
SIMD:
An Additional Pattern for PLPP (Pattern Language for

Parallel Programming)

Berna L. Massingill
Department of Computer

Science
Trinity University
San Antonio, TX

bmassing@trinity.edu

Timothy G. Mattson
Microprocessor Technology

Laboratory
Intel Corporation

DuPont, WA
timothy.g.mattson@intel.com

Beverly A. Sanders
Department of Computer and

Information Science and
Engineering

University of Florida
Gainesville, FL

sanders@cise.ufl.edu

ABSTRACT
Recent trends in hardware, such as IBM’s Cell Broadband
Engine and GPUs that can be used for general-purpose
computing, have made widely available systems for which
a SIMD (Single Instruction, Multiple Data) style of data-
parallel programming is appropriate. This paper presents a
pattern to help software developers construct parallel pro-
grams for environments that support this style of data par-
allelism. In this approach, the program is viewed as a single
thread of control, with implicitly parallel updates to data.
This pattern is a new addition to the Pattern Language
for Parallel Programming (PLPP) presented in our previ-
ous work [18,19].

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Program-
ming.

General Terms
Algorithms, Design.

Keywords
Parallel programming, design patterns, pattern language,
SIMD (Single Instruction, Multiple Data).

1. INTRODUCTION
Over the course of several years we have developed a

pattern language for developing parallel application pro-
grams. The patterns were developed in a series of PLoP pa-
pers [12–16] and published in [19]. This pattern language,
which we call PLPP (Pattern Language for Parallel Pro-
gramming), embodies a methodology in which we develop a

Preliminary versions of these papers were workshopped at Pattern Lan-
guages of Programming (PLoP) ’07 September 5–8, 2007, Monticello, IL,
USA. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the authors. ISBN: 978-1-60558-411-9.
.

parallel application by starting with a good understanding
of the problem and then working through a sequence of pat-
terns, ending up with code. One of our long-term goals for
this work is to review the pattern language and revise it as
needed. A first step in this direction was the development of
an additional pattern, Reengineering for Parallelism [17,18]
discussing how to apply the pattern language to existing
applications (i.e., when the starting point is not simply a
good understanding of the problem, but existing sequential
code). In this paper, we present another proposed addition
to PLPP, to address a class of target programming environ-
ments not addressed well by the current patterns.

1.1 Data-Parallel Programming and SIMD,
Then and Now

From the early days of parallel computing, making the
programmer’s job easier has been a key concern. A popu-
lar idea in the late 1980s and early 1990s was to think of
the computation in terms of a single stream of instructions
operating on multiple elements of data, with concurrency
emerging from the fact that the single instruction was oper-
ating on multiple data elements at the same time. This is the
so-called SIMD (Single Instruction, Multiple Data) model.
Hardware was built according to this model, the most fa-
mous example being the Connection Machine [6]. A natural
and more general programming model for such hardware is
data parallelism, in which concurrency is based on updating
elements or sections of large data structures (such as arrays)
in parallel. Hillis and Steele wrote an early and influential
paper [7] on this style of programming. The SIMD model
fell out of favor in the hardware world, supplanted by vari-
ous forms of MIMD (Multiple Instruction, Multiple Data).1

The idea of data-parallel programming, however, survived
in a number of forms, including both explicitly data-parallel
programming environments such as HPF [8] and strategies
for finding and exploiting concurrency by focusing on the
data rather than the computation — in PLPP terms, by
starting with a Data Decomposition rather than a Task De-
composition.

Recent trends in hardware have renewed interest in more
explicitly data-parallel programming in general and the
SIMD model in particular: Several mainstream hardware

1The terminology — SIMD versus MIMD — is based on a
taxonomy defined in an early paper by Flynn [5].

platforms involve arrays of special-purpose processors, no-
tably programmable GPUs (such as the NVIDIA GeForce)
and IBM’s Cell Broadband Engine (used in the PlaySta-
tion 3). Such hardware can be programmed at a fairly low
level (e.g., using NVIDIA’s CUDA [21]), but programmers
may find it easier to work at a higher level of abstraction and
depend on a compiler and/or runtime library to map appro-
priate abstractions onto the details of particular hardware
platforms. One approach to doing this is stream processing,
featuring collections of data (called streams) to be operated
on in parallel by sequences of instructions (called kernels);
examples include Brook [4] and the RapidMind Develop-
ment Platform [23]. Another approach focuses on defining
data types representing collections of data to be operated
on in parallel and operations on these data types; examples
include the PeakStream Platform [22] and Microsoft’s Ac-
celerator [1]. An advantage of these higher-level approaches
is greater potential for portability.

1.2 Data-Parallel Programming and PLPP
PLPP is organized into four design spaces (groups of pat-

terns) that correspond to the four phases of the development
methodology it embodies. (Appendix A gives an overview
of PLPP and the four design spaces, for readers unfamiliar
with it.)

The first of these design spaces, Finding Concurrency , is
concerned with identifying and analyzing exploitable concur-
rency. Of the two starting points, one (Data Decomposition)
is a good fit for the kinds of hardware and programming en-
vironments just described.

The next design space, Algorithm Structure, describes
strategies for exploiting the concurrency identified in the
first space. Several of the patterns are again good fits: Task
Parallelism (despite its name), Geometric Decomposition,
and Recursive Data.

The next design space, Supporting Structures, includes
patterns that represent different approaches to structuring
programs, such as SPMD (Single Program, Multiple Data,
as exemplified by most MPI programs) and Loop Parallelism
(as exemplified by most OpenMP programs). None of these
patterns, however, really fits the platforms (hardware and
programming environments) described above. We believe
now that to fully address these platforms we will need to ad-
dress three broad categories of data-parallel programming:

• Data-parallel programming in which different units of
execution (UEs)2 operate concurrently on relatively
large sections of data, possibly performing slightly dif-
ferent operations — for example, to deal with bound-
ary conditions.

