
Functional Testing: A Pattern to Follow and the Smells
to Avoid

Amr Elssamadisy
Valtech Technologies
345 Lincoln Ave, #921
Amherst, MA 01002
++1-435-207-1225

amr@elssamadisy.com

Jean Whitmore

1860 Sherman
Evanston, IL

++1-312-782-7156

jeanimal@gmail.com

ABSTRACT
Functional tests are automated, business process tests co-owned
by customers (a.k.a analysts) and developers. They help
elucidate requirements, make project progress visible, and of
course improve code quality. We present functional testing in
pattern format, aggregating our experiences with functional
testing over several agile development projects. However, we
have also seen functional testing become more costly than its
benefits, so we describe the symptoms—“smells”—of potentially
costly problems. These problems can be rooted in test
implementation practices or in the architecture of the system
under test. We suggest solutions to these problems that make
functional testing cost-effective and fun.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications] D.2.5 [Testing and
Debugging]

General Terms
Testing, Patterns, Agile Development Practices

Keywords
Functional Testing, Acceptance Testing, Patterns, Agile
Development Practices

1. COST-EFFECTIVE FUNCTIONAL
TESTING
Functional testing—the practice of customers and developers co-
writing business process tests that execute automatically—has
been touted as a practice that increases the quality and business
value of software. Functional tests can automatically determine
whether an application is doing what is expected from a business
perspective. They can also help customers communicate
requirements in a precise, consistent way to developers. Because
of these features, functional tests have sometimes been called
“executable requirements.”

So why has functional testing not been embraced as strongly as
unit testing in the agile community? Why do many of our
colleagues complain that the costs of functional testing exceed
the benefits? We believe that people who have given up on

functional testing have lacked the right tools and techniques.
After all, how many unit tests would you write without xUnit and
a continuous build? How much refactoring would you do if you
were coding in a text editor? The right tools and techniques can
make functional testing easy and cheap.

In particular, we recommend techniques for making functional
testing fast enough to be in the continuous build (and at least as
fast as the typical check-in cycle in a non-agile development
environment). We also explore techniques that make diagnosis
of test failures relatively easy.

However, sometimes even the right tools aren’t enough. If
setting up a functional test is onerous, the root problem may be
the architecture of the system under test. This phenomenon is
similar to the idea that if setting up an object in a unit test
harness is especially hard, then the object probably has too many
dependencies. We will suggest architectural changes such as
improved modularization of subsystems and moving business
logic out of the Graphical User Interface (GUI) and into a service
layer [1]. These changes make functional testing easier while
making the architecture better.

In this paper, we assume functional testing is done within an
agile development [2] environment, although we offer a few
variations for a traditional development environment. Our focus
is also on functional tests that exercise all layers except the GUI,
but most of our patterns and smells apply to other types of
functional test. We will point out when they do not.

We begin by describing functional testing in a pattern format so
that readers can determine whether the practice is appropriate for
their projects. Then we identify functional testing smells—signs
of costly problems—and the technical and architectural solutions
that address them. We hope people will recognize the need for
better techniques rather than giving up on functional testing.
The benefits are just too good to pass up.

2. Functional Testing: An Agile Practice
Pattern
Patterns allow us to propose development practices as potential
solutions to a common set of problems. By describing functional
testing in a pattern format, we empower readers to make their
own evaluation of this development practice. Using functional

testing is then not a stark black or white decision; it depends on
how much a development team has experienced the problems
and whether this pattern as a proposed solution is within
reasonable costs. We include several stories and narratives to
bring home the points based on specific experiences we have
had.

2.1 Automated, Business Process Tests
In this paper, we define functional tests as

• business process tests that are

• co-owned by customers and developers and that

• can be automatically executed.

Functional tests can be better understood by comparing them
with what they are not.

First, functional tests are not owned by a testing department
(which may or may not be part of a Quality Assurance
department). Instead, they are owned by—i.e. created and
maintained by—customers. In order for customers to be owners,
the functional testing tool must provide a way for customers to
read, write, and execute test specifications, although developers
may implement tests and the testing department may help
develop more effective tests.

Second, functional tests are not manually run. No one needs to
click on screens or set up data in order to execute them. Instead,
functional tests, like unit tests, are completely automated.

However, unlike unit tests, functional tests are not focused on
isolated units of code, whose proper behavior a developer
defines. Instead, they exercise a useful business process, whose
correct outcome is defined by a customer. We speak of a
business process because we mean more than just the static
business rules; we mean also the sequence of steps that invoke
the business rules to generate a useful outcome. If use cases are
used, then each scenario of a use case can be covered by a
functional test. Our goal is to assure that the program does
something useful for a real user.

If functional tests cover more than a unit, just how much should
they cover? There are several options, depending on the type of
testing you want to do. Our experience is primarily with
functional tests that are driven from the service layer (or control
layer or system-façade layer), a layer between the GUI and
domain layers on n-tier systems. That is, our functional tests
exercise all layers except the GUI so that they are almost end-to-
end. We will call these service-driven functional tests.

Many functional testing tools drive tests through the GUI. Some
of the patterns we describe also apply to these GUI-driven tools.
However, the tests of GUI-driven tools are often more fragile
than those of service-driven tools because they may break when a
button is moved. More importantly, GUI-driven tools do not
have the architectural benefits of service-driven tools. For
example, they do not help drive business logic out of the GUI [3].

2.2 Forces
The forces in a pattern are the driving factors that lead to the
implementation of the pattern. Patterns can be considered as
problem/solution pairs. The forces are the problems that are
addressed by the pattern as a potential solution. The main forces

pushing us to try functional testing are too many bugs, delayed
releases, and poorly captured requirements.

