed patterns are inspired by our experience in the audio domain. And some
patterns are clearly motivated by the requirements of the spectral processing. A use case
that exemplifies its complexity is the analysis-synthesis using sinusoids plus residual (see
figure 1), where different Fast Fourier Transforms are done consuming different number of

2

FFT Peak detection Pitch estimation Peak continuation

Spectral sine generatorFFT

Window generation

Window generation BH92

Sine magnitudes,
frequencies,
and phases

Residual spectrum

_

Input
sound

Figure 1: A use case for audio data-flow: the Spectral Modeling Synthesis.

tokens (audio samples) in parallel. Nevertheless, we believe that the presented patterns
have an immediate applicability in other domains.

All patterns in the “general data-flow patterns” category can be used on any other data-
flow domain. Typed Connections, Multiple Window Circular Buffer and Phantom Buffer have
applicability beyond data-flow systems. And, regarding the Port Monitor pattern, though
its description is coupled with the data-flow architecture, it can be extrapolated to other
environments where a normal priority thread is monitoring changing data on a real-time
one.

Most of the patterns in this paper can be found implemented in many audio systems.
However, examples of a few others (namely Multi-rate Stream Ports, Multiple Window Circular

Buffer and Phantom Buffer) are hard to find, so they should be considered innovative
patterns (or proto-patterns). But all the patterns in this catalog can be found in the
CLAM framework. And since it is an open-source software, an example of each pattern in
C++ can be easily obtained there.

Finally, it also has to be taken into consideration that the CLAM framework has demon-
strated its adaptability —with many specific applications— to several scenarios within the
sound and music domain [2] such as real-time processing and synthesis and off-line audio
analysis.

1 Semantic Ports

Context

Applications with a dataflow architecture consist on a directed graph of modules, like shown
in figure 2. Is a very common case that a module receives tokens with different semantics.
For example, a module that mixes n audio channels will receive tokens of audio data cor-
responding to each channel. Identifying which token corresponds to each channel —the
token semantics— is fundamental to produce output tokens containing the audio mix. The

3

Payloads pattern described by Manolescu provides a solution to this problem consisting on
adding a descriptor component into each token which provides the semantic information
about the token, as well as type-specific parameters. The implication of applying Payloads

is that incoming tokens needs to be dispatched according to its descriptor component, before
doing any processing.

Figure 2: A directed graph of components forming a network

Tokens produced by a module may also have different semantics. One might want to send
to a connected module only tokens with a given semantics and not all the produced tokens.

Problem

How can a module manage tokens according to their semantics in order to deal with the
incoming ones in different ways and send the produced ones to different destinations?

Forces

• Module implementation should be as simple as possible, because modules are devel-
oped by different authors while general infrastructure is just implemented once by
experienced programmers.

• Dispatching tokens adds complexity to module programming
• Module execution should be efficient in time, often real-time constrains are imposed.
• Dispatching tokens adds a run-time overhead.
• Token semantics fields on tokens add overhead
• Token semantics should be given by the module and they should not be restricted.
• Incoming might also have different priorities, and modules should consume the tokens

with greatest priority first.

Solution

Use different ports for every different token semantics in each module. So that modules
have as many in-ports and out-ports as different input and output semantics are needed.
Instead of connecting modules directly, connect modules by pairing out-ports with in-ports,
as shown in figure 3. Module’s execution method knows the semantics associated to each
port, thus, it can obtain tokens of specific semantics just by picking the proper in-port.

4

Figure 3: A network of components with multiple ports

Because connections are done among ports instead of modules, a processed tokens will
target the proper destination just by sending tokens through the proper out-port.

Consequences

Tokens does not need to incorporate a description component. Module implementation is
simplified because programming a token dispatcher regarding its semantics is not needed.
Also, run-time penalty associated to the dispatching is avoided. The pattern solution implies
that token semantics is not defined inside the tokens with a description component, but
semantics is something intrinsic of the ports.

Retaking the audio mixer example; instead of having a “channel” field on each token arriving
to the mixer, using the Semantic Ports pattern, we would have a mixer with n different in-
ports, each one receiving tokens of a single channel.

Tokens with different priorities should be routed to different in-ports. The module knows
the priority of each in-port and so is able —in its execution method— to consume tokens
in the right order.

Related Patterns

Most patterns in this collection build on Semantic Ports: Driver Ports, Stream and Event

Ports, and Cascading Event Ports are clear examples of separation of ports regarding its
semantics.

Semantic Ports also relates to Payloads in the sense that the problems they solve are similar
but, since they have different forces, they end up with different solutions.

Semantic Ports can handle different token types by using the Typed Connection pattern.

Examples

CLAM uses Semantic Ports to separate different flows. Visual environments like Pure-Data
(PD) [22] or MAX/MSP [21] also do. They ports separate both audio (“tilde”) streams
lower rate streams on their semantic. We find another good examples in Open Sound World
(OSW) [5] and the JACK sound server [9].

5

Anti-examples —systems that do not use Semantic Ports because they use other
approaches— are also interesting to see for this pattern: Marsyas [24] and SndObj [13],
they do not use separated ports for its network connections but they do it at module level.
SndObj modules, for instance, keeps a pointer to their connected producers and reads its
output signal doing a direct call.

2 Driver Ports

Context

Module execution on data-flow system is driven by the availability of flowing tokens. But
not all token flows drive the execution.

Imagine a module which receives an audio signal and performs a low-pass filter with a
given cutoff frequency. The audio signal is fed into the module with a constant rate but
the cutoff values are fed seldom into the module. These cutoff values typically come from
a sequencer module or a knob in the user interface. Each execution of the module must
wait for the availability of new audio signal data. But there is not such dependency on
the seldom received cutoff values, it just uses the last value. To summarize, whereas audio
stream tokens drive the modules execution, the frequency event tokens does not.

Problem

How can we make module execution depend on the availability of tokens on certain in-ports
and not on others?

Forces

• Concrete modules implementation should be simple.
• Visual programming tools should be able to distinguish the flow that drives the module

execution from the one that does not.

Solution

Allow the concrete module developer to define which are the driver in-ports and which are
not. Give the modules a common interface from which external entities can know which
are the drivers and which are not. The module execution will be enabled by the availability
of enough tokens on the driver in-ports. Note that enabling is not the same as triggering.
The network scheduling policy determines if a module will be executed as soon as it is able
—in a pull strategy— or if it will be postponed until other module executions end.

One implementation strategy :

6

driver
in-ports

driver
out-port

non-driver in-port

non-driver out-ports

execution-driving flow direction

Figure 4: A representation of a module with different types of in-ports and out-ports

Figure 5 shows a class collaboration with two class hierarchies: Module and Port. This
structure allows separate general infrastructure in base classes making the concrete classes
simpler to implement —this is actually an example of white box reuse in frameworks. Some
modules services are implemented in the base class, usually delegating to its ports, and thus
freeing the concrete module writer form this responsibility. An important detail here, is
that concrete modules own its ports, declared as normal member attributes. However, at
construction time, they get “registered” to the module base class so that it can implement
generic operations, independently of the concrete module. Examples of such operations are
ableToExecute which can be useful to a firing manager; and driverPorts/nonDriverPorts
which give the lists of driver and non-driver ports to, say, a GUI client.

Other patterns like Stream and Event Ports and Typed Connections also benefit from us-
ing this class structure. However, each pattern enriches the Port and Module base class
interfaces to fit its needs.

Consequences

Whether a module is ready to be executed or not can be checked without relying on the
concrete module implementation because the visibility of the separation between driver and
non-driver ports. This is safer and simplifies concrete module implementation.