• Data-parallel programming in which different UEs op-
erate concurrently on what are typically smaller sec-
tions of data, perhaps single elements, with each UE
executing the same computational kernel, but not nec-
essarily in lockstep.

• Data-parallel programming in which different UEs op-
erate concurrently on what are typically smaller sec-
tions of data, perhaps single elements, with all UEs
executing the same sequence of instructions in lock-
step.

2Generic term used in PLPP for processes or threads.

The first of these categories is addressed by our existing
SPMD pattern. The other two categories are not as well
addressed; [19] does include a brief discussion of “the SIMD
pattern”that fits the last category, but it is not a full-fledged
pattern.

In this paper we present a complete SIMD pattern to ad-
dress the last of the three categories described above. Future
work will address the remaining category.

2. THE SIMD PATTERN

Problem
How do you exploit concurrency defined as parallel updates
to data without specifying in detail how that concurrent
execution is implemented?

Context
Programmers tend to think of a program’s execution as a
sequence of instructions. The program’s source code may
include many branches with multiple pathways through the
code, but only one path at a time is active. When concurrent
execution is needed, however, this way of thinking about the
program’s execution is usually inadequate: In many paral-
lel algorithms, different pathways through a program may
be active at the same time, or there may be multiple UEs3

executing the same code at the same time but more or less
independently. This parallel mindset has proved very diffi-
cult for programmers to master.

It would be valuable if we could define a high-level abstrac-
tion that allows programmers to think in terms of a single
thread of control, with the concurrency being hidden inside
lower-level primitives. Defining a high-level abstraction for
the general case has proved difficult if not impossible. How-
ever, there is a subset of problems for which it is easier:
those where the concurrency is defined in terms of largely
independent updates to the elements of the key data struc-
tures in the problem. For such problems, the data-parallel
model, in which the program appears to have a single thread
of control, but operations on these key data structures are
implicitly concurrent, seems reasonable.

This is a particularly attractive model for some hardware
platforms, particularly those involving groups of processing
elements that can readily be made to operate in a SIMD
(Single Instruction, Multiple Data) style. Several program-
ming environments for such platforms are based on this
model; they typically provide predefined datatypes suitable
for these key data structures and ways of operating on them
in parallel.

Forces
All the program structure patterns in PLPP share a common
set of forces, described in some detail in [19] and summarized
here, with discussion of how they apply to the SIMD pattern
in particular.

• Clarity of abstraction. Is the parallel algorithm
clearly apparent from the source code?

Code that allows the reader to see the details of the
algorithm with little mental effort is always important

3Units of execution — generic term for processes or threads.

for writing correct code, but is particularly essential
for parallel programs.

It is particularly important if the target hardware plat-
form is one that may be difficult to program at a low
level (as is the case with some hardware platforms in-
volving special-purpose processors).

• Scalability. How many processors can the parallel
program effectively utilize?

Scalability of a program is restricted by three factors:
the amount of concurrency available in the algorithm,
the fraction of the runtime spent doing inherently se-
rial work, and the parallel overhead of the algorithm.

The importance of scalability relative to other goals
may depend in part on the target hardware platform
(i.e., what constraints exist on the maximum number
of processing elements). However, it is always impor-
tant to be sure the amount of exploitable concurrency
is large enough, the serial fraction of the code small
enough, and the overhead small enough to allow the
algorithm to make good use of whatever processing el-
ements are available. Notice that for target hardware
platforms where the data-parallel operations are exe-
cuted on a coprocessor (such as a GPU), overhead can
include the cost of moving or copying data between
host memory and the coprocessor.

• Efficiency. How close does the program come to fully
utilizing the resources of the parallel computer?

Quantitatively, efficiency is typically measured by
comparing the time taken by the best sequential al-
gorithm to the time taken by the parallel algorithm
multiplied by the number of processing elements.

• Maintainability. Is the program easy to debug, ver-
ify, and modify?

Programs that are difficult to understand are usually
also difficult to get running in the first place, and to
modify throughout their lifetimes. Parallel programs
are notoriously difficult to debug, especially if pro-
grammers cannot understand them without reasoning
about multiple independent threads of control inter-
acting in different ways.

• Environmental affinity. Is the program well aligned
with the programming environment and hardware of
choice?

Whenever feasible, program designs should be portable
to as many platforms as possible, but in any case it
should be possible to implement them efficiently on
likely target platforms.

• Sequential equivalence. Where appropriate, does
a program produce equivalent results when run with
many UEs4 as with one? If not equivalent, is the rela-
tionship between them clear?

It is highly desirable that the results of an execution
of a parallel program be the same regardless of the
number of processing elements used. This is not al-
ways possible, because changes in the order of floating-
point operations can produce small (or not so small,

4Units of execution, the term we use in PLPP as a generic
way of referring to either processes or threads.

if the algorithm is not well-conditioned) changes in re-
sults. However, it is highly desirable, since it allows us
to reason about correctness and do most testing on a
single-process version of the program.

Solution
The SIMD pattern is based in general on the data-parallel
model described in the Context section, and in particular
on the SIMD style. The pattern is based on two key ideas:
(1) organizing the data relevant to a problem into regular
iterative data structures such as arrays, which we will call
parallel data structures, and (2) defining the computation
in terms of a sequence of parallel updates to these parallel
data structures. Often in applying these two ideas one must
also introduce parallel data structures to hold intermediate
results.

Notice that the meaning of a data-parallel program can be
understood in terms of a sequence of instructions, in much
the same way as a sequential program. The concurrency
is hidden inside the updates to the elements of the parallel
data structures. This is valuable to a programmer trying to
understand a new program and also in debugging.