2.2.1 Bugs Increase As Inter-Module Dependencies
Grow
Most development groups that we have seen try functional
testing were motivated primarily by a desire to reduce bugs. That
is, when they hear the phrase “functional testing,” they
particularly focus on the word “testing.” Unit tests can keep
individual classes fairly free of bugs, but they do not address
inter-module bugs. Furthermore, as the code base grows, the
number of potential inter-module bugs grows faster.

2.2.2 Delayed Releases
As the application grows and the product matures, the testing
department cycle can take longer, causing increasingly delayed
releases.

2.2.3 Slow Manual Testing
Manual testing by a testing department will take significantly
longer with a large product than a small one. Because manual
testing is slow, the feedback about a bug occurs long after the
code changes that caused the problem were made. The delayed
feedback makes it hard to diagnose which change caused the bug,
so fixing a bug found by the testing department takes longer, too.

2.2.3.1 Slow Patches
A corollary of slow releases is slow patches for bugs reported in
the field. In many development environments, developers have
to set up a full database and perform many manual steps to
reproduce a bug. And they must reproduce the bug both to
diagnose it and to confirm they have eliminated it. How much
nicer if they had an easy way to script the system with the
minimal conditions to reproduce the bug!

2.2.4 Not Knowing When a Task is Done
Almost everyone has experienced a project that was declared
“done” and then continued for weeks or months afterward. With
functional testing, the customer writes tests that exercise the
business process (represented in a use case, story or feature)
scheduled for the current iteration. When the functional tests
pass, the work is done.

2.2.5 Poorly Captured Requirements
2.2.5.1 Imprecise Requirements
One of the reasons projects drag on after they are declared
“done” is that the original requirements were imprecise. Verbal
requirements do not provide enough detail for coding.
Developers guess what the customer meant and call the project
done. But if the developers guessed wrong, the code will have to
be re-worked.

2.2.5.2 Contradictory Requirements
Many “done” projects get stuck in the testing phase because of
bug cycles. An example of a simple cycle is that when bug A is
fixed, bug B appears; and when bug B is fixed, bug A re-appears.
But the cycle is rarely that obvious, especially if A and B are in
different parts of the system or take a long list of manual steps to
reproduce.

An automated test suite could quickly show that both bugs are
never fixed at the same time. At that point, one might discover
that A and B cannot both be true at the same time because they
are contradictory. Functional tests help “test” our requirements
for contradictions.

2.2.6 Outdated Requirements
Finally, requirements are also often outdated. The longer
running the project, the more likely that at least some of the
requirements have fallen behind the code. Let us be frank—have
any of us really had requirements that were 100% up-to-date
after a year of development?

Outdated requirements can be more nefarious than no
requirements. If there are no requirements, developers will try to
extract them from the customer, the code, or the unit tests, all of
which are likely to provide fairly up-to-date information. But
outdated requirements are mis-information. They can waste a lot
of time by sending developers down the wrong track.

2.3 Description
Functional testing is much more than automated acceptance tests;
the set of tests can be considered “executable requirements.”
That is, they are requirements written by the customer
(sometimes with the help of a developer depending on tool
support) that can be run and either passed or failed.

Unit testing is often practiced with test-driven development. The
developer writes a test for a case the code cannot yet handle.
Because the case has not been implemented yet, the test fails,
resulting in a red bar in the unit test GUI. Then the code to pass
the test is written, which turns the bar green. Then the cycle is
repeated in a red-green-red rhythm.

 Functional tests take the red-green-red loop of unit testing to the
level of red-green-red loops for adding new business
functionality to the application. From that point of view,
functional tests allow the developer to know when she is done
with the task at hand as indicated by the customer. They reduces
a large amount of effort where code is submitted to the customer
or testing group only to be found lacking in functionality and be
brought back into the development group.

A major—often uncited—contribution of functional testing is the
improvement of the architecture of the system under test.
Functional tests force business logic to be removed from the GUI
and moved into the service layer, where the functional tests can
exercise it. Functional tests also encourage modularity and the
separation of subsystems, analogous to how unit tests force loose
coupling between objects for testability. This idea is still new to
us but we have found that it rings true with others with similar
experiences.

Another major contribution of functional testing is that it tests an
entire set of possible errors that is not addressed by unit testing.
As any experienced object-oriented programmer knows, a
significant part of the complexity of an object-oriented system is
in the relationships between the objects. Functional testing
exercises these complexities as unit testing cannot (and is not
intended to). Software quality increases. And development can
proceed at an even faster pace than unit testing enabled.

A fourth contribution of functional testing shows up more in the
later stages of a project as it enters maintenance mode; bugs

reported either by the testing team or the customer come in to the
developer as a set of steps for reproduction. The immediate
response for a developer when functional testing is available is to
write a failing functional test to reproduce the steps. Then she
digs in, finds the problem, writes a failing unit test, and fixes the
problem, causing both the unit and functional tests to go green
(most of the time). This technique, which is enabled by
functional tests, catches the “false fixes” where the developer
finds the bug, writes the unit test, and assumes the bug has been
fixed when it truly is not.

Note that for all of these benefits, the functional test suite must
be part of the continuous integration build. If functional tests are
not in the build, they can easily become a liability instead of a
benefit, a situation we describe in the smells below.