Visual builder tools can distinguish driver and non-driver flows by identifying driver and
non-driver ports and displaying them differently.

As mentioned in [11] module networks are often built with visual programming tools. Such
tools should give the user a clear separation between stream ports and event ports, else,
event connections might hide the main data-flow —the stream flow that drives the modules
execution.

For example, CLAM’s visual builder called Network Editor (see figure 6) uses horizontal
connections (left to right) for driver flow, and vertical (top-down) connections for the non-

7

Module

+ableToExecute()

+execute()

ConcreteModule

+execute()

InPort

+haveData()

*1

1

*

ports are owned by concrete
modules, but references to them
are also kept in the base class in
order to put general behaviour
on the base class.

OutPort

+canWrite()

* 1

1

*

<<Client>>

Client

Port

-isDriver: bool

+isDriver(): bool

Figure 5: Separated Module and ConcreteModule classes, to reuse behaviour among mod-
ules

driver flow.

Other visual builders takes different approaches. Open Sound World (OSW), for instance,
paints the driver ports in green while the non-driver ports are gray. This can be appreciated
—though if the copy is not colored it can be hard— in figure 7.

Related Patterns

Driver Ports is strongly related with Stream and Event Ports. Actually, in most of the
examined applications those ports that drive the execution coincide with the stream ports.
However, they are better off being separate patterns because they solve orthogonal problems.
Moreover, examples exist where driver ports and stream ports are totally independent.

Systems whose driver ports are stream ports that can produce and consume different number
of tokens needs dynamic scheduling. Its design is explained in the Multi-rate Stream Ports

pattern.

Examples

Pure Data (PD) [22] and MAX/MSP [21] are graphical programming environment for real-
time musical applications with a widespread use among composers. Its ports are called inlets
and outlets and they are visually arranged horizontally. With few exceptions (notably the
“timer”), objects treat their leftmost inlet as “hot” in the sense that messages to left inlets

8

Figure 6: Screenshot of CLAM visual builder (NetworkEditor) doing SMS analysis-synthesis

Figure 7: Screenshot of Open Sound World visual builder

9

can result in output messages. The rest of inlets are “cold” in that they only store the
received message and do not trigger any execution. Thus, the “hot” or leftmost inlets
are the driver ports. However, since modules have only one driver port and modules are
executed at the time a token arrives at the driver port, the following problematic situation
may occur when two modules are connected by more than one connection: the module
might be triggered before receiving all its data because the “hot” inlet was not the last to
receive the data. In order to avoid this output messages are —by convention— written from
right to left and modules connections should be (visually) done without any crossing lines.
Finally, PD and MAX/MSP is important example where driver ports do not coincide with
stream ports.

Open Sound World (OSW) [5] have a similar approach to PD and MAX/MSP but it does
not limit the number of driver ports. In the JACK audio server [9] all ports are drivers.
CLAM also uses Driver Ports and restricts its drivers to be constant-rate stream ports.

3 Stream and Event Ports

Context

In audio systems, two kind of flows exist: stream flow, when tokens flows at continuous (or
almost continuous) rate; and event flow, when tokens flow with an unpredictable rate.

A module may receive tokens of both kinds —stream and event— coming from different
sources. Moreover, streams may arrive at different rates. For example, a module may
receive two audio samples streams one at 44100 Hz and the other at 22050 Hz. Figure 8
shows another example: a module is receiving two streams at different (though constant)
rates and an irregularly distributed flow of events. Its output stream have the same rate as
the second input stream.

0 10 20 30 40 50 60 70 80 90
time

stream in 2

stream in 1

in events

stream out

Figure 8: Chronogram of the arrival (and departure) time of stream and event tokens

Such a module consume its incoming tokens and then calls its execution method that will
take the consumed tokens as its input. When receiving tokens at different rates, the module
needs to synchronize all the incoming tokens prior to its processing. This synchronization
can also be seen as a time-alignment of incoming tokens, and it implies knowing the time

10

associated to each token. Here, is important to differentiate the time associated to the
tokens, with the “real” time where the module is executed. The two kind of times might
be totally different. Figure 9 illustrates the alignment of tokes of different nature.

0 10 20 30 40
time

stream in 2

stream in 1

in events

stream out

execution

Figure 9: Alignment of incoming tokens in each execution. Note that time corresponds to
token’s time-information and does not relate to the module execution time (though they
are equally spaced).

While incoming stream tokens always needs to be accurately aligned, this is not always true
for incoming event tokens. Some applications requires a precise alignment of event tokens,
while others admit a loose time alignment.

An obvious approach is to use the Payloads pattern, adding a precise time information —
time-stamp— to each token. In real-time systems, this time-stamp relates to the time when
the token is introduced into the system. In non real-time systems it relates to a virtual
time. Transformations on a token should preserve the original time-stamp. However, this
Payloads approach can be overkilling in some cases. For example, when stream tokens flow
at a high rate, as it happens with audio samples.

Problem

In order to synchronize incoming tokens we need its time information. How can we get the
time information of incoming tokens when they arrive both as streams in different rates and
as events?

Forces

• Time-stamp is a big overhead when the data token is relatively small.
• Propagating timestamps from the consumed tokens to the produced tokens is a run-

time overhead and makes concrete module implementation more complex.
• Concrete module implementation should be simple.
• All stream sources must share the same hardware clock, so that their (token) rates

can not vary among different streams.

11

Solution

Calculate time information of incoming stream tokens instead of using time-stamps. If the
application needs accurate timing for events use time-stamps —only for event tokens—, else
do not.

Separate the stream and event flow in different kinds of ports: stream and event ports.
Place the stream timing responsibility into the stream in-port class. Stream in-ports are
initially configured with a “token-rate” and “first-token-time” values, and they also keep the
sequence —with a counter, for example— of consumed tokens. When a module execution
method asks the stream in-port for new tokens to consume, the in-port provides the time
information along with the tokens itself.

Ports parameters (“token-rate” and “first-token-time”) configuration is a key issue to solve.
Two main approaches exist: ports handshaking and centralized management.

Ports handshaking consists in propagating parameters down-stream. In-ports receives pa-
rameters from their connected out-ports, and modules propagate them from in-ports to
out-ports. In most cases, modules only need to copy them from the in-ports to out-ports.
However, in some cases, the module processing may introduce delay and may change the
token-rate; thus, this must be reflected in the out-port settings. In consequence, modules
do not impose port parameters, they receives it and propagate them. Of course, source
modules 2 are the exception to that rule. They must set the out-port parameters, because
they are the source of the stream.

The second approach —centralized management— consist in incorporating an entity that
orchestrates the configuration —and maybe the modules execution— of the whole network.
This configuration manager is responsible for configuring all the stream ports in the network.

Alignment of event tokens with stream tokens is done in slightly different ways depending
on whether the application needs accurate event timing or not —that is, whether they
incorporate time-stamps or not. Note that on each execution, the module may consume not
only one stream token but a bunch of them. In some cases, like with audio samples, even
a large number of them like, say, 1000. If incoming events are time-stamped, the module
knows the time information for all the incoming tokens, thus the module can align each
event token with the stream tokens precisely. If events are not time-stamped, the module
should align all consumed events with the first consumed stream token of each in-port.

Consequences

Making the stream tokens time implicit instead of explicit, the space overhead is avoided.
For event tokens, time-stamps is allowed, though not imposed by the pattern solution. In
case of having timestamps in event tokens the overhead is not as problematic as with stream
tokens, since they flow non continuously, in much lower frequency than streams.