Applying this pattern is often best done using the strategy
of incremental parallelism described in the PLPP Loop Par-
allelism and Reengineering for Parallelism patterns. Con-
sider a sequential program that we wish to execute on par-
allel hardware, such as a GPU or a multi-core processor. An
effective and practical approach to incrementally transform-
ing the code into a parallel program is as follows.

• Identify exploitable concurrency. Find the bottle-
necks in the program and the data structures central
to the computation. (Profiling may help with this.) In
cases where this pattern is effective, these will often
appear as computations organized as loops over all el-
ements of an array. You may need to restructure the
problem to recast it into this form.

• Refactor to eliminate obstacles to parallelism.
Eliminate loop-carried dependencies (as described in
the PLPP Loop Parallelism patterns), and express
each computation as a simple loop over all elements
of an array, where all the iterations are independent.

• Revise to use data-parallel operations. Recast
the loop body as a data-parallel operation on the ar-
ray using the data-parallel operations provided by the
target programming environment. (If the environment
provides both a foreach construct and whole-array op-
erations, consider making this transformation in two
stages: First replace the loop with a foreach and ver-
ify that the result is correct. Then replace the foreach
with a whole-array operation or operations.)

• Allocate elements to threads (if needed). Allo-
cate elements of the array to threads. In some environ-
ments, this task is taken care of by the compiler/run-
time system combination. In others, it is explicitly
managed by the programmer, who needs to be aware
of the resources of the specific hardware.

• Tune for performance. Build the program and
evaluate the effectiveness of the solution so far. Is
there enough work done on each element to justify the

overhead? In a multi-core environment, the overhead
comes from creating and managing the threads. There
should be enough work per thread to make this worth-
while. If a coprocessor is being used, the overhead
tends to be dominated by the cost of transferring data
between the host and coprocessor memory. In addi-
tion, coprocessors may not have caches, so the number
of memory accesses should be minimized.

The following short examples are typical of the kinds of
transformations that can be helpful in applying this pat-
tern. These examples, like the longer code examples later in
the pattern, are in Fortran 95. A short summary of its rele-
vant features appears in the section “Example Programming
Environment (Fortran 95)” below.

• Replacing loops with foreach (forall) constructs and
then array operations is fairly straightforward.

For example, suppose you start with arrays x, y, and
z with indices ranging from 1 to N and a calculation of
the form

do i = 1, N
z(i) = a * x(i) + y(i)

Since the iterations of the loop are independent, this
can be readily transformed to use a forall as follows

forall (i = 1 : N)
z(i) = a * x(i) + y(i)

end forall

and further transformed to use array operations as fol-
lows

z = a * x + y;

• The PLPP Algorithm Structure pattern Task Par-
allelism discusses several techniques for eliminating
loop-carried dependencies, most involving replacing a
single variable with one copy per UE. These same tech-
niques can be applied here, replacing single variables
with arrays.

For example, suppose you start with a calculation of
the form

do i = 1, numSteps
x = x + f(i)

This can be transformed by introducing an array y

to hold intermediate results which are later combined,
giving

forall (i = 1 : numSteps)
y(i) = f(i)

end forall
x = sum(y) ! library function,

! returns sum of elements of array

Performance Considerations
In order for this pattern to be effective, the following two
conditions must be met.

• The arrays, or the work per element, must be large
enough to compensate for overheads inherent in man-
aging the parallel execution.

• A large enough fraction of the computation must fit
this pattern to keep the serial fraction low; otherwise
overall scalability will be limited, as described by Am-
dahl’s law.

The pattern also must be appropriate for the hardware tar-
get. A common use of this pattern is for general-purpose
programming of a GPU. In this case, the GPU serves as a
coprocessor. This adds a number of extra costs:

• The data must be marshaled into a buffer for move-
ment to the coprocessor.

• The data must be moved from the CPU address space
into the coprocessor address space.

• The computations must be managed to satisfy any syn-
chronization constraints between the coprocessor and
the CPU.

• The results must be moved from the coprocessor ad-
dress space back to the CPU address space.

The time required for these steps must be small compared
to the runtime on the coprocessors if this pattern is to be
effective.

Programming Environments
This pattern works best when the target programming en-
vironment makes it easy to express parallel data structures
and operations. Such environments usually provide the fol-
lowing high-level constructs.

• Element-wise basic arithmetic operations.

• Common collective operations such as scatter, gather,
reduction, and prefix scan.

• A foreach command to handle more general element-
wise updates.

Examples of such environments include the following.

• Fortran 95 [9, 20]. Many of the array operations in
Fortran 90 were designed to allow compilers to exploit
vector-processing or other parallel hardware if avail-
able; Fortran 95 added a forall construct similar to
the foreach described above.

• High Performance Fortran (HPF) [8]. HPF is a set of
extensions to Fortran 90 for data-parallel computing.
It includes some of the additions of Fortran 95 (e.g.,
forall), compiler directives for indicating how arrays
should be distributed among UEs, and additional li-
brary functions.

• The PeakStream Platform [22]. This platform pro-
vides C/C++ library classes and functions to define
and operate on parallel arrays.

• Microsoft’s Accelerator [1]. This system, aimed at fa-
cilitating general-purpose use of GPUs, provides C#
library classes to define and operate on parallel arrays.

Example Programming Environment (For-
tran 95)
In this section we briefly describe the features of Fortran 95
that make it a data-parallel programming environment.
This is the environment we chose for the code examples in
this pattern, largely because there are free compilers readily
available for common platforms, so the code can be com-
piled and its correctness verified without requiring special
software or hardware.