2.4 Variations
2.4.1 Covering the Domain Only
This paper focuses on functional tests that execute logic from the
service layer through the domain layer all the way down to
persistence. Not all functional tests must exercise all these
layers; in fact Mugridge and Cunningham [3] argue for writing
functional tests to exercise the domain logic only. Such tests are
still useful, but they do not cover the subsystem boundaries,
which are bug-prone. The domain-only approach is a viable
alternative if running end-to-end tests within a developer check-
in cycle is infeasible.

2.4.2 Functional Tests Written By Committee
We argue that customers or analysts should write functional tests
because they are in the best position to write requirements.
However, testers and developers can join customers and analysts
to co-write tests.

Testers bring their expertise in test-case development and help
write requirements that cover the necessary details. Developers
may be needed to help make the requirements executable
depending on the tool. For example, the Framework for
Integrated Tests (FIT) tool [4] requires developers to write
fixtures before tests can execute. We have found that writing
tests by committee usually happens primarily in the beginning
stages of adoption of functional testing as analysts learn to think
like a tester, and developers build their domain language. In
later stages, writing tests by committee tapers off and the brunt
of test authoring falls to the analysts with occasional help from
others in the development group.

2.4.3 Functional Tests Written With Unit Testing
Tool
Some teams write their functional tests with a unit testing tool
such as NUnit or JUnit. Using an xUnit testing tool covers code
adequately but loses involvement from customers and analysts,
since the tests are now coded in a language that they can neither
write nor read. It becomes the developer’s job to translate the
requirements into these tests. The status of the tests as passing
or failing is also not visible to either the customer or testing
group.

We consider functional tests in xUnit to be rather hobbled
because of the exclusive focus on coverage. These tests are

indeed better than no functional tests but could be considered a
smell.

2.4.4 Functional Tests Within a Traditional
Development Environment
Our experience with functional testing is within an agile
development environment, but there is no reason it cannot be
used on non-agile projects. The key point is that the functional
tests must be run at a frequency that matches the developer
check-in cycle. That way, the source of failing tests can be
identified. All of the benefits of agile functional testing are
achieved, just at a slower cycle time because there is no
continuous integration build. When done in this environment,
the emphasis on speed of running tests is reduced because the
check-in cycles are typically much longer.

2.5 Benefits
Whereas forces push us toward a pattern, benefits pull us.
Forces describe a problem that the pattern will solve. In
contrast, we obtain the benefits even if we do not currently have
any problems.

2.5.1 Development Team Has More Confidence
There is a definite sense of confidence that developers acquire
when there is a solid test framework that they rely upon. Unit
testing and TDD have gone a long way in making developers
more confident of their code. This is not merely a “warm-fuzzy”
feeling (which is always good for morale), but enables faster
development because developers change what needs to be
changed via refactoring. Functional tests take this confidence up
a notch or two above and beyond unit testing. They also improve
the confidence of the customers/analysts and testers because they
have a direct relationship to the requirements and regression
tests. They know a green test is a non-ambiguous indication that
the related scenario is working.

2.5.2 Robust Tests
Service-driven functional tests skip the GUI and focus on
business logic. Business logic tends to be fairly stable, and so
the tests don’t have to change much. In contrast, automated tests
that hit GUI elements break when GUI elements are re-arranged.

2.5.3 Errors and Bugs are Reproducible Quickly
Once a bug is found, a functional test is written, and that bug
doesn’t come back to haunt us. A unit test should also be written
around the buggy code, of course, but when developers first
begin investigating a bug, they don’t know where to write the
unit test because they don’t know which unit caused the problem.
But they (hopefully!) know which use case caused the problem,
so they should be able to write a functional test immediately. By
writing tests as soon as bugs are discovered, we eliminate the
bug-fix-break thrashing that happens when systems become
brittle.

We have found that when a system moves from initial
development to production that the amount of time spent
developing new functionality decreases. With a functional
testing framework at hand the “business language” has already
been built and it becomes very straight-forward (more than for
unit testing) to build a functional test that exactly reproduces the
error based on the bug report. This allows the developer to have

an executable reproduction of the bug that can be used for
digging into the code repeatedly without having to keep setting
up the environment “just so”.

2.5.4 Testers Have Time to Be More Pro-Active
If “Slow Manual Testing” is a reason to try functional testing,
then quick automated testing is a benefit. The consequence is
that testers are relieved of much of the day-to-day burden of
manual testing of the main business rules. Instead, testers have
more time to be pro-active, collaboratively helping developers
design more testable code, rather than waiting to “clean up” at
the end of an iteration.

2.5.5 When a Task Is "Done" is Visible for All
Recall that without functional testing, we are driven by the force
of “Not knowing when a task is done.” Using functional testing
does help us know when a task is done, but it’s more than just
that. Functional testing makes progress visible to the entire
development team—customer, analyst, developer, tester, and
manager. At any point in time all passing (and failing) tests can
be viewed. With a little effort business value produced at a
functional level can be analyzed for management needs.

2.5.6 Better Design, Better Architecture
Functional testing drives better layer and subsystem separation.
Consider the layers of a multi-tier architecture. Since the
functional tests execute through the service layer, every bit of
business logic that has found its way into the presentation layer
must either be duplicated in the test fixture or pulled into the
service layer. We explore this point in more detail in section 4.1.

Similarly, consider the subsystems of the system—the modules
with functional responsibility, such as a module for tax
calculations. As we show in section 4.2, any tax logic that has
leaked out of the tax module will be duplicated in the test fixture
unless it is moved into the tax module. Functional tests help
solidify the responsibilities of a subsystem.