2Source modules are that ones that do have stream out-ports but do not have any stream in-ports

12

Events Jitter: Having a big number of stream tokens to be consumed on each execution
and having non time-stamped event tokens at the same time is a common cause for jitter.
That is, unsteadiness or irregular variation on the time the system respond to incoming
events. The amount of jitter is bounded by the time interval between executions, which is
proportional to the number of stream tokens consumed on each execution. Thus, making
modules consume fewer stream tokens each time, reduces jitter. Of course, when events
comes in with time-stamps, jitter can be eliminated completely. The consequences of having
jitter varies enormously depending on the concrete application. In most cases jitter can be
neglected, in other cases, however reducing it is paramount.

Ports connectivity: The solution forbids time-stamps in the stream tokens and this
restricts how stream ports can be connected. Because time must be inferred from the
incoming stream sequence, in-ports must receive well formed sequences —without gaps,
etc.— of an individual stream. Thereof, in general, N-to-1 connections of stream ports
are to be forbidden by the system. However, an exception to this rule exists when the
in-port is able to implicitly perform a combining operation prior to keeping track of the
incoming sequence. For example, imagine an in-port of audio samples fed by multiple
different streams. Parallel samples are added, forming an audio mix. Then the in-port
counts the incoming tokens the same way as if the source were unique. Apart from addition,
packing —that is, create a new composite token— is another common combining operation.

In general, multiple stream combinations is better handled explicitly in specific modules. It
gives the system designer flexibility to choose his or her combining operation. Moreover, a
system can have token types without any valid combining operation, thus making implicit
combinations impossible.

We have seen that, in general, N-to-1 connections of stream ports are to be forbidden by the
system. On the other hand, N-to-1 connections of event ports are perfectly fine, since there
is no need to infer the token time information from the order of arrival. Time information
is either read from the time-stamp or simply ignored.

Splitting one stream to multiple streams is a different story: 1-to-N connections of both
stream and event ports are allowed. The consideration that has to be done here is how
to duplicate outgoing tokens flowing to multiple destinations. Two strategies exist: one is
making a copy of each outgoing token to every in-port, and the other is passing a managed
reference to each in-port. In the later case, the in-ports will have to enforce read-only
semantics.

Related Patterns

Stream and Event Ports uses to go together with Driver Ports and, in most of the cases,
stream ports are also the driver ones.

Systems that use Stream and Event Ports may also use Multi-rate Stream Ports for designing

13

the stream ports —allowing stream ports to consume and produce at different cadences—,
and may use Cascading Event Ports for its event ports —allowing event ports to propagate
events immediately.

Stream ports designed with the Multi-rate Stream Ports pattern defines the number of re-
leased tokens for each stream port on each execution. This numbers influence how the ports
“token-rate” settings are propagated —in this case, being re-calculated— from in-ports to
out-ports.

Stream and Event Ports can handle different token types by using the Typed Connection

pattern.

Examples

SuperCollider3 [16] and CSL [19] use the pattern but events can not arrive at any time:
they have a dual rate system, control rate and audio rate, being control rate a divisor of
the audio block rate.

Marsyas, [24] uses this pattern though its event ports does not follow the data-flow archi-
tecture because connections are not done explicitly. Interestingly, it implements the token
packing technique (from multiple sources) as mentioned in the Ports Connectivity section.

CLAM and OSW [5] clearly use this pattern, separating ports for streams and for events.

4 Typed Connections

Context

Most simple audio applications have a single type of token: the sample or the sample buffer.
But more elaborated processing applications must manage some other kinds of tokens such
as spectra, spectral peaks, MFCC’s, MIDI... You may not even want to limit the supported
types. The same applies to events channels, we could limit them to floating point types but
we may use structured events controls like the ones OSC [26] allows.

Heterogeneous data could be handled in a generic way (common abstract class, void point-
ers...) but this adds a dynamic type handling overhead to modules. Module programmers
should have to deal with this complexity and this is not desirable. It is better to directly
provide them the proper token type. Besides that, coupling the communication channel
between modules with the actual token type is good because this eases the channel internal
buffers management.

But using typed connections may imply that the entity that handles the connections should
deal with all the possible types. This could imply, at least, that the connection entity would
have a maintainability problem. And it could even be unfeasible to manage when the set
of those token types is not known at compilation time, but at run-time, for example, when

14

we use plugins.

Problem

Connectable entities communicate typed tokens but token types are not limited. Thus, how
can a connection maker do typed connections without knowing the types?

Forces

• Process needs to be very efficient and avoid dynamic type checking and handling.
• Connections are done in run-time by the user, so they can mismatch the token type.
• Dynamic type handling is a complex and error prone programming task, thus, placing

it on the connection infrastructure is preferable than placing it on concrete modules
implementation.

• Token buffering among modules can be implemented in a wiser way by knowing the
concrete token type rather than just knowing an abstract base class.

• The set of token types evolves and grows.
• A connection maker coupled to the evolving set of types is a maintenance workhorse.
• A type could be added in run time.

Solution

Female

 isCompatible(AbstractMale)

Token:

AbstractFemale

 bind(AbstractMale)

 isCompatible(AbstractMale)

 AbstractMale

Connection Maker

<<Token>>
 Male

+typeId()

Token:

Figure 10: Class diagram of a cannonical solution of Typed Connections

Split complementary ports interfaces into an abstract level, which is independent of the
token-type, and a derived level that is coupled to the token-type. The class diagram of this
solution is shown in figure 10.

Let the connection maker set the connections throught the generic interface, while the
connected entities use the token-type coupled interface to communicate each other. Access

15

to typed tokens from the concrete module implementations using the typed interface.

Use run-time type checks when modules get connected (binding time) to get sure that
connected ports types are compatible, and, once they are correctly connected (processing
time), rely just on compile-time type checks.

To do that, the generic connection method on the abstract interface (bind) should delegate
the dynamic type checking to abstract methods (isCompatible, typeId) implemented on
token-type coupled classes.

Consequences

By applying the solution, the connection maker is not coupled to token types. Just concrete
modules are coupled to the token types they use.

Type safety is assured by checking the dynamic type on binding time and relying on compile
time type checks during processing time. So this is both efficient and safe.

Because both sides on the connection know the token type, buffering structures can deal
with tokens in a wiser way when doing allocations, initializations, copies, etc.

Concrete modules just access to the static typed tokens. So, no dynamic type handling is
needed.

Besides the static type, connection checking gives the ability to do extra checks on the
connecting entities such as semantic type information. For example, implementations of
the bind method could check that the size and scale of audio spectra match.

Related Patterns

This pattern enriches Multi-rate Stream Ports and Event Ports, and can be also useful for
the binding of the visualization and the Port Monitor.

The proposed implementation of Typed Connections uses the Template Method [12] to call
the concrete binding method from the generic interface.

Examples

OSW [5] uses Typed Connections to allow incorporating custom data types.

The CLAM framework uses this pattern notably on several pluggable pairs such as in and
out ports and in and out controls, which are, in addition, examples of the Multi-rate Stream

Ports and Event Ports patterns.

But the Typed connection pattern in CLAM is not limited to port like pairs. For example,
CLAM implements sound descriptors extractor modules which have ports directly connected
to a descriptor container which stores them. The extractor and the container are type

16

coupled but the connections are done as described in a configuration file, so handling generic
typed connections is needed.

The Music Annotator [3] is a recent application which provides another example of non-
port-like use of Typed Connections. Most of its views are type coupled and they are mostly
plugins. Data to be visualized is read from an storage like the one before. A design
based on the Typed Connection pattern is used in order to know which data on the schema
is available to be viewed with each vista so that users can attach any view to any type
compatible attribute on the storage.