• Whole-array operations. As an example of operations
on arrays, consider the following code fragment to com-
pute the product of a scalar value a and an array x,
add it to an array y, and assign the result to array z.
Indices for each array range from 1 to N, where N is an
integer defined elsewhere.

real a
real x(1:N), y(1:N), z(1:N)
z = a * x + y

• A forall construct similar to the foreach mentioned
earlier. A Fortran 95 forall consists of a range of
index values and a “loop body” of statements to be ex-
ecuted for each index in the range. Assignment state-
ments in the loop body work as parallel assignments,
with all right-hand sides evaluated before values are
assigned to any left-hand sides. We could rewrite the
preceding example using this construct as follows:

real a
real x(1:N), y(1:N), z(1:N)
forall (i = 1 : N)
z(i) = a * x(i) + y(i)

end forall

This construct also includes an optional mask speci-
fying that the loop body is to be executed only for
indices that match a particular criterion. For exam-
ple, the following code changes all negative elements
of array x to zero.

real x(1:N)
forall (i = 1 : N, x(i) < 0)

x(i) = 0.0
end forall

Examples
As examples of this pattern in action, we will consider in
some detail the following, and then briefly describe other
examples and known uses.

• Computing π using numerical integration. (This ex-
ample is used in several patterns of PLPP.)

• Simplified modeling of heat diffusion in a one-
dimensional pipe, as an example of a mesh compu-
tation. (This example is also used in several patterns
of PLPP.)

• The Black-Scholes method for option pricing, a widely
used example of Monte Carlo methods.

• The so-called scan problem, a generalized version of
computing partial sums of an array.

Numerical Integration
Consider the problem of estimating the value of π using the
following equation.

π =

Z 1

0

4

1 + x2
dx

We can use the midpoint rule to numerically approximate
the integral. The idea is to approximate the area under a
curve using a series of rectangles, as shown in Fig. 1.

0

1

2

3

4

0 0.25 0.5 0.75 1

function (4/(1+ x2))
approximation

Figure 1: Approximating the area under a curve
with a series of rectangles. Notice that the width
of each rectangle is the width of the whole area di-
vided by the number of rectangles, and the height
of each rectangle is the value of the function at the
x coordinate in the middle of the rectangle.

A program to carry this calculation out on a single proces-
sor is shown in Fig. 2. To keep the code simple, we hard-code
the number of rectangles (steps). The variable sum is initial-
ized to zero and the step size is computed as the range in x

(equal to 1.0 in this case) divided by the number of steps.
The area of each rectangle is the width (the step size) times
the height (the value of the integrand at the center of the
interval), as shown in Fig. 1. Since the width is a constant,

we pull it out of the summation and multiply the sum of the
rectangle heights by the step size, step, to get our estimate
of the definite integral.

integer NUM_STEPS
parameter (NUM_STEPS=1000000)
integer i
real step, sum, x, pi

step = 1.0/(NUM_STEPS)
sum = 0.0
do i = 0, NUM_STEPS-1

x = (i+0.5)*step
sum = sum + 4.0/(1.0+x*x)

end do
pi = step*sum

print *, pi

Figure 2: Sequential Fortran 95 program to carry
out a midpoint rule integration to solve

R 1

0
4

1+x2 dx.

Since we are beginning with sequential code, we can work
through the steps described previously for a strategy based
on making changes incrementally, as follows.

Identify exploitable concurrency.
The only source of exploitable concurrency is the iter-

ations of the loop, and they are almost independent and
therefore a good fit for the simplest of the PLPP Algorithm
Structure patterns, Task Parallelism.

Refactor to eliminate obstacles to parallelism.
As discussed in Task Parallelism, the single loop-carried

dependency is the summing of intermediate values into sum,
which we can eliminate by having each thread of control
compute its own partial sum and combining them at the
end. We can do this in a way that fits with the data-parallel
model by simply replacing temporary variable x with an
array to hold the intermediate values that will be summed.
We can then compute the intermediate results by performing
operations on this array, ending with a reduction operation
to compute their sum.

Revise to use data-parallel operations.
Following the strategy of making changes incrementally,

we could start by making the changes just described and
replacing the do loop with a forall, as shown in Fig. 3.

Further revise to use more-data-parallel operations.
We can then make the program more purely data-parallel

by replacing each line of the body of the forall with an
element-wise operation on the array x, as shown in Fig. 4.
(We do still have to use a forall to give each element of
the array a value based on its index. Some programming
environments might provide a library function that would
do this, however.)

Concluding remarks.
Two of the PLPP program structure patterns, SPMD and

Loop Parallelism, also discuss this example. Both use the
same strategy presented here (computing partial sums and

integer NUM_STEPS
parameter (NUM_STEPS=1000000)
integer i
real step, pi
real x(0:NUM_STEPS-1)

step = 1.0/(NUM_STEPS)
forall (i = 0:(NUM_STEPS-1))

x(i) = (i+0.5)*step
x(i) = 4.0/(1.0+(x(i)*x(i)))

end forall
pi = step*sum(x)

print *, pi

Figure 3: Data-parallel Fortran 95 program to carry
out a midpoint rule integration to solve

R 1

0
4

1+x2 dx.
This version uses forall.

integer NUM_STEPS
parameter (NUM_STEPS=1000000)
integer i
real step, pi
real x(0:NUM_STEPS-1)

step = 1.0/(NUM_STEPS)
forall (i = 0:(NUM_STEPS-1))

x(i) = i
end forall
x = (x + 0.5)*step
x = 4.0 / (1.0 + x*x)
pi = step*sum(x)

print *, pi

Figure 4: Data-parallel Fortran 95 program to carry
out a midpoint rule integration to solve

R 1

0
4

1+x2 dx.
This version uses array operations.

combining them); only the way in which this strategy is
turned into code is different.