2.5.7 Analysts Think Through Requirements in
Greater Detail
Analysts think through requirements in greater detail to achieve
the descriptions needed to write a test. For example, an analyst
might state that textboxes should be disabled whenever they are
not needed. But when he writes a functional test for this
requirement, he is forced to get explicit about which conditions
cause which textboxes—or really their representations in the
underlying service layer—to be disabled.

2.5.8 Improved Customer-Developer Communication
The concrete examples codified in the functional tests are not
sufficient to specify requirements. Customers would not know
how to create such detail by themselves, anyway. Instead, it is
the collaboration between customers and developers that helps
flesh out requirements for both of them.

On the whole, functional testing with requirements specification
can improve communication between developers and customers.
Over time, the discussions of the functional tests help the team
develop a common vocabulary and a common vision for the
system [4]. Examples of the development of such collaboration
can be found in Mugridge and Cunningham’s recent book [5].

2.6 When to Use It
There are several tool requirements when it comes to functional
testing. Only use functional testing if you are able to make it
part of your build process. On agile development projects this
means that it must be part of the continuous integration build.
On more traditional projects, the functional test suite must be run
within the granularity of a typical check-in cycle.

If you cannot run your test suite within the normal check-in cycle
time, you may find that your tests are noisy and often failing
because they cannot keep up with the current build (more detail
in section 3.1). For functional tests realistically to be part of the
build, the functional test suite should not take more than 20
minutes to run (as a rule of thumb for agile projects). To achieve
this, the following strategies have been found helpful:

• Database where test set is present and
refreshable/loadable within an acceptable time. That
means we have to actively keep a snapshot to support
our suite of tests.

• Tests can use transactions and rollback at the end of
the test instead of committing (usually 5-10 times
faster than a committed transaction).

• Distribute functional tests on separate machines every
time one machine's run takes too long.

Finally, you are ready to introduce functional tests if you have the
attitude that testing is a primary development practice and not a
secondary practice that can be dropped in a crunch or if it
requires a large effort. Functional testing does not come free,
and we will see below in section 3 that the cost of cutting corners
is very expensive.

2.7 How to Use Functional Testing
Functional testing is much more than just testing. It is also about
communication between developers, analysts, and testers. It is
about understanding the requirements, the business domain, and
your system as a solution addressing business problems.

Jim Shore states, “In the same way that test-driven development,
when done well, facilitates thinking about design, [functional
testing] done well facilitates thinking about the domain. This
thinking happens at the requirements level and at the design
level” [6]. Ultimately functional tests become a domain-level
language spoken among the various members of the development
team. So as you embark on functional tests, be sure to focus on
communication of requirements and building up of the domain
language. In fact, Functional Tests Written By Committee in
section 2.4.2 is an excellent way to start off.

We would add that service-driven functional testing also
facilitate thinking about system architecture. You simply can’t
put much logic in your GUI if you have to run your functional
tests without the GUI!

Functional testing is also very tool sensitive. If the tools are not
up-to-par in speed and feedback then functional tests lose much
of their benefit. Once you have the right tools, you need to know
how to use them. Functional tests should iteratively cover use
cases, one thin scenario slice at a time.

1. Choose one specific example of a path through a business
process—e.g. one scenario through a use case—to test at a time.

Keep the scenario “slice” thin and deep. That is, test a small set
of functions at a time and run it from the service layer all the way
to the database. We would recommend selecting a high-risk slice
first, e.g. replicating a recent bug, so that team members care
about the outcome.

2. Minimize the amount of data in your database snapshot used
for your testing. Remember, the smaller the database, the faster
the refresh and the actions that are performed in the database.

3. Mock out external systems whenever possible for speed and
independence. A good example would be mocking out an
external credit card authorization service for an e-commerce
application.

4. However, you may want to include a few tests that interface
“high risk” external systems that could cause (or already have
caused) your system to fail if you misunderstand their API. The
tests can then help document the API.

5. Whenever a functional test strip gets too “thick”—e.g. if it
includes more than one scenario—separate it into different tests.

2.8 When Not To Use It—Are you ready for
Functional Testing?
The long and short of it is this: don’t use functional tests if you
are not willing to put the effort to write the tests. This may turn
out to be a non-trivial effort—there are definite costs. So if you
are not willing to do all of the following, then maybe functional
testing is not appropriate at this time:

• Introduce a technique to determine what coding
modifications have broken a build. We recommend
that you make functional testing part of the continuous
build, but if not then at least have a functional testing
cop. This is discussed in detail in section 3.1.

• Modify your existing system for testing. Most systems
built without functional testing in mind will need
modifications. Many of these modifications are not
simple and may involve architectural changes. Section
4 discusses architectural smells that will require these
types of changes to enable useful functional testing.

2.9 Suggested Adoption Strategy
Like almost everything in agile development, functional testing
should be adopted iteratively. Be careful that you keep “people”
ahead of “process.” That is, iterate to get developers and
customers trained and have them build a few functional tests.
Then, after the team has a few working functional tests that are
part of the build, ask them for feedback on the tools and
processes. Improve your tools and processes until the developers
and customers are happy with functional testing. Then
iteratively expand the practice to the team.

When functional tests are not part of the build, they can cause
much more harm than good and may not catch on or ever be
useful. We have seen this happen and it is not a pretty sight.

Adding functional tests to a legacy system—i.e. one that does not
already have functional tests—can be challenging because the
architecture might not allow excluding the GUI or testing a
single use case scenario at a time. You also may have re-
architect some of your system to speed up the functional tests

enough to be part of the continuous build. Functional tests can
initially be added for new features or to reproduce bugs, with
supporting unit tests added for the implementing code. As we
describe below, we do not recommend adding functional tests
without unit tests.