5 Cascading Event Ports

Context

It is common that the arrival of an event token into a module implies propagating events
to other modules. For instance, a sequencer controlled instrument has to send control
events to several sound synthesis modules in response to an incoming note-on event. If
the propagation chain has several levels and the event propagation through a module is
not performed until it is executed, some of the receiver modules may execute several times
before receiving the event tokens. So we need the event tokens to be propagated before any
other module is executed.

Problem

How can we send event tokens and run associated actions on the receiver, including propa-
gation, so that they get to the destination before other modules are executed?

Forces

• Module execution should be able to send events.
• Event token reception may imply change the module state.
• Event token reception may imply the sending of new event tokens to other modules.
• Event token propagation should not be costly in respect to module execution in order

not to break execution cadence and real-time restrictions.
• Coarse event tokens are hard to propagate by copy.
• Feedback loops on event ports should be allowed.
• 1 to N event ports connections should be allowed.
• N to 1 event ports connections should be allowed.

17

Solution

Provide the concrete module implementers a way to bind a event in-port with a callback
method to be called on event reception. This callback might change the module state, or
propagate other events in cascade through the module event out-ports. Make the sending
of an event through an event out-port imply the immediate execution of callback methods
associated with every connected event in-port.

Propagate coarse event tokens using references instead copies and make them read-only
for the receiving modules. Limit the life of event tokens sent by reference to the cascade
propagation and, forbid the receiving modules to keep references further than the callback
execution.

in1: EventInPort out1 : EventOutPort

in1

out1

in2 in3

in2: EventInPort in3: EventInPort

newEvent

callback

sendEvent

callback
newEvent

callback
newEvent

Figure 11: A scenario with cascading event ports and its sequence diagram.

18

Consequences

Event in-port callback implementers should be careful not to do too much things on them.
Events may be sent in bursts; thus, expensive callbacks could break the real-time restric-
tions.

Propagation of coarse events is something that could add penalty to in-port callbacks, but,
by using references, this is avoided. Sending references could be dangerous when considering
1 to N connections, as one of the receiving modules may modify the event token. This is
solved by making them read-only for the receiving modules.

Another danger associated to sending references is that modules might keep references
to such tokens. Because of this, keeping references is forbidden, but we could loose this
restriction by using reference counting on event tokens. The use of garbage collectors is not
a good solution due to real-time restrictions.

The solution allows setting up loops on the event ports connection graph. Those loops
might be harmless but they might be pernicious because the cascade callback calling enters
in a non-ending loop. Harmful loops happen whenever the call sequence reaches a port that
was already involved on the cascade.

Static analysis of the network topology to warn the user about harmful loops is useless: Not
every event reception implies propagation on the event out-ports of the module; it depends
on the callbacks methods. Because the sending of events is a synchronous call, one simple
solution is to block sending tokens through a port which is already sending one. This is
implemented just by adding a “sending-on-progress” flag in each port.

Related Patterns

Event tokens could be restricted to a given set of types, but we could also use the Typed

Connections pattern to a more flexible solution.

Cascading Event Ports provides a flexible way for communicating the two partitions of the
Out-of-band and in-band-partitions pattern [15]. The user interface partition communicates
with the processing partition via connected event ports. Since both partitions are in different
threads, a safe thread boundary must be established. Using, for example, the Message

Queuing pattern [10].

This pattern could be seen as a concrete adaptation of Observer [12] to a data-flow domain
where modules can act both as observers and subjects, in a way that they can be chained.

Examples

CLAM implements controls as cascading event ports. Multiple control inputs and outputs
are supported. By default, events are copied as part of the module state but you can add a
callback method to process each control in a special way. In its current version (0.91) event

19

tokens are limited to floating point numbers.

PD [22], MAX/MSP [21] they all use cascading event ports for their non-audio-related
modules “hot inlets”.

6 Multi-rate Stream Ports

Context

Many applications in the audio and music domain need to process chunks of consecutive au-
dio samples in a single step. A common example is an FFT transformation which consumes
N audio sample tokens and produces a single spectrum token. Thereof, the flowing rate of
spectrum tokens is N times lower than the samples flowing rate. The FFT transformation
may also need to process overlapping sample windows. That is, the FFT module reads N

samples through an in-port and, after the execution, the window slides a step of M samples,
where M and N are different.

In such applications the stream may undergo a type change (i.e. from samples to spectrum)
after a filter module.3 Moreover, filter modules may have different number of in-ports and
out-ports.

This example shows two different —though related— problems:

• Streams can flow at different rates. Like, for example, sample and spectrum streams
do.

• Modules may need to process different numbers of tokens on each execution, regardless
of the rate of its incoming streams. For example, an FFT module may require 512
samples while another FFT module may require 1024.

That means that the number of tokens a module consume and produce should be flexible,
allowing modules to operate with different consuming and producing rates.

How to approach this problem is not obvious. Some real-life systems4 perform multi-rate
processing inside their modules while restricting inter-module communication to a single
rate. Since the number of tokens that a module’s algorithm needs is not the same as the
number of tokens consumed on each execution, input and output buffering is needed inside
the module. A weird effect of this approach is that the module execution not always implies
its algorithm execution; when not enough tokens are ready for the algorithm, the module
execution just adds incoming tokens to the internal buffers. Of course, this solution yields
complex code in every concrete module.

3Filter modules are those that have both stream in-ports and stream out-ports
4One example is the JACK [9] audio server, with the Jamin mastering tool.

20

Figure 12: Two modules consuming and producing different numbers of tokens

Problem

How to allow modules accessing a different number of consecutive tokens on every stream
port?

Forces

• The number of accessed tokens and the number of released tokens is particular for
each port.

• For a given port, the number of accessed tokens and the number of released tokens
are unrelated.

• Modules have to process a sorted sequence of stream data tokens (usually a time
sorted sequence)

• All the stream tokens have the same priority.
• An out-port could be connected to multiple in-ports so that the tokens produced

might be consumed by different modules.
• A module may need access to a number of consecutive tokens for each incoming stream

to be able to execute.
• A module execution may produce a number of consecutive tokens for each output

stream.
• Arbitrary consuming and producing rates in a network renders static scheduling of

executions impossible.
• Feedback loops should be allowed
• Copy of coarse tokens may be an important overhead to avoid.
• Concrete module implementation should be simple.

Solution

Design stream ports so that they support consuming and producing at different rates. This
way they can adapt to the rate the module’s algorithm needs, while keeping the buffering
details outside the module. The in-port and out-ports should give access to N tokens from a
queue5 and should release M tokens on every module execution. Let the module developer
define N and M for each port.

5By queue we mean the abstract data type with its generic operations without making assumptions on
it implementation.

21

Give the ports and interface for accessing tokens —but only a window of N tokens at the
head of the queue— and for releasing them. Releasing tokens results in that M tokens will
be dequeued and put away from the module reach. “Access” and “release” are operations
implemented as port methods and they are to be called consecutively by the module execu-
tion method. Seen as a single operation, “access-and-release” is equivalent to “consume”,
when called in an in port, and “produce”, when called in an out-port.

Make the ports own the tokens flowing between two modules, and make them responsible
for all necessary buffering between out-ports and in-ports.

Buffers can be either associated to in-ports or to out-ports. In 1-to-N connections —that
is, a single out-port connected to N in-ports— this decision makes the difference between
heaving N different buffers (at the in-ports) or having a single buffer (at the out-port).

In the following paragraphs we discuss the implications of having buffers at the in-ports
and at the our-ports.