Mesh Computation
The problem is to model one-dimensional heat diffusion (i.e.,
diffusion of heat along an infinitely narrow pipe). Initially
the whole pipe is at a stable and fixed temperature. At
time 0, we set both ends to different temperatures, which
will remain fixed throughout the computation. We then
calculate how temperatures change in the rest of the pipe
over time. (What we expect is that the temperatures will
converge to a smooth gradient from one end of the pipe to
the other.) Mathematically, the problem is to solve a one-
dimensional differential equation representing heat diffusion:

∂U

∂t
=
∂2U

∂x2

The approach used is to discretize the problem space (repre-
senting U by a one-dimensional array and computing values
for a sequence of discrete time steps). We will output values
for each time step as they are computed, so we need only
save values for U for two time steps; we will call these arrays
uk (U at the timestep k) and ukp1 (U at timestep k + 1).
At each time step, we then need to compute for each point
in array ukp1 the following:

ukp1(i) = uk(i) + &
(dt/(dx*dx))*(uk(i+1)-2*uk(i)+uk(i-1))

Variables dt and dx represent the intervals between discrete
time steps and between discrete points respectively. A pro-
gram to carry this calculation out on a single processor is
shown in Fig. 5. (Code for print_values is straightforward
and not shown.) Notice that it employs a bit of cleverness
to avoid copying values from ukp1 to uk at every time step:
It defines pointers to the two arrays and simply swaps point-
ers, achieving the same result without the additional cost of
copying the whole array.

Since we are beginning with sequential code, we can work
through the steps described previously for a strategy based
on making changes incrementally, as follows.

Identify exploitable concurrency.
The overall calculation in this problem is a good fit for

the PLPP Algorithm Structure pattern Geometric Decom-
position, because the heart of the computation is repeated
updates of a large data structure, namely ukp1.

Revise to use data-parallel operations.
Expressing the same calculation using data parallelism is

actually simpler, however, given the semantics of the forall
construct (as described in the section “Example Program-
ming Environment (Fortran 95)” earlier); We can maintain
a single copy of the array representing U and update all
elements in parallel, thus:

integer NX, NSTEPS
parameter (NX=100)
parameter (NSTEPS=10000)
real LEFTVAL, RIGHTVAL ! values for left,

! right endpoints
parameter (LEFTVAL=1.0)
parameter (RIGHTVAL=10.0)
real dx, dt
integer i, k

real, pointer :: uk(:), ukp1(:), temp_ptr(:)

dx = 1.0/NX
dt = 0.5*dx*dx

allocate(uk(NX)) ! allocate space for uk
allocate(ukp1(NX)) ! allocate space for ukp1

do i = 2, NX-1
uk(i) = 0.0

end do
uk(1) = LEFTVAL ; ukp1(1) = LEFTVAL
uk(NX) = RIGHTVAL ; ukp1(NX) = RIGHTVAL

do k = 1, NSTEPS

do i = 2, NX-1
ukp1(i) = uk(i) + &

(dt/(dx*dx))*(uk(i+1)-2*uk(i)+uk(i-1))
end do
! "copy" ukp1 to uk by swapping pointers
temp_ptr => ukp1; ukp1 => uk; uk => temp_ptr

call print_values(nx, uk)

end do

Figure 5: Sequential Fortran 95 program for one-
dimensional heat equation.

forall (i = 2 : NX-1)
uk(i) = uk(i) + &
(dt/(dx*dx))*(uk(i+1)-2*uk(i)+uk(i-1))

end forall

Fig. 6 shows the complete program.

integer NX, NSTEPS
parameter (NX=100)
parameter (NSTEPS=10000)
real LEFTVAL, RIGHTVAL
parameter (LEFTVAL=1.0)
parameter (RIGHTVAL=10.0)

real uk(1:NX)
real dx, dt
integer i, k

dx = 1.0/NX
dt = 0.5*dx*dx

forall (i = 2 : NX-1)
uk(i) = 0.0

end forall
uk(1) = LEFTVAL
uk(NX) = RIGHTVAL

do k = 1, NSTEPS
forall (i = 2 : NX-1)

uk(i) = uk(i) + &
(dt/(dx*dx))*(uk(i+1)-2*uk(i)+uk(i-1))

end forall
call print_values(nx, uk)

end do

Figure 6: Data-parallel Fortran 95 program for one-
dimensional heat equation. This version uses forall.

Further revise to use more-data-parallel operations.
Alternatively, we could express the required calculation

in terms of operations on arrays, though it is slightly less
straightforward to do so: Calculation of U for each point
requires old values for the point itself and its left and right
neighbors. Left and right neighbors are represented in the
sequential code by array elements with indices i-1 and i+1.
But element i-1 is just element i of the array formed by
shifting all elements of uk to the right by one, and similarly
for element i+1 and an array formed by shifting uk left. For-
tran 95 has such a function, namely eoshift: eoshift(a,n)
returns an array obtained by shifting a by n positions (left
for positive n, right for negative n) and padding with zeros.
We can use it to do the required calculation thus:

uk = uk + (dt/(dx*dx)) * &
(eoshift(uk,-1) - 2*uk + eoshift(uk,1))

provided we then correct the wrongly-computed values for
the first and last element (which are supposed to remain
constant). Fig. 7 shows the complete program.

integer NX, NSTEPS
parameter (NX=100)
parameter (NSTEPS=10000)
real LEFTVAL, RIGHTVAL
parameter (LEFTVAL=1.0)
parameter (RIGHTVAL=10.0)

real uk(1:NX)
real dx, dt
integer k

dx = 1.0/NX
dt = 0.5*dx*dx

uk = 0.0
uk(1) = LEFTVAL
uk(NX) = RIGHTVAL

do k = 1, NSTEPS
! compute interior points using array operations
uk = uk + (dt/(dx*dx)) * &

(eoshift(uk,-1) - 2*uk + eoshift(uk,1))
! correct boundary points
uk(1) = LEFTVAL
uk(NX) = RIGHTVAL
call print_values(nx, uk)

end do

Figure 7: Data-parallel Fortran 95 program for one-
dimensional heat equation. This version uses array
operations.

Concluding remarks.
This example is discussed in some detail in text of Geo-

metric Decomposition (in [19]), and implementations using
MPI and OpenMP are shown.

