
Where to go and what to show
More patterns for a pattern language
of interactive information graphics

Christian Kohls

Knowledge Media Research Center
Konrad-Adenauer-Str. 40

72072 Tuebingen, Germany
+49/7071/979-103

c.kohls@iwm-kmrc.de

Tobias Windbrake
University of Applied Sciences Wedel

Feldstrasse 143
22880 Wedel, Germany

wb@fh-wedel.de

ABSTRACT

Interactive graphics are an effective way of communication and
information delivery, especially for complex domains. However,
domain experts are rarely aware of the potentials of interactive
visual displays and which interaction principles can be in charge
for communication and teaching purposes. In this paper we extend
a pattern language for interactive information graphics and
present four new patterns. These patterns are all based on drag
operations and explain how to define flexible area restrictions and
how to change the visual appearance of elements according to
their positions.

Categories and Subject Descriptors
K.3 [Computers and Education]

General Terms
Design, Human Factors

Keywords
Design patterns, interactive graphic, educational patterns, e-
learning

1. INTRODUCTION
In our pattern language we describe interaction principles for
visual communication and information delivery. Interactive
graphics certainly helps to analyze, understand and communicate
models, concepts and data if applied appropriately [16]. Each
pattern explicitly names situations where to use what kind of
interaction and gives a rationale why it can support the

communication process. The patterns can be used in the design of
educational settings, edutainment kiosks in museums and
exhibitions, materials for interactive whiteboards and Tablet-PCs.

As we observed users working with various authoring tools
(Adobe Flash, Adobe Director, Matchware Mediator, Toolbook
etc.) we became aware of some major problems. First, for many
content applications the same interactions had to be re-
implemented again and again. Second, the implementation of
interactive content was only possible for programmers. Domain
experts had to either learn programming or outsource the
production of interactive content. Third, people without
experience in multimedia did not know what forms of interaction
were available, and when and why to use interactive elements.
Therefore we started to write down the interaction forms we have
used many times by ourselves and extracted the invariant parts.

To find more patterns we analyzed about 600 interactive
information graphics and systematically extracted the patterns.
We choose multimedia titles that were either very popular (best
selling titles), best practice (award winners, showcases), or had a
strong marketing (brands, interactive features were advertised).
To consider a wide range of different visualization types we tried
to find titles that differed in domain (e.g. science, language, art),
target group (e.g. K-12, higher education, trainings), publishers
(e.g. school book publishers, mass media) and genre (e.g. CD-
ROM, web based training, interactive whiteboard content). For
each title we scanned the content for interactive screens. For each
interactive screen we analyzed the interaction rules and roles of
visual elements.

The patterns we have identified can be implemented in any
authoring environment. They should be in charge to find adequate
visual interaction forms and to reason why and when to use them.
While the solution part covers the roles, states and interactions of
visual elements, it does not address the technical implementation.
The reason is that the way software tools support the
implementation of a pattern can vary a lot. The range starts with
programming an application from scratch, i.e. writing a Java
applet to visualize information, and ends with templates, i.e.
ready-to-use solutions as they can be found in tools such as
Raptivity or Articulate Engage. We have created our own tool,
moowinx, which tries to balance between these two ends [8]. It

Preliminary versions of these papers were workshopped at
Pattern Languages of Programming (PLoP) ’07 September 5-8,
2007, Monticello, IL, USA. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission. Copyright is held by the
authors. ISBN: 978-1-60558-411-9.

provides wizards to choose from one of the patterns and then
leads the user step by step to an interactive graphic. The user
selects involved visual elements and configures all interaction. In
opposition to the use of templates the user can edit each visual
object on a slide individually. Editing a slide is done similar to
popular presentation tools found in office software. However, the
slide content can be brought to life without any programming by
using the patterns of interaction [9].