Buffers at the in-ports: This is the simplest solution to implement. Give to each in-
port an associated buffer (figure 13). Tokens being produced from an out-port are then
passed to the connected in-port buffers. Tokens can be either passed by reference or by
copy. Passing tokens by copy is easy to implement since each in-port is the owner of its
tokens. Passing references, on the other hand, is more efficient because copies are avoided.
This efficiency gain can be very important when tokens are to be passed to many in-ports
or when tokens are coarse objects.

Of course, the efficiency gain associated with passing references instead of copying comes
with a price: it is more difficult to implement. Given that multiple modules receive a
reference to the same token, aliasing problems have to be avoided. In-ports have to be
designed in a way that guarantees read-only semantics —or copy-on-write semantics— on
the incoming tokens. The other aspect to be addressed here is the tokens life-cycle. Since
token memory can not be freed —or recycled— while references to it exist, we need a
reference-counting mechanism.6

Figure 13: Each in-port having its own buffer.
6Like C++ smart pointers

22

However, passing references to the in-ports is not always feasible. Some applications may
require its modules to operate on tokens placed on contiguous memory —examples of this
are very common in the audio domain— as a consequence, such modules need the actual
tokens data (not references) placed together in circular buffers at the in-ports.

This shortcoming can be overcome placing the buffers at the out-ports, which allows having
both reference passing and contiguity. Again, we will see that efficiency comes with a price.

Buffers at the out-ports: Having a single buffer for a 1-to-N connection —thus, asso-
ciated to the out-port— allows benefiting from passing tokens by reference while achieving
data contiguity (figure 14).

For that, the buffer must be implemented with a circular buffer. Not only the out-port is
accessing the buffer but also the N connected in-ports.

Figure 14: A buffer at the out-port is shared with two in-ports.

Allowing a buffer to be written by a producer and read by N different consumers, while
allowing each one to produce or consume at a different cadence needs to done carefully. The
following two basic restrictions must be enforced by design:

• The out-port can not over-write tokens that still have to be red/consumed by some
in-port.

• The in-ports can not read/consume tokens that still have to be written/produced by
the out-port.

Though complex to implement, this approach avoids the need for unnecessary copies of
tokens and allows contiguous memory access to all involved modules.

Summing up: We have seen different strategies for implementing ports buffering that
present a trade-off between simplicity and efficiency. Placing buffers at the in-ports and
passing tokens by copy is the most simple approach. If copies are to be avoided, token
references can be passed, but they have to be managed. Sometimes this is not enough.
Apart from avoiding copies we need memory contiguity. Then, a circular buffer must be
placed at the out-port and some restrictions must be enforced.

23

Consequences

Since all buffers adaptation is done at the ports level by the general infrastructure, concrete
module implementors do not have to deal with buffers adaptation. That results in simpler,
less error-prone code in every module.

Modules with different production and consumption rates can be connected together, as
drawn in figure 12. As a result, this increases the number of the possible networks that can
be built out of a set of modules.

The number of tokens stored in each port connection depends on two factors: In one hand,
the requirements given by each port regarding the number of accessed and released tokens
and, on the other hand, the scheduling policy in use.

This solution implies that, in general, the network will need a dynamic scheduler of module
executions. To facilitate the task of such scheduler, modules may provide an interface to
inform whether they are ready to execute or not. Such module method could be easily
implemented in the module base class by delegating the question into every driver port,
and returning the and combination if its responses.

Related Patterns

Multi-rate Stream Ports is applied in the context of systems that uses Stream and Event Ports,
it addresses how stream ports can be designed so that they offer a flexible behavior.

Multiple Window Circular Buffer pattern addresses the low level implementation of the more
complex variant of Multi-rate Stream Ports, that is buffers at the out-ports.

The design and implementation of buffer at the out-ports is a clear example of the Multiple

Window Circular Buffer pattern.

Examples

In most of the systems reviewed, ports of the same type have all the same window size, and
thus do not need to use this pattern. This is, for example, the case of the CSL [19] and
OSW [5] frameworks and the visual programming tool MAX [23].

On the other hand the Marsyas [24], SuperCollider3 [16] and CLAM frameworks allow
different window sizes, but they follow different approaches.

SuperCollider3 [16] features variable block calculation and single sample calculation. For
example, modules corresponding to different voices of a synthesizer may consume and pro-
duce different block sizes. The SuperCollider3 framework permits embedded graphs that
have a block size witch is an integer multiple or division of the parent. This allows parts of
a graph which may require large or single sample buffer sizes to be segregated allowing the
rest of the graph to be performed more efficiently.

24

Marsyas allows buffer size adaptation using special modules. CLAM —probably for its bias
towards the spectral domain— is the most flexible, allowing any port connection regardless
of its window size. CLAM sets up a buffer at each out-port.

7 Multiple Window Circular Buffer

Context

As a result of incorporating the Multi-rate Stream Ports pattern, the ports-connection queues
needs a complex behaviour, in order to access and release different number of tokens.

If it was not enough, such systems often have real-time requirements and some optimization
factors must be taken into account: avoiding unnecessary copies, totally avoiding allocations
and being able to work with contiguous tokens. Take for example (again) modules that
performs the FFT transformation —delegating to some external library— upon a chunk of
audio sample tokens; input samples must be provided to the library as an array. In the
audio domain, not only FFTs need to operate with arrays, temporal domain processing is
typically done that way too.

A simple implementation of Multi-rate Stream Ports consists in having a buffer associated
to each in-port. But, unfortunately, this means copying tokens. The copy-saving imple-
mentation of Multi-rate Stream Ports requires a single buffer to be shared by an out-port
and many in-ports. A design for this is not obvious at all. So, this is what this pattern
addresses.

Finally, note that though a normal circular buffer is not suited for accommodating the given
requirements, what we are seeking may be seen as a “generalized” circular buffer. Moreover,
this can be useful in scenarios other than data-flow architectures.

Problem

What design supports a single source of tokens with one writer and multiple readers, giving
each one access to a subsequence of tokens?

Forces

• Each port must give access to a subsequence of N tokens (the window).
• The subsequence of tokens should be in contiguous memory, since many algorithms

or domain tool-kits and libraries works on contiguous memory.
• Windows sizes and steps should all be independent.
• Reading windows can only map tokens that have been already produced through the

writing window.

25

• Allocation during processing time should be avoided, since (normal) dynamic memory
allocation breaks the real-time requirements.

• All client executes in the same thread.

Solution

Have a contiguous circular buffer with windows that maps (contiguous) portions of the
buffer. There will be as many reading windows as needed but only one writing window.
Associate the reading windows with the writing window because, as we will see they will
need to calculate their relative distances. Also, provide them means for sliding along the
circular buffer.

The modules (the buffer clients) executions must be done in the same thread. Its schedul-
ing can be done either statically —fixed from the beginning— if all ports consuming and
producing rates are known; or dynamically, which is much simpler to implement.

Windows clients need to follow the following protocol in order to avoid data inconsistencies:

• The access to windows mapped elements and the subsequent slide of the window must
be done atomically in respect of other window operations. So, these operations might
be regarded as a single read-and-slice (or write-and-slice) operation. Only when a
window has finished the sliding, other clients can access their own window.

• A reading window can only start a read-and-slice (also known as consume) operation
when it is not overlapping the writing window (overlapping other reading windows
is perfectly fine). This reader-overlapping-writer problem indicates that the client is
reading too fast. This problem should be detected and, as a response, the reading
module should not be executed till more data has been written into the buffer.

• The writing window can only start a write-and-slice (or produce) operation when it is
not overlapping the furthest reading region. Such overlapping is possible since regions
are circulating over the underlying circular buffer. This writer-overlapping-reading
problem indicate either that a client is reading too slow or that the buffer size is not
large enough. When this is detected, the writing module should not be executed and
should wait for the readers to advance.