During the transition to functional tests, it can help to assign a
developer the role of "Functional Test Cop." The cop’s job is to
track down the developers who break the functional tests, help
them see why their code broke the test and help them fix the
problem. See the narrative in section 3.1.3 for more detail on
this role.

3. IMPLEMENTATION SMELLS
Your first attempt at functional testing might encounter
problems. We’ve encountered two broad classes of functional
testing problems. The first class involves the implementation of
the functional tests themselves; the second is related to the
(un)suitability of our system under test.

We describe these problems in terms of “smells,” which are early
warning signals that the development process needs to be
“refactored” [7]. In this section, we consider smells of poor
implementation and offer the techniques that can alleviate them.

3.1 Little (or No) Accountability for Broken
Tests
If there is no accountability for broken tests, then they don’t get
fixed. In general there is no accountability if it is difficult to tell
whose code change broke the test. We have found that this
usually happens when the test-run cycle is significantly slower
than the check-in cycle of developers; that is, if several
developers have checked in their code since the last time the
tests were run, it is difficult to determine whose changes broke
the tests.

3.1.1 Solution: Functional Tests In Continuous Build
We strongly recommend including functional tests in the
continuous build. Inclusion in the continuous build was also
recommended in Gandhi et al.’s experience report [8]. In a
traditional development environment without a continuous build,
the functional tests should be run after every check-in. Another
variation is to use a “functional test cop” as described in section
3.1.3. Remember, the goal is to identify the check-in that broke
the tests.

3.1.1.1 Technical Tips for Speed
In order to get functional tests into the continuous build, the tests
must be made fast enough. First, the team must make a
commitment to functional testing as a primary development
practice instead of a secondary one. When it is not an option to
drop the tests, then teams find creative solutions. The main
thing is to speed up the running of the functional tests so they
can be run effectively by developers on their local machines
before checking in. Effective strategies we have found are:

• Functional Tests on Separate Machines: By grouping
tests into related suites then each suite can easily be
run on its own machine. This effectively parallelizes
the test suite and can give a speed increase
proportional to the number of machines used.

• Functional Tests Rollback Database Transaction: This
is a very simple but effective idea – don’t commit your
database transactions if you are testing end-to-end. We
have seen this practice emerge independently on
different projects and this usually gives about an order
of magnitude increase in speed.

• Functional Tests Refactored to Thinner Slices: By
testing a small scenario within each test instead of
several scenarios (or even all scenarios) for a use case
we get a finer granularity for splitting up tests. We
have also found that larger tests tend to have more
redundancy – breaking them up allows for faster
individual tests.

• Functional Tests Grouped By Business Area: Grouping
functional tests by business area allows a developer to
test the subset of relevant tests on their machine
without running the full suite. This allows for a faster
red-green-red test loop and will keep a test suite from
slowing the pace of development.

Note that having independent database sandboxes for each
functional test run is a prerequisite for the above advice. If two
functional tests run against the same database, one may report an
incorrect “failure” because of interactions with the data inserted
by the other test.

3.1.2 Related Smell: Confidence in Functional Tests
is Lost
Leaving tests broken takes away from much of the value of the
functional test suite as a “safety net” that prevents bugs from
entering the build in the first place. The tests aren’t catching the
bugs and helping us keep the code in working order as we would
expect. Without this safety net, confidence in the tests is lost.
Test writing is reduced, and in the more serious cases they are
deleted and finally dropped as a whole.

3.1.3 Narrative: Slow Tests Removed From Build
Stay Broken
The context of the following example is from a large leasing
application after one year of practicing XP with a 50-person
development team consisting of about 30 developers, 7 analysts,
8 testers and management. The code base was over 500,000
lines of executable code and the technology was J2EE with EJB
1.0.

When we first started implementing functional tests we weren't
quite sure how much value they would have, but we had a very
smart and experienced consultant advising us to do so. We knew
we were missing inter-object testing and our xUnit tests were
testing unit and more increasingly “integration” tests by testing
systems of objects together. We had greatly reduced the errors
found by the testers in QA, but there were still many getting
through. Also, we had several cases of the developer saying they
were “done,” but when his code was reviewed, there was either
missing or incorrect functionality even though the unit tests
passed. So those were the driving factors to implement
functional testing.

But functional tests were slow and the build went from 20
minutes to 50 minutes. We decoupled the functional tests from

the build and their time shot up from 50 minutes to 120+ minutes
over the next few months. Now every 4 or 5 builds, one set of
functional tests would be run, and we didn’t know who exactly
broke the test. Several check-ins had happened and everyone
knew the failure wasn't caused by their code. The tests would
break and stay broken for over a week, and frequently we needed
someone to step up and be a “hero” to clean up those stupid
tests! Sometimes (ok many times) we thought they were more
trouble than they were worth.

Thankfully, we didn't drop them. I don't remember who, but
someone on the team stepped up and proposed that we have a
coded functional test (CFT) cop. This person had the painful job
of watching the CFTs and fixing them when they broke. Of
course this was a pain, and one cop got tired of it and dug into
the CFTs to try to make them faster. With a few solutions such
as Functional Tests on Separate Machines and Functional Tests
Roll Back Database Transaction and Functional Tests
Refactored to Thinner Slices (described in the section above) the
CFTs were running in less than 20 minutes and brought back
into the build.

Surprisingly the functional tests stopped being broken because
developers could run them effectively on their local machines
before checking in. Even if they missed something, the CFT was
run with every build, so broken unit tests were immediately fixed
because it was (almost always) obvious who the culprit was.