The resulting pattern language for interactive information
graphics relates or overlaps with languages for human computer
interaction [1, 2, 7, 18], the design of websites [20, 17, 5] and
patterns for e-learning. More patterns can be found in [10, 11]. An
overview map of the language is given at the end of this paper.

In this paper we will focus on four patterns that provide some
rules for drag & drop operations of visual elements. The first two
patterns, ACTIVE AREAs and ACTIVATOR, address the visual
appearance of elements that are dragged over other elements.
ACTIVE AREAS change the dragged element, e.g. set a new
image. On the other hand an Activator changes the areas in the
background. The patterns NO-GO-AREA and SANDBOX, too,
relate to each other. Both provide rules to which areas an element
can be dragged. The NO-GO-AREA defines negative areas; that
is areas that cannot be entered. In opposition, the SANDBOX
defines positive areas that cannot be exited. From a technical
point of view the two patterns are almost redundant because each
pattern can be used to fulfil the goals of the other pattern – it is
just a question of minimizing the areas you have to define
explicitly. However, having the semantics of interactive graphics
in mind, the two patterns make an important distinction between
places to (not) go and places to stay in.

2. Active Areas (Hot Areas)
Display different labels, information or states of an object
according to a local spatial context or background.

2.1 Examples

Figure 1. Map: The flag can be dragged over each country. It

shows the flag of the country dynamically.

Figure 2. Dragable label: The text can be dragged over each

employee and shows his/her name and job description.

Figure 3. Timeline: The picture can be dragged along a

timeline and shows several development states of blackboards
and whiteboards.

Figure 4. Water states: the state of water changes according to

the temperature.

2.2 Problem
If a graphic consists of several areas where different information
items should be provided, e.g. text labels, info boxes or bubbles, it
becomes hard to display all information at the same time. Not
only is the graphic too packed with information and thus becomes
more complex, but the limited space of computer screens sets
bounds to the number of information items visible at the same
time. It is also true that sometimes only one area should be
promoted with additional information, e.g. to control the viewer’s
attention. Showing all area dependent states at the same time does
not show that an object can only be in one state at a time and at
which time the state actually changes.

2.3 Solution

Figure 5. Define Active Areas by geometrical shapes.

Figure 6. Define a Morphable Object that can be dragged.

Interaction and roles:
Hot spot and largest intersection

Figure 7. If the Morphable Objects enters an Active Area, it
will change its appearance.

Figure 8. For each Active Area, the Morphable Object can have

a different appearance.

Figure 9. If the Morphable Object is dragged out of all Active

Areas, it will return to its default appearance.

2.4 Details
Each Morphable Object relates to one or more Active Areas. The
Morphable Object can change its position, for example the users
drags it with a mouse pointer. Active Areas usually remain at
fixed positions at the screens. However, this is not a requirement
as the following example shows:

Figure 10. Moving an Active Area

Figure 10 shows a girl that either walks or dances (Morphable
Object). By default the girl walks. If she is dragged over the
speaker (Active Area) she starts dancing. However, on dragging
the speaker away, the girl exits the Active Area and stops dancing.
Spatial properties are used to detect at which time a Morphable
Object enters or exits an Active Area. There are three common
strategies to distinguish whether an object is inside or outside of
another object:

Hot Spot: A single point of the Morphable Object is defined as a
hot spot. The Morphable Object is considered inside of an Active
Area as soon as the hot spot point is located inside of that Active
Area. The hot spot is usually positioned in the centre of the
Morphable Object or in one of its corners. A well-known example
for hot spots is the pixel of your mouse pointer that actually
triggers mouse clicks or roll-over effects; the hot spot of your
mouse pointer is located at the end of the arrow.

Figure 11. The red point is the Hot Spot. If the Hot Spot
enters the rectangle then the circle is inside (last figure).

Intersection: The Indicator is considered to be inside of an
Active Area as soon as it intersects with it.

Figure 12. As soon as some points of the circle intersect the

rectangle, the circle is inside (figure in the middle).