Black-Scholes Option Pricing
As an example of a calculation from a different domain area,
namely finance, consider the Black-Scholes model for option
pricing [2]. As commonly defined, an option is an agreement
between a buyer and a seller, in which the buyer is granted a
right (but not an obligation), secured by the seller, to carry
out some operation (exercise the option) at some time in the
future. The predetermined price is called the strike price,
and the future date is called the expiration date. A call
option grants the buyer the right to buy the underlying asset
at the strike price; a put option grants the buyer the right to
sell the underlying asset at the strike price. There are several
types of options, mostly depending on when the option can
be exercised; European options can be exercised only on
the expiration date, while American-style options are more
flexible. For a call option, the profit made is the difference
between the price of the asset at the exercise date and the
strike price, minus the option price. For a put option, the
profit made is the difference between the strike price and
the price of the asset at the exercise date, minus the option
price. How much one would be willing to pay for the option
therefore depends on many factors, including:

• Asset price at expiration date.

• Strike price.

• Time to expiration date. (Longer times imply more
uncertainty.)

• Riskless rate of return, i.e., annual interest rate of
bonds or other investments considered to be risk-free.
P dollars invested at this rate will be worth P · erT
dollars T years from now; equivalently, one gets P dol-
lars T years from now by investing P · e−rT dollars
now.

The model gives a partial different equation for the evolution
of an option price under certain assumptions. For European
options, there is a closed-form solution to this PDE:

Vcall = S · CND(d1)−X · e−rT · CND(d2)

Vput = X · e−rT · CND(−d1)− S · CND(−d2)

d1 =
log(S

X
) + (r + v2

2
)T

v
√
T

d2 =
log(S

X
) + (r − v2

2
)T

v
√
T

CND(−d) = 1− CND(d)

where

• Vcall is the price for an option call

• Vput is the price for an option put

• CND(d) is the Cumulative Normal Distribution func-
tion

• S is the current option price

• X is the strike price

• T is the time to expiration

• r is the continuously compounded risk-free interest
rate

• v is the implied volatility for the underlying asset

Fig. 8 shows code, based on similar code provided as one
of the CUDA SDK examples [21], that uses these equations
to calculate Vcall and Vput for a set of randomly-generated
values of S, X, and T . To keep the code simpler, r, v, and
the number of samples are hard-coded.

Since we are beginning with sequential code, we can work
through the steps described previously for a strategy based
on making changes incrementally, as follows.

Identify exploitable concurrency.
There are four obvious sources of exploitable concurrency,

corresponding to the four loops in the main program. For
each loop, if its iterations are independent, or nearly so,
then they can be executed concurrently, as described in sim-
plest of the PLPP Algorithm Structure patterns, Task Par-
allelism.

Refactor to eliminate obstacles to parallelism..
To find out whether the iterations are independent, we

need to look at subprograms rand_in_range (for the first
three loops) and black_scholes_body (for the fourth loop).
We will assume that local variables for subprograms are allo-
cated in a way that does not introduce dependencies between
loop iterations (a reasonable assumption for Fortran 95 and
probably for most target environments).

Looking first at rand_in_range, we observe that it in turn
makes calls to random_number. This is a library function,

program blackscholes
integer OPT_N
parameter (OPT_N = 1000000)
real RISKFREE, VOLATILITY
parameter (RISKFREE = 0.02)
parameter (VOLATILITY = 0.30)
real option_price(1:OPT_N) ! input
real option_strike(1:OPT_N) ! input
real option_years(1:OPT_N) ! input
real call_result(1:OPT_N) ! output
real put_result(1:OPT_N) ! output

! initialize with randomly-generated data
do i = 1, OPT_N

option_price(i) = rand_in_range(5.0, 30.0)
end do
do i = 1, OPT_N

option_strike(i) = rand_in_range(1.0, 100.0)
end do
do i = 1, OPT_N

option_years(i) = rand_in_range(0.25, 10.0)
end do
! do calculations
do i = 1, OPT_N

call black_scholes_body(call_result(i), &
put_result(i), &
option_price(i), option_strike(i), &
option_years(i), &
RISKFREE, VOLATILITY)

end do
! code to print results not shown
end program

! generate uniformly distributed random real in
! [low, high] range
real function rand_in_range(low, high)
real low, high, temp
call random_number(temp)
rand_in_range = (1.0 - temp)*low + temp*high
end function

! calculate Black-Scholes formula for call and put
subroutine black_scholes_body(call_result, &

put_result, s, x, t, r, v)
real call_result, put_result
real s ! option price
real x ! option strike
real t ! option years
real r ! riskless rate
real v ! volatility rate

real sqrt_t, exp_rt, d1, d2, cnd_d1, cnd_d2
real CND ! function to compute cumulative normal

! distribution

sqrt_t = sqrt(t)
d1 = (log(s / x) + (r + 0.5*v*v)*t) / (v*sqrt_t)
d2 = d1 - v*sqrt_t
cnd_d1 = CND(d1)
cnd_d2 = CND(d2)
! calculate call and cut simultaneously
exp_rt = exp(-r*t)
call_result = s*cnd_d1 - x*exp_rt*cnd_d2
put_result = &

x*exp_rt*(1.0 - cnd_d2) - s*(1.0 - cnd_d1)
end subroutine

Figure 8: Sequential Fortran 95 program for Black-
Scholes option pricing.