The solution design uses the Layered pattern [10] for arranging different semantic concepts at
different layers. Concretely, we distinguish three levels of abstraction (figure 15). Starting
from the layer that gives direct service to the clients:

Windows Layer This is the upper or more abstract layer, which gives the clients a view
of the windows advancing on an infinite buffer. It offers, at least, the following interface :

• Accessing the N contiguous elements mapped by the window.

26

step

access window

C: ReadingWindow

B: ReadingWindow

A: WritingWindow

0
256

A

B

C

1 ...

...

...

Circular Windows
Layer

Phantom Buffer
Layer

Windows
Layer

oldest token to be read

newest token

first element in
physical memory

oldest token

Infinite (abstract) stream buffer.
New tokens are added through the
writing window.

free space

...

Figure 15: Layered design of port windows.

27

• Advancing a window its slicing step (not necessarily N) as if the windows where on
an infinite buffer.

• Checking if a window is ready to be accessed-and-slided.

The state of this layer keeps the relative distances between each reading and the writing
window. This layer is in charge of detecting when a reading window overlaps with the
writing window, and delegates other checks to its underlying layer.

Circular Windows Layer The state of this layer keeps the physical pointers (to a circu-
lar buffer) for each window and also provides physical pointers to the upper layer. This layer
is in charge of detecting —and preventing— circular overlapping with a reading window.
That is, the case when the writer is about to write on a still not read element.

Phantom Buffer Layer This is the lower layer, which knows nothing about writing
and reading and writing windows and is solely dedicated to provide chunks of contiguous
elements for each window. Thereof, this layer’s goal is to to provide contiguous elements
subsequences of size N or smaller. Where N is the size of the biggest window.

The main problem this layer has to solve is the discontinuity problem associated to circular
buffers —the next element in a logical sequence of the last physical element is the first
physical element. To idea behind the solution is to replicate the first N elements at the
end of the buffer. This can be implemented using a data structure that we call “Phantom
Buffer” and is presented in this catalog as the Phantom Buffer pattern.

Consequences

The non-overlapping restrictions might suggest that there always exists a distance between
writing and reading windows and, thus, causing the introduction of certain latency. But
this is not the case, because the non-overlapping restrictions only apply, at the time of an
access-and-slide operation. After a window have been slided, it is perfectly legal to be in an
overlapping state. This allows the reading windows to consume the same tokens that the
writing window has just produced.

The reader-too-slow and writer-too-slow problems can be handled in the context of a dy-
namic scheduler. Before doing any access-and-slide operation, a canProduce() or canCon-
sume() check is done, so that the operation can be safely aborted.

The consequence of the layered approach is a flexible design that allows changing the un-
derlying data structure easily, without affecting the windows layer and its client. It also
eases the implementation task since the overall complexity is split in well balanced layers
which can be implemented and tested separately. On the other hand, those many levels
of indirections might carry a performance penalty. However, it should be note that the
implementation does not require polymorphism at all. Thus, when implemented in C++,

28

with a modern compiler, most of the indirections should be converted to in-line code by the
compiler, reducing the function-calls overhead.

In general, setting the window parameters can be done at configuration time; that is, before
the processing or module executions starts.

Related Patterns

This pattern solves the buffer at the out-port approach of the Multi-rate Stream Ports pattern,
which was the optimal one. Multiple Window Circular Buffer uses the Layered pattern [10].

Examples

This pattern is maybe a proto-pattern [28] as the authors only know their own implemen-
tation in the CLAM framework [27]. Nevertheless, CLAM is a general purpose framework
and several applications with different requirements have proven the value of the pattern.

8 Phantom Buffer

Context

The goal of Multiple Window Circular Buffer is to design a generalized circular buffer where,
instead of having a writing and a reading pointer, we deal with a writing window and
multiple reading windows. The difference between a window and a plain pointer is that a
window gives access to multiple elements which, moreover, need to be arranged in contiguous
memory. Multiple Window Circular Buffer relies, for its elements storage, upon some data
structure with the following functionalities: One, to be able to store a sequence of any size
ranging from 0 to MAX elements; and two, to be able to store each subsequence up to N

elements in contiguous memory.

A normal circular buffer efficiently implements a queue within a fixed block of memory.
But in a normal circular buffer the contiguity guarantee does not hold: given an arbitrary
element in the buffer, chances are that its next element in the (logical) sequence will be
physically stored on the other extreme of the buffer.

Note that, here, window management is not relevant at all because it is a responsibility of
upper layers. Thus, the only concern of this pattern is how the low-level memory storage
is organized.

Problem

Which data structure holds the benefits of circular buffer while guarantees that each sub-
sequence of N elements sits in contiguous memory?

29

Forces

• Element copies is an overhead to avoid.
• Buffer reallocations are to be avoided.
• It should be possible for clients to read and write a subsequence of elements using a

pointer to the first element. The rational is that modules might want to use existing
libraries that, typically, use pointers as its input and output data interface.

• Multi-threading is not a requirement.

Solution

The buffer with phantom zone —phantom buffer for short— is a simple data structure
built on top of an array of MAX + N elements. Its main particularity is that the last N

elements are a replication of the first N elements. This guarantees that starting at any
physical position from 0 to MAX − 1, exists a contiguous subsequence of size up to N

elements. In effect, this is clear considering the worst case scenario: take the element at
position MAX − 1; let it be the first one in a subsequence; since it is a circular buffer
of MAX elements, the next element is in the position 0, but positions from 0 to N − 1
are also replicated at the end (starting at position MAX); thus the contiguity condition is
guaranteed.

0
256

1 ...

...

phantom zone
of size 10

10 first elements

the two extremities
are automatically
kept in sync.

last element

9

246

Figure 16: A phantom buffer of (logical) size 246, with 256 allocated elements and phantom
zone of size 10.

Interface of a PhantomBuffer class should include two methods: one for accessing a given
window of elements, and the other, for synchronizing a given window of elements. For
example, in C++:

A client that wants to read a window, should call the access method, and read elements
starting from the returned pointer. If the client wants to write, the sequence is a little
different; first if should call access, write elements and, finally, call synchronize. This

30

template<class T> class PhantomBuffer
{
public:

T* access(unsigned pos, unsigned size);
void synchronize(unsigned pos, unsigned size);
...

};

Figure 17: PhantomBuffer class definition in C++

method synchronizes, when needed, a portion of the phantom zone with its counterpart
in the buffer beginning. To be accurate, a copy of elements will only be necessary when
the window passed as argument to synchronize have intersection with the phantom or the
initial zone.

Summing up, a phantom buffer offers a contiguous array where the last N elements are
a replication of the first N . Each write on the first or last N element is automatically
synchronized in its dual zone. Thus, the client of a phantom buffer will always have access
to chunks of up to N contiguous elements,

Consequences

As a result of this design, clients must be well behaved. This includes two aspects: The first
is that clients that receive a pointer for a given window should not access elements beyond
that window; the second is that, after a write, a client must call the synchronize method.
Failing to do any of this might result in a serious run-time failure.

Certainly, this results in a lack of robustness. But this is the price to pay for the requirement
of providing plain pointers to the window, and avoiding unnecessary copies and reallocations.
However, the phantom buffer interface should not be directly exposed to the concrete module
implementation. The port classes presents a higher level interface to the module while hiding
details such as window parameters and synchronizations.

The circular buffer allocation should be done at configuration time and the phantom size
depends (must be greater) on the maximum window size.