Inclusion: The Morphable Object is considered to be inside as
soon as its bounding box is completely inside of the bounding box
of the Active Area.

Figure 13. Only if all points of the circle are inside the
rectangle, the circle is inside (last figure).

Spatially a Morphable Object could be inside of multiple Active
Areas at the same time. Logically, a Morphable Object can only
be inside of one Active Area because only one visual appearance
can be set at a time. To resolve this conflict, one can set priorities
for each area. If an element is spatially inside of two or more
areas, it is considered logically inside of the area with the highest
priority. In most graphical editors the z-order of visual objects
(that is which objects appear in front of other objects) provides an
implicit prioritization. Areas that are closer to the observer have a
higher priority. If intersection is used, another option is available:
to indicate that an element is inside of an Active Area, the
Morphable Object can be considered inside of the area that it
mostly intersects.

An Active Area can be defined by primitive shapes such as
rectangles, ellipses, polygons or the bounding box of an image.
Very often, polygons are used to define Active Areas on images.

Figure 14. Polygons overlay an image

Using overlay polygons you can handle different areas within one
single image, e.g. a geographical map. After editing the
interactive graphic, the polygons are set to transparent . If a text
label (Morphable Object) is dragged over the invisible areas, it
changes its text accordingly.

Figure 15. Dynamic text label

The example also shows that there may be other supporting
objects on the screen that do not affect the behaviour of
Morphable Objects. The image in the background is the main
subject of this interactive graphic, however, it does not play any
active part. Instead, the polygons drawn over the image define
several Active Areas.

There are many ways in which the Morphable Object can change
its appearance, most commonly are:

- Change the displayed image to show another state or
information.

- Use another text to label an area.
- Change the colour, shape or opacity of the Morphable

Object to highlight that it is over an interesting area.

In general terms, changing the appearance means some visual
properties change their values, e.g. file path of an image, level of

brightness, colour settings etc. However, it is critical to not
change spatial properties that are being used to determine hot
spot, inclusion, or intersection. Location, size and rotation are
critical properties, accordingly.

2.5 What else can I do with this?
- You have a graphic consisting of multiple images and

each image should be labelled individually by a
dragable text or symbol that can change its state
according to the background.

- You have an image with several sub-areas and each area
should be labelled individually by a dragable text or
symbol that can change its state according to the
background.

- You want to use a single object to annotate or label
some other graphic elements.

- The appearance of an object depends on its current
background information, e.g. different landscapes,
regions, data or objects.

- Drag an image along a timeline and show different
epochal pictures depending on its position on the
timeline.

- Change a displayed image according to its horizontal
and vertical position.

- Show the state of an object at different stations.

2.6 Rationale
Showing diverse states according to a context provided by
background graphics or spatial position makes cause and effect of
object changes more obviously [15]. The visual display of the
Morphable Object always relates to the nearest background; thus,
the gestalt law of proximity is applied [3]. Labels should always
be close to the subject of interest [4]. Labels at a different position
could distract the user [12]. Another reason to use one but many
labels is to direct the attention of the audience and to reduce the
complexity a graphic. Reducing the details of a graphic can
support the cognitive processing of the content. From a technical
point of view the number of simultaneously displayed items has
to be reduced because of a low screen resolution.

2.7 Related patterns
Activator: The ACTIVATOR pattern is the inverse of this pattern.
In both patterns a pair of two states is used for each relation of a
dragable element and a fixed area. In ACTIVE AREAS the dragged
object changes to an alternative state. In the ACTIVATOR pattern
the area in the background changes.

Roll-Over: Instead of dragging an element around, the mouse
pointer directly moves over active areas and causes other objects
to change, e.g. labels can switch from invisible to visible or
another fixed element changes its appearance. ROLL-OVER images
are easier to understand for end-users, however, it is hard to leave
the mouse pointer within an area for a longer time and you cannot
perform other operation at the same time.