3.2 Small Code Changes Break Many Tests
When many tests fail, one normally assumes that a big code
change must have been checked in. However, if only a small
change caused many failures, then there must be a large amount
of overlap of the tests.

3.2.1 Solution: Each Test Focused on One Thin Slice
When each test focuses on one thin slice of functionality and
does not overlap much with other tests, then it’s more likely that
only one or two tests break when a bug is introduced. It is much
easier to diagnose why a thin test failed. Thus, writing tests to
exercise one thin slice of functionality in one major system
provides the best feedback on that example of a business process.

3.2.2 Related Smells
If your functional tests cover too much ground, you may notice
these smells:

• Many test fixtures must be used in a single test

• Developers get frustrated with updating many tests for
small code changes

3.2.3 Narrative: Trying to Test Everything
We experienced the smell of small code changes breaking many
tests on a project of about 15 developers who had developed a
code base over two years (though it was integrated with a larger,
10-year-old code base). At that point, the team decided to add
functional tests, beginning with the code they were currently
working on, called project B. They thought it would be best to
test with all real objects (rather than mock objects) in order to
maximize the test coverage for each functional test.

The team spent a month setting up their first functional test.
This set up included writing a test fixture for each class, which is

code that mediates between a test specification (e.g. a FIT table)
and the appropriate object in the system under test [5]. Since
many parts of the system were “upstream” of the code they were
working on, they had to write many fixtures before they could
reach the part of the system that they intended to test. The result
was then when anyone made a code change “upstream” of project
B, all of the tests for project B failed and had to be updated.
Developers became extremely frustrated with the burden of test
maintenance.

One solution is to mock out parts of the system that are not the
focus of your current test. We can use mock objects as we do
with unit tests, and for functional testing we can also mock
subsystems. Mocks mean you don’t have to write “real” fixtures
for everything upstream.

Similar principles are echoed in Mugridge and Cunningham’s
book [5], which advises teams to “avoid over-commitment to
details that are not essential to the specific business rule…[and]
focus on only one business issue, so that it is less vulnerable to
change” (p. 156).

3.3 Functional Tests Try—and Fail—to Catch
Unit-Level Bugs
If functional testing does not reduce the bugs found by your
testing group and customers, the problem may be that the bugs
are at the wrong level for functional tests.

3.3.1 Solution: Unit Tests Support Functional Tests
Functional tests are not a replacement for unit tests, even if the
coverage statistics look high. Unit tests support functional tests
by exercising the code most likely to break, even if it is buried
deep in otherwise inaccessible parts of the system under test.
Use unit tests for unit-level bugs and functional tests for
interaction bugs.

3.3.2 Related Smells
If you use functional tests without unit tests, you may experience
several smells:

• It’s hard to diagnose failed tests

• Test fixtures work around known issues rather than
diagnosing and fixing them

3.3.3 Narrative: Pathological Functional Tests
The previously mentioned project with 15 developers had a
cluster of three or four classes that was repeatedly the source of
bug reports. The classes already had unit tests, so the team tried
to reduce the bug count with functional tests. But the developers
writing the test fixtures coded around the buggy classes so that
they could get their use case for the functional test done. For
example, the developers discovered that their fixture had to call
“Save” twice to get the object saved properly.

Why didn’t the developers fix the “Save” method? They
explained that saving was only a small, initial part of their use
case, and their usage did not go deep enough into the code for
them to diagnose the problem. So the bugs were not getting
fixed.

Finally, the team assigned two developers to refactor the module
and improve its unit test coverage. They quickly discovered that

the unit tests were inadequate because they were some of the
first unit tests the team had ever attempted to write. After a
month of work, the module was cleaned up. It was no longer the
source of bug reports. The functional test fixture could call
“Save” only once. But it was the unit tests, not the functional
tests, that ensured this basic functionality.

3.3.4 Unit Testing Complements Functional Testing
Unit tests make sure the units are working properly; functional
tests make sure the units interact properly. It is very difficult to
use a test of interactions to improve the units themselves. If
basic functionality is buggy, focus on refactoring and unit testing
the individual classes. If the units are solid but don’t interact
correctly, use functional tests. We need both kinds of tests.

A commonly cited reason for adopting agile development
techniques is the increased communication between the
developer and customer to really solve the problem and use
iteration and feedback to come up with a good solution. Well,
unit testing does not address this issue at all and functional
testing greatly improves this communication. Asking, “Which
testing is more important” is equivalent to asking, “Are
requirements quality or code quality more important?” You
cannot drop either—you must have both for a successful software
system.

With that said, let us provide detail on how unit testing is more
powerful than its coverage numbers would suggest.

3.3.5 Unit Tests Cover Important Code Paths
Unit tests exercise the most important code paths more easily
than functional tests can. Imagine two classes, A and B, each
with 5 code paths, A1 through A5 and B1 through B5. Consider
writing unit tests for the two classes. A4 and A5 are a getter and
setter respectively, so we don’t write unit tests for them. We
write one test for each other code path for a total of 8 tests. A
code path coverage metric would tell us we have 80% coverage.
But because we did white box testing, we know we covered the
80% that was most likely to break.

Now consider functionally testing the two classes. Let’s assume
class A is called before class B and that it’s easy to set up three
of the tests: Test 1 exercises A1 followed by B1, Test 2 exercises
A2 followed by B2, and Test 3 exercises A3 followed by B3. All
three tests incidentally exercise the getter A4 and setter A5. With
just these three functional tests, we again have 80% coverage.