Related Patterns

This pattern can be regarded as a part of a more extensive pattern that provides a general-
ized circular buffer with many readers. In this context, the windows management issues are
addressed in the more general Multiple Window Circular Buffer pattern. Phantom Buffer pro-
vides a refinement of the lower-level layer drawn in the general pattern. Thereof, these two
patterns collaborate together to give a complete solution for a generalized circular buffer.

31

Examples

This pattern can be found implemented in the CLAM framework. Specifically in the Phan-
tomBuffer class.

9 Recursive networks

Context

The potential of the interconnected modules model is virtually infinite. You can connect
more and more modules to get larger and more complex systems. But module networks are
normally defined by humans and humans have limitations on the complexity they can deal.
So, big networks with a lot of connections are difficult to handle by the user, and this fact
limits, actually, the potential of the model.

One of the reasons that makes audio systems to become larger is duplication. Duplication
happens, for example, whenever two audio channels have to be processed the same way, This
duplication is very hard to maintain, because it implies having to apply repeated changes,
and this is a very tedious and error prone process.

Duplication may happen also outside the system boundaries. The same set of interconnected
modules may be present on several systems. Fixes on one of those systems do not apply
to the other one so we have to apply it repeatedly and this is even more tedious and error
prone.

Problem

How to reduce the complexity the user has to handle in order to define large and complex
networks of interconnected modules?

Forces

• User defining big networks maybe too complex
• Human complexity handling is limited on the number of elements and relations
• Divide and conquer techniques help humans to handle complexity by focussing on

smaller problems instead of the whole problem
• Duplications of sets of modules and connections is hard to maintain
• Reuse of previously designed networks helps on productivity
• Encapsulation hides details that can be useful on tracing the behavior of the system

32

Solution

By applying the ’divide & conquer’ idea, we allow the user to define an abstraction of a set
of interconnected modules as a single module that can be used in any other network. Some
of the stream and event ports of the internal modules may be externalized as the stream
and event ports of the container module.

Port proxy

Figure 18: A network acting as a module.

Several internal stream in-ports may be merged as a single external one. So that, incoming
stream tokens are read by all the internal stream in-ports. The same happens with in and
out event ports. But it doesn’t happen with the stream out-ports. The same reasons that
forbid to stream out-ports feed a single stream in-port apply here.

If the system forbids merging ports on externalization, the externalized ports may be the
internal ones. But when port merging is permitted, the user needs an abstraction on
connecting a single port. This abstraction is given by a Proxy [12] port.

Depending on the implementation, the proxy port may act as a proxy on connection time
or additionally on process time.

A connect time port proxy is a proxy port that delegates binding calls to the proxied ports.
This way, during processing time the communication is done directly at non-proxy port
level.

A processing time port proxy is a proxy port that acts as a the complementary in/out port
for the internal ports. For example, an in proxy port is seen as out port for the internal
ports connected to it. This is similar to have an identity module that just pipes tokens. The
processing time port proxy adds overhead but it is useful when we need a clear boundary

33

between inwards and outwards.

Also several approaches can be used for the flow control to handle recursive networks. One
approach is to make the inner modules visible to the outer flow control, so that once all the
modules are accessible by the flow control, all happens the same way it would happen if the
recursive network was not there.

A second approach is to hide the inner modules to the flow control. This can be done by
providing an inner flow control to the subnetwork. The subnetwork execution as module
triggers the inner flow control. This approach is useful when a special flow control is needed.
Also when we want to keep control on the proxied modules while processing.

Related Patterns

This pattern is a direct use of the Composite and Proxy [12].

The flow control approach that hides inner modules to the outer flow control by providing
a inner one, is a Hierarchical Control [10].

Adjacent performance critical modules can be replaced by an optimized version as an static
composition, trading flexibility by performance, using Adaptive Pipeline [20].

Examples

Most audio domain frameworks implement Recursive Networks. For example MAX/MSP
[21], CSL [19], OSW [5], Aura [8], Marsyas [24] and CLAM.

CLAM provides examples of most of the variants explained before. CLAM Processing
Composites are compiled networks that provide their own flow control and they are seen for
the flow control as a single module. Processing Composites’s ports are connection proxies
so, external modules are actually connected on processing time to the inner ports. On the
other side, CLAM also provides dynamic assembled networks, In this case, dummy modules
which pipes directly event and stream tokens, are used as process time port proxies.

10 Port Monitors

Context

Some audio applications need to show a graphical representation of tokens that are being
produced by some module out-port. While the visualization needs just to be fluid, the
processing has real-time requirements. This normally requires splitting visualization and
processing into different threads, where the processing thread has real-time requirements
and is a high priority scheduled thread. But because the non real-time monitoring should
access to the processing thread tokens some concurrency handling is needed and this often

34

implies locking.

Problem

We need to graphically monitor tokens being processed. How to do it without locking the
real-time processing while keeping the visualization fluid?

Forces

• The processing has real-time requirements (ie. audio)
• Visualizations must be fluid; that means that it should visualize on time and often

but it may skip tokens
• Just the processing is not filling all the computation time

Solution

The solution is to encapsulate concurrency in a special kind of process module, the Port
monitor, that is connected to the monitored out-port. Port monitors offers the visualization
thread an special interface to access tokens in a thread safe way.

In order to manage the concurrency avoiding the processing to stall, the Port monitor uses
two alternated buffers to copy tokens. In a given time, one of them is the writing one and
the other is the reading one. The Port monitor state includes a flag that indicates which
buffer is the writing one. The Port monitor execution starts by switching the writing buffer
and copying the current token there. Any access from the visualization thread locks the
buffer switching flag. Port execution uses a try lock to switch the buffer, so, the process
thread is not being blocked, it is just writing on the same buffer while the visualization
holds the lock.

Writing
buffer

In-Band Process
(high-priority)

Out-of-Band Process
(low-priority)

(Graphical) Monitor
Monitored port

Flag with mutex
(thread boundary)

Figure 19: A port monitor with its switching two buffers

35

Consequences

Applying this pattern we minimize the blocking effect of concurrent access on two fronts.
On one side, the processing thread never blocks. On the other, the blocking time of the
visualization thread is very reduced, due that it only lasts a single flag switching.

Any way, the visualization thread may suffer starvation risk. Not because the visualization
thread will be blocked but because it may be reading always the same buffer. That may
happen when every time the processing thread tries to switch the buffers, the visualization
is blocking. This effect is not that critical and can be avoided by minimizing the time the
visualization thread is accessing tokens, for example, by copying them and release.

When this effect is too notorious, a solution might be to use three buffers. This way, even
when the visualization is blocking the buffer, the processing thread may alternate on the
other buffers. The constraints that should apply are:

• Two buffer marks are always kept the reading buffer and the last written buffer.
• Three mutually exclusive operations may happen:

– The processing thread should choose to write on any buffer that has none of
those marks.

– When the processing thread ends writing it updates the last written buffer.
– When the visualization thread access, it moves the reading mark to the current

last written mark.

This solution is not that good for real-time as the one based on just two buffers. The former
may block the processing thread, while the latter never blocks it.

Another issue with this pattern is how to monitor not a single token but a window of
tokens. For example, if we want to visualize a sonogram (a color map representing spectra
along the time) where each token is a single spectrum. The simplest solution, without any
modification on the previous monitor is to do the buffering on the visualizer and pick samples
at monitoring time. This implies that some tokens will be skipped on the visualization, but,
for some uses, this is a valid solution.

The number of skipped tokens is not fixed, thus, this solution may show time stretching
like artifacts that may not be acceptable for some application. Double/triple buffering on
the port monitor the full window of tokens solves that. It is reliable but it affects the
performance of the processing thread.