3. Activator
Activate an image or visual object on demand.

3.1 Examples

Figure 16. X-Rays: An inspector image can be dragged over

each person and the skeleton is shown.

Figure 17. Labels and highlights: Dragging the bubble with

the question mark over an animal shows its name.

Figure 18. Translate vocabulary: Pointing at a vocabulary

translates it.

Figure 19. Hidden objects: Dragging the night watchman over

the images illuminates them.

Figure 20. Show temperature: The thermometer is an image

in the background that can be changed in different ways
according to the object that is dragged over it. Ice cubes

change the thermometer in a different way than a flame. Also,
it is perceivable that the thermometer changes because a

specific type of object is dragged over it.

3.2 Problem
Objects of the real world can be represented visually in more than
one way, e.g. you can switch between several states, change the

perspective or enrich/reduce the image with information. For
objects that can switch between two visual representations there
must be an explicit trigger to activate the alternative view. If the
user cannot recognize whether or not the displayed image
represents the active or inactive state, there must be a visual clue
to indicate that an image is activated. Sometimes the mouse
pointer can be used to activate an image and switch between two
different states. However, a mouse pointer can only indicate the
active state for one image at a time. Also, a mouse pointer is a
very abstract indicator and does not reveal how or why an object
switches to an alternative state. Using the mouse pointer does not
add any semantic to a graphic.

3.3 Solution

Figure 21. Define one or more Morphable Objects which can

change their appearance on activation.

Figure 22. Define an Activator that can be dragged.

Figure 23. If the Activator enters a Morphable Object, the
appearance of the Morphable Object changes.

Figure 24. If the Acvtivator is dragged over another Morphable

Object it activates that object.

Figure 25. Each Morphable Object may change its appearance

differently on activation. In general, if the Activator exits a
Morphable Object, then the object becomes inactive and its

default appearance is shown.

3.4 Details
One Activator can activate multiple Morphable Objects.
Activation is triggered on intersection, inclusion or by a hot spot.
On activation, visual properties of the Morphable Object change.
Common examples for property changes are illustrated below.

Figure 26. Image file property

Change the displayed image to show an object in active or
inactive state, e.g. a machine that is turned on or off.

Figure 27. Text property

Set another text to change between two different perspectives, i.e.
change the language of a phrase, switch from a pro argument to a
contra argument, or a verbal description of before and after
situations.

Figure 28. Colour property

Change the colour or background colour of an object to direct the
viewer’s attention to that object.

Figure 29. Opacity property

Change the opacity to highlight, to reveal or to hide information
temporarily.

Figure 30. Size and location property

Set a larger size or relocate an object to let it pop out.

The Activator behaves similar to a mouse pointer but introduces
some advantages. Mouse rollovers can activate an image only
temporarily whereas Activators can activate an object
permanently. Activators can be larger than mouse pointers and
thus are better perceived in presentations. Also, an Activator can
be of any shape and therefore provide additional information
about what kind of activation or transformation is performed. In
the previous examples the Activator “Next exercise” tells the user
why the specific image is highlighted, and the magnifying glass
indicates that it can be used to enlarge images.

With a mouse pointer only one object can be activated at a time.
With Activators one can multiply the number of pointers as shown
in the next example:

Figure 31: Two activators simultaneously

There are two pointers that can be dragged over an image icon to
highlight it. The pointers can remain over the images while the
mouse pointer can move independently to do other things. The
two pointers highlight the image in different ways as well. Used
in a presentation, the presenter can refer to differently highlighted
images.

However, if there are two or more Activators that can activate the
same Morphable Object then we are running into a conflict.
Which activation wins? Or, does the activation by two Activators
simultaneously trigger a special visual state for the Morphable
Object? Dragging two different molecules (Activators) into a

substance (Morphable Object) could cause a specific chemical
reaction – meaning that the Morphable Object shows different
results depending on the input of multiple Activators. In that case
we would have to define special visual states for the Morphable
Object for all possible combination of Activators, i.e. with n
Activators one has to define 2n states. To simplify the behaviour
of Activators it is recommended to allow only one activation at a
time. If multiple Activators point at a Morphable Object the latest
activation should be prioritized.