Unfortunately, the functional tests have failed to exercise code
paths B4 and B5. These code paths are triggered by exceptional
circumstances that are difficult to set up in a functional test. For
example, B4 could deal with a division by zero that results when
certain combinations of values are produced by class A, and B5
could handle an exception thrown by a resource. So the
functional tests’ 80% coverage does not include the code that is
most likely to break. Instead, functional tests tend to focus on
the “main success scenarios” of the use cases. That’s helpful
coverage, of course. But it is unit tests that ferret out the most
common bugs.

Furthermore, as the code base grows, it becomes harder for
functional tests to cover code that is many classes deep into the
system. The functional test has to provide the input to A that
leads B to output something to C that causes D to throw an

exception so the test can make sure E handles the exception
correctly. It’s much easier to just write a unit test for E.

3.4 Our Testing Tool is in the Foreground
An immature functional testing tool can lead developers to spend
more time getting the tool to work right than they spend on
understanding the domain and specifying the tests with
customers. Of course, it’s important that developers are trained
in the functional testing tool, and there will be some start-up
costs when they first start using the tool. But if the tool is the
root of the problem, you will notice functional testing smells:

• It takes a long time to write tests and test fixtures; the
team spends more time on fixtures than test
specification

• It’s hard to diagnose incorrect test fixtures

• Developers and customers complain about functional
testing

3.4.1 Solution: Don’t Rebuild the Wheel – Use a
Mature Tool
We recommend starting functional testing with an established
tool that has a track record of providing good feedback for
customers and developers. Framework for Integrated Tests,
called FIT for short, is an example of a widely used tool that
provides good feedback [5]. Teams may already have their own
tools, of course. But if the tool is taking over your testing, you
may want to reconsider.

3.4.2 Narrative: Changing Tools
Recall the 15-developer team who spent a month writing their
first functional test. This team was using a home-grown
functional testing tool. The tool had a number of advanced
features, but it did not provide good feedback when a test was
incorrectly specified or fixturized: it was common to get a null
reference exception somewhere deep in the tool code. Customers
simply could not diagnose the test output. Developers had to
attach a debugger and step through the test. They spent
significantly more time in the debugger than collaborating with
customers to write tests. Both developers and customers
complained about working on functional tests.

This team is now in the process of switching to FIT. The very
same developers who complained about functional testing are
now clamoring to be the first ones to try the new tool.

A good tool lets you focus on the domain and the requirements;
the tool itself “fades into the background” [6]. If the tool is in
the foreground, you need a better tool.

4. ARCHITECTURAL SMELLS
If you are using good tools and techniques and it’s still hard to
write functional tests, then the root problem may be your
system’s architecture. In particular, if your test fixtures contain
business logic, rather than merely translating test specifications
into method calls, then you will want to consider the smells
below. We also consider a smell when it is hard for a functional
test to run through a single, complete use case.

Functional tests help push business logic into the correct layer
(in a tiered architecture) and the correct functional module.

When business logic has found its way into the wrong place,
functional tests expose the misplacement.

4.1 Fixtures Contain Business Logic To
Mirror GUI Work
If you find yourself writing fixtures that must perform business
logic so that they mirror what is done in the GUI, you may have
an architecture smell. A common cause of such duplicated
business logic is the use of a canonical three-tiered architecture
having presentation, domain, and persistence layers. Such
architecture does not always succeed in keeping business logic
away from the presentation layer. In fact, it is very common for
GUIs in this setup to contain “control” logic.

For example, a simple GUI to transfer money from one account
to another (account1, account2) often does the following in the
GUI:

(1) Account1.withdraw($100)

(2) Account2.deposit($100)

This is simple logic, but it is business logic and not view logic.
So, if your fixture for the transfer(account1, account2) function
has this logic in it, then you have code duplication with the UI
(which is bad), and you have uncovered business logic in the
presentation layer (which is worse).

4.1.1 Solution: Service Layer Gets Control Logic
When you encounter this type of problem, the solution is to pull
out the duplicate code in a common place. That place is the
service layer [1], which lies between the presentation and domain
layers and contains control logic. In this way, functional tests
help in proper separation of business and presentation logic and
encourage a new logical layer to hold control logic.

4.1.2 Narrative: Building Up Fixtures For
Functional Testing
This story is one from the 50-person J2EE leasing application.
As stated earlier, we introduced functional testing after we had
gained experience with XP as an agile development
methodology. Building our initial functional tests took a large
amount of work upfront because we had to build a fixture for
every single test. Moreover, we discovered as we started
building these fixtures that there was a significant amount of
business logic that had seeped into our GUI even though we had
both a domain and service layer. The first developers working
on these tests had not only to build the fixtures but also to
understand the UIs in detail so that they could refactor them and
pull out all the business logic into the service layer.

We took two full iterations with a five-person team to do a set of
large refactorings for the entire presentation layer. We then had
a design session to explain the problem with the old ways of
doing things and how they were not testable to the rest of the
group. Finally, for the next few iterations, whenever someone
was to write their first fixture, they would pair-program with one
of the team who did the large refactorings. Over a period of
three to four months, we had made several large refactorings to
the presentation layer and solidified the boundary between
presentation and service layers. We had also reached critical

mass with the number of fixtures present so that other developers
began to feel comfortable writing test fixtures easily.

4.2 Fixture for a Module Contains Business
Logic That Belongs in the Module
There is another way that business logic can turn up in a test
fixture—when a functional module fails to contain all the
business logic that belongs in it. An example can best illustrate
this point.