Related Patterns

Port Monitor is a refinement of Out-of-band and In-band Partition pattern [15]. Data flowing
out of a port belongs to the In-band partition, while the monitoring entity (for example a
graphical widget) is located in the out-of-band partition.

36

It is very similar to the Ordered Locking real-time pattern [10]. Ordered Locking ensures that
deadlock can not occur, preventing circular waiting. The main difference is in their purpose:
Port Monitor allows communicate two band partitions with different requirements.

Examples

The CLAM Network Editor [2] is a visual builder for CLAM that uses Port Monitor to
visualize stream data in patch boxes. The same approach is used for the companion utility,
the Prototyper, which dynamically binds defined networks with a QT designer interface.

The Music Annotator also uses the concurrency handling aspect of Port Monitor although
it is not based on modules and ports but in sliding window storage.

11 Organizing the Catalog

The 10 patterns presented in this catalog have different scope. Some are very high-level,
like Semantic Ports and Driver Ports, while other are much focused on implementation issues,
like Phantom Buffer). However, they act as a pattern language in the sense that each pattern
references higher-level patterns describing the context in which it can be applied, and lower-
level patterns that could be used after the current one, to further refine the solution. These
relations form a hierarchical structure drawn in figure 20. The arcs between patterns mean
“enables” relations: introducing a pattern in the system enables other patterns to be used.

This pattern catalog shows how to approach the development of a complete data-flow system
for sound and music computing, in an evolutionary fashion without needing a big up-front
design. The patterns at the top of the hierarchy suggest that you start with high level
decisions driven by questions like: “do all ports drive the module execution or not?” and
“do you have to deal only with stream flow or also with event flow?” It might also happen
that at some point you will need different token types. Then you’ll have to decide “does
ports need to be strongly typed while connectable by the user?”. Each of these questions
is addressed by one General Data-flow Pattern.

Having reached this point, it is feasible to get a relatively simple but useful data-flow
system allowing many module connections. However, it will have some limitations. For
example, limited ports connectivity and fixed block size. You might find yourself in the
need of implementing more flexible flows for stream and events. Then you’ll want to look
at the Flow Implementation Patterns. They show how to implement efficient stream flows
with flexible connectivity (i.e. consuming/producing different number of tokens) and event
controls that propagates immediately.

Humans might needs to interact with your system. Possible interaction includes building
(complex) networks and monitoring the flowing data. This is what the Human Usability
Patterns do. They can be introduced in the first stages of the system evolution or later on.

37

Semantic Ports

Driver Ports Stream and Event Ports

Typed Connections

Cascading Event Ports
Multi-rate Stream Ports

Multiple Window Circular Buffer

Phantom Buffer

Recursive Networks

Port Monitor

A B A enables B

A B A uses B

General Data-flow Patterns

Flow Implementation Patterns

Network Usability Patterns

Data-flow Architecture

Figure 20: Introducing some patterns enables other patterns to be used.

38

References

[1] Amatriain, X. An Object-Oriented Metamodel for Digital Signal Processing. PhD
thesis, Universitat Pompeu Fabra, 2004.

[2] Amatriain, X., and Aruḿı, P. Developing cross-platform audio and music appli-
cations with the clam framework. In Proceedings of the 2005 International Computer
Music Conferenc (ICMC’05) (2005). in press.

[3] Amatriain, X., Massaguer, J., Garcia, D., and Mosquera, I. The clam annota-
tor: A cross-platform audio descriptors editing tool. In Proceedings of 6th International
Conference on Music Information Retrieval (London, UK, 2005).

[4] Aucouturier, J. Ten Experiments on the Modelling of Polyphonic Timbre. PhD
thesis, University of Paris 6/Sony CSL Paris, 2006.

[5] Chaudhary, A., Freed, A., and Wright, M. An Open Architecture for Real-
Time Audio Processing Software. In Proceedings of the Audio Engineering Society
107th Convention (1999).

[6] Cook, P., and Scavone, G. The Synthesis Toolkik (STK). In Proceedings of the 1999
International Computer Music Conference (ICMC99) (Beijing, China, 1999), Com-
puter Music Association.

[7] Dannenberg, R. B., and Brandt, E. A Flexible Real-Time Software Synthesis Sys-
tem. In Proceedings of the 1996 International Computer Music Conference (ICMC96)
(1996), pp. 270–273.

[8] Dannenberg, R. B., and Brandt, E. A Portable, High-Performance System for
Interactive Audio Processing. In Proceedings of the 1996 International Computer Music
Conference (ICMC96) (1996), International Computer Music Association, pp. 270–273.

[9] Davis, P., Letz, S., D., F., and Orlarey, Y. Jack Audio Server: MacOSX port
and multi-processor version. In Proceedings of the first Sound and Music Computing
conference - SMC04 (2004), pp. 177–183.

[10] Doublass, B. P. Real-Time Design Patterns. Addison-Wesley, 2003.

[11] Foote, B. Designing to Facilitate Change With Object Oriented Frameworks. Mas-
ter’s thesis, University of Illinois at Urbana Champaign, 1988.

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13] Lazzarini, V. Sound Processing with the SndObj Library: An Overview. In Proceed-
ings of the 4th International Conference on Digital Audio Effects (DAFX ’01) (2001).

39

[14] Lee, E., and Park, T. Dataflow Process Networks. In Proceedings of the IEEE,
vol. 83. 1995, pp. 773–799.

[15] Manolescu, D. A. A Dataflow Pattern Language. In Proceedings of the 4th Pattern
Languages of Programming Conference (1997).

[16] McCartney, J. Rethinking the Computer Music Language: SuperCollider. Computer
Music Journal 26, 4 (2002), 61–68.

[17] Murata, T. Petri Nets: Properties, Analysis and Applications. In Proceedings of the
IEEE, vol. 77. April 1989.

[18] Parks, T. M. Bounded Schedule of Process Networks. PhD thesis, University of
California at Berkeley, 1995.

[19] Pope, S. T., and Ramakrishnan, C. The Create Signal Library (”Sizzle”): Design,
Issues and Applications. In Proceedings of the 2003 International Computer Music
Conference (ICMC ’03) (2003).

[20] Posnak, E. J. Lavander, R. G., and M., H. Adaptive pipeline: an object structural
pattern for adaptive applications. In The 3rd Pattern Languages of Programming
conference (Monticello, IL, USA, 1996).

[21] Puckette, M. Combining Event and Signal Processing in the MAX Graphical Pro-
gramming Environment. Computer Music Journal (1991).

[22] Puckette, M. Pure Data. In Proceedings of the 1997 International Music Conference
(ICMC ’97) (1997), Computer Music Association, pp. 224–227.

[23] Puckette, M. Max at Seventeen. Computer Music Journal 26, 4 (2002), 31–43.

[24] Tzanetakis, G., and Cook, P. Audio Information Retrieval using Marsyas. Kluewe
Academic Publisher, 2002.

[25] Vlissides, J. Pattern Hatching, Desing Patterns Applied. Addison-Wesley, 1998.

[26] Wright, M. Implementation and Performance Issues with Open Sound Control. In
Proceedings of the 1998 International Computer Music Conference (ICMC ’98) (1998),
Computer Music Association.

[27] CLAM website: http://www.iua.upf.es/mtg/clam.

[28] Pattern and Software: Essential Concepts and Terminology,
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

40

	Semantic Ports
	Driver Ports
	Stream and Event Ports
	Typed Connections
	Cascading Event Ports
	Multi-rate Stream Ports
	Multiple Window Circular Buffer
	Phantom Buffer
	Recursive networks
	Port Monitors
	Organizing the Catalog
	Bibliography