Figure 32. Multiple Activators for one Morphable Object

The star arrow (Activator 1) first activates the Morphable Object.
Then, the ellipse arrow (Activator 2) activates the Morphable
Object additionally. Because the latest activation is prioritized,
the Morphable Object shows an ellipse. On dragging the ellipse
arrow out of the Morphable Object the star arrow is still
activating the Morphable Object.

The safest way to avoid confusion is to not use multiple
Activators for the same Morphable Object. Using multiple
Activators for different sets of Morphable Objects does not cause
such problems. Objects that are not related to a specific Activator
do not affect the behaviour.

Figure 33. Unrelated objects

The Activator only changes the visual appearance of the
Morphable Object. On dragging the Activator over the unrelated
object nothing happens.

A drawback of Activators as compared to mouse pointers is that
they introduce an additional level of indirectness. While mouse
pointers may activate and deactivate images implicitly and very
intuitive, an Activator must be dragged explicitly. Because the
mouse pointer first has to be moved to the Activator to drag it,
additional workload is involved. Since Activators can come in any
shape, a visual affordance that indicates its function is
recommended.

3.5 What else can I do with this?
- Activate or highlight one of a set of objects. Provide an

explicit pointer to the highlighted object.
- Direct the viewer’s attention to a specific object on the

screen by using a permanent pointer.

- Change the state of an object as soon as it gets in
contact with another object.

- Switch between outer and inner view of an object by
dragging an “inspector” image over it.

- Hide one representation of an object unless it is
explicitly uncovered.

- Map one representation A to another representation B
on demand.

- Turn around playing cards or note cards.
- Show a question and reveal the solution by activating

the item.
- Translate a text item by pointing on the text.
- Switch between text and image representation.
- Switch between before-after states by using a

“transformer” image.

3.6 Rationale
Pointing at objects is a very important tool to direct attention [19].
Activators can point permanently at objects and provide
additional semantic. Focussing single objects out of a group helps
to concentrate on details. Setting and showing visual states on
demand can be helpful for both discovering and demonstrating
different views of one object.

3.7 Related patterns
Active Areas: The Active Areas pattern is the inverse of this
pattern.
Roll-Over: (see description in the Active Areas pattern).

4. No-Go-Areas
Restrict the areas into which you can drag an object.

4.1 Examples

Figure 34 . Stay on ground: You cannot drag a person over

the sea or into the sky.

Figure 35. Protect info boxes: You cannot drag the white box

over the gray info box.

Figure 36. Channels: The ship cannot be dragged to the

coastline and it cannot pass the water gate until it is opened.

4.2 Problem
If the user has all levels of freedom to drag a visual object then he
can drag objects to inadequate places by intend or accident.
Interactive graphics can break into invalid states, e.g. ships could
fly if you drag them into the sky, or, persons can just be dragged
through walls. Forbidden operations can be triggered if you can
drag a graphic to all areas, e.g. adding an object to a misfitting
set. Dragging an image over any area on the screen could hide
important information or handicap the access to important graphic
user interface elements.

4.3 Solution

Figure 37. Define No-Go-Areas.

Figure 38. Define dragable objects as Tourists.

Figure 39. A Tourist object cannot enter the No-Go-Area.
Outside of the No-Go-Area the Tourist can move without

restrictions.

Figure 40. If the user drags the Tourist into a No-Go-Area the
motion vector is truncated. The motion stops at the bounds of

the No-Go-Area.

Figure 41. Still, the Tourist can be dragged without

restrictions outside of the No-Go-Area.

4.4 Details
A No-Go-Area defines an area on the screen where other objects
are not meant to be. This restriction can either apply to a defined
group of dragable Tourist objects or to all other objects on the
screen. A No-Go-Area is defined by a shape (rectangle, ellipse,
polygons etc.) or the bounding box of an image object.