! polynomial approximation of cumulative normal
! distribution function
real function CND(d)

real A1, A2, A3, A4, A5, RSQRT2PI
parameter (A1 = 0.31938153)
parameter (A2 = -0.356563782)
parameter (A3 = 1.781477937)
parameter (A4 = -1.821255978)
parameter (A5 = 1.330274429)
parameter (RSQRT2PI = 0.3989422804)

real d, k

k = 1.0 / (1.0 + 0.2316419*abs(d))
CND = RSQRT2PI*exp(- 0.5*d*d) * &

(k*(A1 + k*(A2 + k*(A3 + k*(A4 + k*A5)))))
if (d > 0) CND = 1.0 - CND
end function

Figure 9: Sequential Fortran 95 function to com-
pute cumulative normal distribution, adapted from
similar code provided as one of the CUDA SDK ex-
amples [21]. This code is included only so it can
be examined as a potential source of loop-carried
dependencies; the algorithm is not relevant to the
discussion and is therefore not discussed.

and unless we can be sure it gives correct results even if mul-
tiple copies are invoked concurrently, we must regard its use
as a loop-carried dependency, and this might mean that this
loop would need to stay sequential. Fortunately, however, in
addition to generating a single value, the library function is
capable of generating multiple values into an array, and with
a little refactoring of the sequential code we can make use
of this feature to eliminate the first three loops, for example
replacing

do i = 1, OPT_N
option_price(i) = rand_in_range(5.0, 30.0)

end do

with

call rand_in_range(OPT_N, option_price, 5.0, 30.0)

(This does not by any means guarantee that the library func-
tion will do anything concurrently, but it does allow us to
express the computation in a way that is readily seen to be
correct and easily mapped onto a library function for gen-
erating random values in parallel, if one exists in the target
programming environment.)

Looking next at black_scholes_body, we notice that it
in turn makes calls to CND, but this function by inspection is
safe for concurrent execution, since it uses only read-only
constants and local variables. (Code for CND is given in
Fig. 9.) So we should be able to replace this loop with

a forall. Because of restrictions on what can be in the
body of a forall construct, however, we cannot do this
directly, but must refactor so that we pass whole arrays
into black_scholes_body and perform the loop (to be re-
placed by a forall) inside the subroutine. The revised
black_scholes_body will have the form

subroutine black_scholes_body(n, call_result,
put_result, s, x, t, r, v)

integer n ! number of options
real call_result(1:n), put_result(1:n), &

s(1:n), x(1:n), t(1:n)
real r, v
real sqrt_t, exp_rt, d1, d2, cnd_d1, cnd_d2, CND
integer i
do i = 1, n

sqrt_t = sqrt(t(i))
! remaining lines similarly transformed

end do
end subroutine

When we do this, however, we introduce loop-carried depen-
dencies for the intermediate results (e.g., sqrt_t). These are
readily addressed with the technique described earlier: Re-
place each variable used for an intermediate result with an
array that can be operated on as a parallel data structure.
So, for example, we could replace the declaration of sqrt_t
with an array declaration

real sqrt_t(1:n)

and rewrite the first line of the loop thus

sqrt_t(i) = sqrt(t(i))

Revise to use data-parallel operations..
At this point we can replace the loop in

black_scholes_body with a forall. Following the
strategy of making changes incrementally, at this point it
would probably be wise to build the program and confirm
that it produces correct output.

Further revise to use more-data-parallel operations..
Finally, we can transform the forall construct into a se-

quence of whole-array operations; for example, the first line
can be replaced with

sqrt_t = sqrt(t)

The complete program is shown in Fig. 10.

program blackscholes
integer OPT_N
parameter (OPT_N = 1000000)
real RISKFREE, VOLATILITY
parameter (RISKFREE = 0.02)
parameter (VOLATILITY = 0.30)
real option_price(1:OPT_N) ! input
real option_strike(1:OPT_N) ! input
real option_years(1:OPT_N) ! input
real call_result(1:OPT_N) ! output
real put_result(1:OPT_N) ! output

! generate input data
call rand_in_range(OPT_N, option_price, 5.0, 30.0)
call rand_in_range(OPT_N, option_strike, 1.0, 100.0)
call rand_in_range(OPT_N, option_years, 0.25, 10.0)
! do calculations
call black_scholes_body(OPT_N, call_result, &

put_result, &
option_price, option_strike, option_years, &
RISKFREE, VOLATILITY)

! code to print results not shown
end program

! generate uniformly distributed random reals in
! [low, high] range
subroutine rand_in_range(n, array, low, high)
integer n
real array(1:n), low, high
call random_number(array)
array = (1.0 - array)*low + array*high
end subroutine

! calculate Black-Scholes formula for call and put
subroutine black_scholes_body(n, call_result,

put_result, s, x, t, r, v)
integer n ! number of options
real call_result(1:n), put_result(1:n)
real s(1:n) ! option price
real x(1:n) ! option strike
real t(1:n) ! option years
real r ! riskless rate
real v ! volatility rate

real sqrt_t(1:n), exp_rt(1:n), d1(1:n), d2(1:n), &
cnd_d1(1:n), cnd_d2(1:n)

! function to compute cumulative normal distribution
! ("elemental" means it can be applied element-wise
! to array)
interface

elemental real function CND(d)
real, intent(in) :: d
end function

end interface

sqrt_t = sqrt(t)
d1 = (log(s / x) + (r + 0.5*v*v)*t) / (v*sqrt_t)
d2 = d1 - v*sqrt_t
cnd_d1 = CND(d1)
cnd_d2 = CND(d2)
! calculate call and cut simultaneously
exp_rt = exp(- r*t)
call_result = s*cnd_d1 - x*exp_rt*cnd_d2
put_result = &

x*exp_rt*(1.0 - cnd_d2) - s*(1.0 - cnd_d1)
end subroutine

Figure 10: Data-parallel Fortran 95 program for
Black-Scholes option pricing.