Let us assume that one of our subsystems is a tax module that is
responsible for doing all tax-related calculations. Before
introducing functional testing, we wrote this module and
believed we had good functional separation. Unfortunately, over
the development of our project not everyone using the tax module
was completely familiar with it, so some “pre-calculation” was
made outside of the tax module depending on special tax-exempt
days. This functionality should have been in the tax module; in a
sense, the tax module’s boundary was breached.

When functional tests were written for the tax module, we would
find that the fixture code had to perform the “pre-calculation”
that depended on the tax-exempt days. At that point, a
responsible developer would notice the duplication and refactor
the calculation into the tax module and out of the fixture and the
non-tax-module code.

We have found that functional testing frequently solidified the
boundaries and responsibilities of our subsystems. Our
functional tests help us focus our modules.

4.3 Functional Tests Difficult To Run
Through A Single, Complete Use Case
Legacy systems—that is, systems that were not designed with
functional testing—can be especially difficult to test. Sometimes
they do not let you easily run through a single example of a
business process. This is a very difficult smell to eradicate, and
the solution depends on the architecture.

In some cases, the source of the problem is that a module
assumes that multiple use cases are run simultaneously. When
you try to isolate a single use case, you discover you still have to
perform the set up for all the other use cases or the system
crashes. We provide an example of this situation below. We
highly encourage you to listen to your tests—if they are hard to
write, then they are indicating a larger problem.

4.3.1 Narrative: An Executable Calculator
The project with 15 developers mentioned earlier had an
architecture that made some of its primary uses cases difficult to
test. The system used C# for presentation; this code allowed the
user to enter input data and view output data. The system used
C++ for the main business logic and calculations. However,
what made the system tricky was that the main medium of inter-
language communication was the database. The C++ was an
executable that accepted a handful command line parameters; it
read hundreds of additional inputs from the database and wrote
its outputs to the database.

To execute a single business process in such a system, we had to
set up a fairly complete database with a lot of extraneous
information that did not matter for the process we wanted to test.

After this set-up, we could enter the one record we wished to test
through the service layer of C#. Then we would fire off the C++
executable, which would perform far more calculations than we
actually needed for our test. Finally, we would check the results
in the service layer of the C# output screen.

Because testing one use case was so burdensome, the team tried
shortened use cases. They wrote functional tests that entered the
data in the input screen’s service layer and then confirmed that
the values were saved correctly to the database. These tests
failed to exercise the most important business logic of the
system, so the analysts were not very interested in whether they
passed or failed. After all, these tests rarely found bugs that
really mattered. After a few months, both customers and
developers resented the functional tests as a waste of time.

To make this architecture more amenable to functional testing,
we would have had to convert the C++ code into a library (e.g. a
dll). Then we would have exposed individual methods so that
the calculator would not always process everything in one batch.
Then a test could set up just the data needed in C#, call a handful
of C++ library methods, presumably through a new service layer,
and confirm the results in C# again.

These architecture changes would not have merely made the code
more testable; they would have made it more agile. Clients later
requested real-time updating of the calculations as new input
data became available throughout the day. If the C++ code had
been a library that could fire off single requests, adding real-time
updating would have been a snap. As it is, the system is not
expected to offer real-time updating for years.

5. CONCLUSION
Functional testing is a practice that can have great benefits to the
development process as a whole. When done properly, it
increases the communication between analysts, developers and
testers. The progress of the entire project is objectively visible at
any point in time to management by examining the passing (and
failing) functional tests. Eventually, the speed of development
increases because well-communicated requirements result in less
re-work. The tests also drive a more modular architecture with
subsystems that have clear responsibilities.

However, functional testing is not free. A significant investment
must be made to get it right. Cutting corners can cause myriad
problems that we have outlined in the smells sections. If the
smells are not addressed, the costs of functional testing can
outweigh the benefits.

So we recommend that you evaluate your current environment to
determine whether functional testing addresses your needs and
provides useful benefits. Then, take a careful look at the costs to
functional testing as indicated in the When Not To Use It section
to make sure that you are willing to make the commitment. And
if you adopt functional testing, pay attention for smells so you
can catch problems early.

With the right techniques, we have seen developers and
customers get excited about functional testing. They enjoy
learning about the domain and its requirements in a deep way.
And they take great pride in the high-quality software that
results, on time and within budget. Functional testing is a
pattern that works.

6. ACKNOWLEDGMENTS
We would like to thank Robert Osborne, Steve Sparks, Jason C.
Yip, and two anonymous reviewers for thoughtful comments and
suggestions.

7. REFERENCES
[1] Fowler, M., Patterns of Enterprise Application

Architecture. Pearson Education, Boston, MA, 2003.

[2] Highsmith, J., Agile Software Development Ecosystems,
Pearson Education, Boston, MA, 2002.

[3] Marick, Brian. “Bypassing the GUI.” In Software Testing
and Quality Engineering, (September / October, 2002), 41-
47.

[4] Evans, E. Domain Driven Design: Tackling Complexity in
the Heart of Software. Addison Wesley, 2003.

[5] Mugridge, R., and Cunningham, W. FIT for Developing
Software: Framework for Integrated Tests. Pearson
Education, Upper Saddle River, NJ, 2005.

[6] Jim Shore, “A Vision For Fit,”
http://www.jamesshore.com/Blog/A-Vision-For-Fit.html

[7] Elssamadisy, A., and Schalliol, G. “Recognizing and
Responding to ‘Bad Smells’ in Extreme Programming.”
ICSE 2002, pp. 617-622.

[8] Gandhi, P., Haugen, N., Hill, M., Watt, R. “Creating a
Living Specification Document with FIT,”
http://www.agile2005.org/XR22.pdf