Tourist objects can be dragged by mouse or change their positions
according to motion patterns (e.g. SYNCHRONIZE OBJECTS). Every
change in position or size can be expressed as a vector that starts
at the original location of the Tourist. The motion vector must not
intersect with any No-Go-Area.

Any motion vector is truncated at the first intersection with a No-
Go-Area. In particular, a Tourist cannot transit a No-Go-Area. For
example, if the user tries to drag a Tourist object from the left
hand side of a No-Go-Area to the right hand side, the applied
motion differs from the requested motion.

Figure 42. Left: request motion. Right: Applied motion.

Of course, the Tourists can move around the No-Go-Area:

Figure 43. Requested and applied motion are the same.

Without No-Go-Areas, representations that are impossible in the
real world could be shown and therefore could lead to
misconceptions.

Figure 44. Misconception: A person moves over a castle.

Indeed, the end user could take care by himself to avoid dragging
a graphic into inappropriate areas. However, learners may not
know the restrictions given by nature and drag elements to the
wrong places without getting negative feedback. Thus, exploring
what is possible and what is not becomes unclear.

Also, avoiding wrong operations requires more concentration at
presentation time and can cause additional stress. Wrong
operations or invalid representations could occur by accident.

Instead of defining No-Go-Areas, one could define valid areas
instead. This is done in the SANDBOX pattern. Which strategy to
choose depends on whether the valid or invalid areas are larger, or
more complex. For example, explicitly expressing all valid areas
on the screen is time consuming if only some areas are denied to
be entered.

4.5 What else can I do with this?
- Create barriers for dragable elements.
- Stop elements at a given point.
- Define areas which should never be covered by other

elements.
- Avoid impossible intersection of images that represent

solid objects.
- Build up channels which cannot be exited by a dragable

element.
- Build the walls of a maze and forbid that the user can

drag elements through the walls.

4.6 Rationale
Not allowing people to arrange objects in a way that either
important information is hidden or the meaning of the graphic
gets lost is a way of protection [14]. According to the law of

closure people tend to group objects that are in a closed container
[6]. To avoid groupings that are unnatural, one can prohibit such
operation in the first place.

4.7 Related patterns
Sandbox: The SANDBOX pattern is the inverse of this pattern. A
NO-GO-AREA defines explicitly one area where other objects are
not allowed to be. A SANDBOX defines explicitly the only area
where objects are allowed to be.

Drop Limitation: Only Accepted Objects are allowed to stay
inside a Drop area. Other objects can be dragged over the area,
however, once they are dropped they are pushed out
automatically. Also, if a maximum number of contained objects is
reached further objects are pushed out as well. In opposition to
NO-GO-AREAS this pattern allows other objects to enter or to pass
a Drop Area anyway. Only on dropping an element it will be
checked whether or not it is allowed to stay inside.

Drag Restriction: A dragable object is only allowed to move
horizontally or vertically. This pattern is used to represent straight
motion along a line

5. Sandbox
Avoid that a dragable element can exit a defined area.

5.1 Examples

Figure 45. Keep inside the box: You drag and re-arrange all

elements within the box. However, you cannot drag one
element out of the box.

Figure 46. Cage: You can lock the birds into the cage but you

cannot drag them out again.

Figure 47. Stay on the road: You can drag the car on the

street. The car cannot exit the street.

5.2 Problem
Some graphic elements strictly belong to one area and it must be
avoided that the user can drag the graphic to other areas. If you
have a graphic element that makes only sense within a defined
region, e.g. a car should never exit the street it runs on, you have
to provide rules that the element sticks to the area it belongs to. If
objects are dragged out of their natural space, the graphic can
become invalid or the semantic gets lost. Dragging elements away
from their original spaces can decompose a graphic up to the
point that the whole image breaks.

5.3 Solution

Figure 48. Define an area as a sandbox.

Figure 49. Define dragable objects as Child objects.

Figure 50. Child objects cannot exit the Sandbox. One can
drag a Child unrestricted within the Sandbox.

Figure 51. Dragging the Child out of the Sandbox is

prohibited. The motion vector is truncated.

Figure 52. Still, within the Sandbox the Child can be further

dragged.

5.4 Details
Many visual elements require the option to be repositioned within
a local region. The most flexible way to set a new position is to
drag the element with your mouse pointer. However, the user
must not drag elements out of the defined areas if this would
cause invalid representations.

For a Sandbox one can define a group of objects as Children that
are not allowed to exit the save area of the Sandbox. A Sandbox is

defined by a shape (rectangle, ellipse, polygons etc.) or the
bounding box of an image object.

Child objects that are in the Sandbox cannot exit it any more. One
can have a strong restriction in which a Child has to remain fully
included within the sandbox.

Figure 53. Strong restriction

This option is preferable if you really need to ensure that an area
must not be exited partially, e.g. objects should never exit a
computer screen.

Figure 54. Objects cannot exit the screen

A more liberal option is to consider Child objects to be in the
Sandbox as long as they intersect the Sandbox.

Figure 55. Liberal restriction

The critical requirement in this option is that the Child always has
to be in touch with the Sandbox. For example, you want a person
to remain on a platform.

Figure 56. Objects only have to intersect

This option is also helpful to guide objects along paths. For large
regions the user can manage to not drag elements out of space
without explicit restrictions. But for small regions, e.g. thin
channels or the space of a slider, it is impossible to exactly keep a
dragable element within its valid regions.

At the beginning, usually all Child objects are already in the
Sandbox. However, it is valid that Child objects are outside at the
initial state of an interactive graphic. Thus, to drag a Child object
from outside to inside is a valid operation even if it can only be
applied once:

Figure 57. Child moving into the sandbox

5.5 What else can I do with this?
- Allow objects to be freely dragable within a box or

container. Within the defined region any position for the
object is considered as a valid place whereas all areas
outside are invalid.

- Define roads, channels or paths that cannot be exited.
- Collect objects in a container and do not allow to

remove the collected items.
- Let objects stick to a defined area.
- Define the space in which GUI elements can be

rearranged or manipulated.
- Set an area in which you can drag a slider to different

positions, e.g. to set values or navigate other objects
within defined regions.

- Make sure that a moveable label sticks to an area with
elements that can be labelled by it.

5.6 Rationale
Many objects belong to a specific context and must not be taken
out of that context. In user interface design we find many
situations in which an interface element makes only sense in
specific container [18]. A sandbox prevents users from mixing
mismatching elements or breaking apart elements that depend on
each other.

5.7 Related patterns
No-Go-Area: The No-Go-Area pattern is the inverse of this
pattern.

Drop Targets:
Defines multiple areas in which a Drag Object can be dropped. If
the Drag Object is dropped in a Drop Target Area, it remains in
the area. If the Drag Object is dropped outside a Drop Target
Area, it immediately returns to the place where the dragging
started. This pattern can be seen as a network of sandboxes.
Objects can be dragged out of the sandbox but have to be dropped
in another sandbox otherwise they return to their last save
position in a sandbox.

Drag Restriction: (see description in the No-Go-Area pattern)

6. ACKNOWLEDGMENTS
Special thanks to Dave West who has shepherded this paper and
shared his experience with the authors. Dave always encouraged
us to improve the patterns further and crystallize the essence of
the patterns. Also, we would like to thank the writer’s workshop
participants who have encouraged us to focus on visual
representation rather than text descriptions. In particular, Jason
Yip and, one year before, Kyle Brown have recommended to
imitate a style as found in “Understanding comics” [13]. We are
not that far yet, however, the high amount of visual examples and
explanatory graphics is a result of their affirmation to this
extraordinary form of documentation.

7. REFERENCES
[1] Bayle, Elisabeth et al.: Putting It All Together : Towards a

Pattern Language for Interaction Design, Summary Report of
the CHI’97 Workshop

[2] Borchers, Jan: A Pattern Approach to Interaction Design;
John Wiley & Sons, 2001

[3] Chang, Dempsey; Dooley, Laurence; Touvinen, Juhani E.:
Gestalt Theory in Visual Screen Design: A New look at an
Old Subject. ACM International Conference Proceeding
Series; Vol. 26 . Proceedings of the Seventh world
conference on computers in education conference on
Computers in education: Australian topics - Volume 8. 2002

[4] Clark, R.C.; Mayer, R.E.: e-Learning and the Science of
Instruction, Pfeiffer, San Francisco., p67-81. 2003

[5] Duynie, Douglas K. van; Landay, James A.; Hong, Jason I.:
The Design of Sites, Addison-Wesley, 2004

[6] Goldstein, E. Br.: Wahrnehmungspsychologie. Heidelberg:
Spektrum Akademischer Verlag, 2002

[7] Granlund, Asa; Lafrenière, Daniel ; Carr, Daniel A.: A
Pattern-Supported Approach to the User Interface Design
Process, Proceedings of HCI International 2001, 9th
International Conference on Human-Computer Interaction,
2001, New Orleans

[8] Kohls, C., Windbrake, T: Autorenwerkzeug Javanti. In Bode,
A., Desel, J., Rathmeyer, S., Wessner, M. (Eds.): DeLFI
2003, Tagungsband der 1. e-Learning Fachtagung
Informatik, p. 450-459, Garching bei München 2003.

[9] Kohls, C., Windbrake, T: Muster für interaktive Inhalte.In
Engels, G., Seehusen, S. (Eds.): DeLFI 2004: Die e-Learni

[10] van Welie, M.; Veer, van der Gerrit, C.: Pattern Languages
in Interaction Design: Structure and Organization, Interact
2003ng Fachtagung Informatik, Tagung der Fachgruppe e-
Learning der Gesellschaft für Informatik e.V. (GI), p. 389-
390. Paderborn 2004

[11] Kohls, C., Windbrake, T. : Towards a Pattern Language for
Interactive Information Graphics. Pattern Languages of
Programming Design 2006. Portland, Oregon: Hillside
Group. URL:
http://hillside.net/plop/2006/accepted_papers.htm.

[12] Kohls, C., Windbrake, T.: Moving objects. More patterns for
a pattern language of interactive information graphics.
EuroPloP 2007, in preparation.

[13] Moreno, R.; Mayer, R.E.: Cognitive Principles of
Multimedia Learning: The Role of Modality and Contiguity,
Journal of Educational Psychology, 91, p. 358-368, 1999

[14] McCloud, S.: Understanding Comics: The Invisible Art.
Harper Collins Publishers, Inc., 1993

[15] Norman, D.: The Design of Everyday Things, New York:
Basic Books, 1988.

[16] Rieber, L.P.: Computers, graphics, & learning. Englewood
Cliffs, NJ: Prentice Hall, 1990

[17] Schumann, H.; Müller, W.: Visualisierung. Grundlagen und
allgemeine Methoden, Springer, Berlin, 2000

[18] Schmitt, Silke; Schreiner, Martin; Timmesfeld, Fel; Vucica,
Martina; Wallach, Dieter: PatternCube.com: Ein
webbasiertes Repository für User Interface Design Patterns.
In: Hassenzahl M.; Peissner, M. (Hrsg.): Usability
Professionals 2005

[19] Tidwell, Jenifer: Designing Interfaces, O’Reilly, Sebastopol,
2005

[20] Ware, C: Information Visualization – Perception for Design.
Morgan Kaufmann Publishers, San Francisco., p.222, 2004

Appendix: Pattern relations