Scan
A simple but frequently useful operation is computing all
partial sums of an array of numbers, sometimes called
sum-prefix or all-prefix-sums. This operation can be gen-
eralized to a so-called scan operation (to use the termi-
nology of APL [10]). This operation requires a sequence
a0, a1, . . . , an−1 and a binary operator ◦ with an identity
element. Output is a new sequence with element i defined
as

a0 ◦ a1 ◦ · · · ◦ ai
This is a so-called inclusive scan; if the sum does not in-
clude the element itself, it is called an exclusive scan. (It is
clearly straightforward to convert between the two types of
scans: inclusive to exclusive by shifting right one position,
padding with the identity element, and exclusive to inclusive
by shifting left one position and inserting as the last element
the sum of the last element of the inclusive scan and the first
element of the original sequence.) Fig. 11 shows code for a
naive sequential algorithm for an inclusive scan using addi-
tion.

integer a(0:N-1)
integer k
! code to initialize a omitted
do k = 1, N-1

a(k) = a(k) + a(k-1)
end do

Figure 11: Sequential Fortran 95 code for computing
partial sums of an array (inclusive scan). N is the size
of the array.

Although we are starting with sequential code, a strategy
of incremental parallelism will not help here. Instead, what
is needed is a rethinking of the problem. Hillis and Steele [7]
point out that while this appears to be an inherently sequen-
tial operation with execution proportional to the length of
the array, clever use of data parallelism can reduce the exe-
cution time from O(n) to O(log n), given enough processors
to assign a processor to each element. A more work-efficient
version of the algorithm was later proposed by Blelloch [3].
The examples in [7] were part of the inspiration for one of
the more interesting of the PLPP Algorithm Structure pat-
terns, Recursive Data, which captures the overall strategy
used both for Hillis and Steele’s parallel algorithm and for
Blelloch’s modified version. In the rest of this section we
discuss these two algorithms.

Hillis/Steele algorithm.
The overall idea is to make log2 n passes through the array,

where n is its size, first adding to each element k the (k−1)-
th element, then the (k− 2)-th element, then the (k− 4)-th
element, and so forth, as illustrated in Fig. 12. Fig. 13
shows code for this algorithm. Notice that the body of the
forall construct is executed only for indices that match the
mask; in iteration j of the outer loop, the body of the forall
will be executed only for those k for which k ≥ 2j−1. Recall
also that statements in the body of a forall operate as a
parallel assignment; in this case, replacing the forall with

x0 x1 x2 x3 x4 x5 x6 x7

∑0
0 xi ∑1

0 xi ∑2
1 xi ∑3

2 xi ∑4
3 xi ∑5

4 xi ∑6
5 xi ∑7

6 xi

∑0
0 xi ∑1

0 xi ∑2
0 xi ∑3

0 xi ∑4
1 xi ∑5

2 xi ∑6
3 xi ∑7

4 xi

∑0
0 xi ∑1

0 xi ∑2
0 xi ∑3

0 xi ∑4
0 xi ∑5

0 xi ∑6
0 xi ∑7

0 xi

Figure 12: Computing partial sums of an array (in-
clusive scan) using Hillis and Steele’s algorithm.

a sequential loop would give a different and incorrect result.

integer a(0:N-1)
integer j, k
! code to initialize a omitted
do j = 1, log2(N)

! assign values for all k in 0 .. N-1 such that
! k >= 2**(j-1)
forall (k = 0 : N-1, k >= 2**(j-1))

a(k) = a(k - 2**(j-1)) + a(k)
end forall

end do

Figure 13: Data-parallel Fortran 95 code for com-
puting partial sums of an array (inclusive scan). N

is the size of the array.

However, although this algorithm is clever, and faster than
the simple sequential version if there are enough proces-
sors, it achieves this result at a cost of more total work
— O(n logn) operations total, as opposed to the O(n) op-
erations required for the sequential algorithm. If there are
significantly more array elements than processors, the data-
parallel algorithm of Fig. 13 might even be slower than its
sequential counterpart. Addressing this problem requires
additional rethinking.

Blelloch algorithm.
The idea of this more work-efficient algorithm is as follows:

Conceptually build a binary tree based on the array, with
leaf nodes corresponding to elements, and non-leaf nodes
that combine successive nodes at the next lower level. (So
for an array with 8 elements, the root node of the tree rep-
resents elements 0–7, the nodes one level down represent el-
ements 0–3 and 4–7, and so forth.) Divide the computation

into two phases, an up-sweep that moves up the tree comput-
ing partial sums, as illustrated in Fig. 14, and a down-sweep
that uses these results to compute the desired prefix sums
for all array elements, as illustrated in Fig. 15. Notice that
this algorithm computes an exclusive scan rather than an
inclusive one. Fig. 16 shows code for this algorithm.

x0 x1 x2 x3 x4 x5 x6 x7

x0 ∑1
0 xi x2 ∑3

2 xi x4 ∑5
4 xi x6 ∑7

6 xi

x0 ∑1
0 xi x2 ∑3

0 xi x4 ∑5
4 xi x6 ∑7

4 xi

x0 ∑1
0 xi x2 ∑3

0 xi x4 ∑5
4 xi x6 ∑7

0 xi

Figure 14: Computing partial sums of an array (ex-
clusive scan) using Blelloch’s algorithm, part 1 (up-
sweep phase). Dashed boxes show elements that
make up the tree described in the text.

Notice that again we use a mask in the forall, this time
to specify that in iteration j of the outer loop, the body
of the forall will be executed only for those k for which
(k mod 2j+1) = 0 (i.e., every 2j+1-th element). Recall also
that statements in the body of a forall function as a par-
allel assignment; in this case, replacing the forall with a
sequential loop would give a different and incorrect result.

Concluding remarks.
It is worth remarking that neither of these algorithms

would probably be used if the only goal were to compute
partial sums of an array: The total amount of work even
for a fairly large array is too small to justify the added
complexity and overhead, and this kind of calculation is
common enough that the target programming environment
might provide a library function for it. However, both algo-
rithms are interesting in their own right, as illustrations that
data parallelism is more broadly applicable than one might
at first think. Further, either algorithm might be practical
in the right setting — for example, if it were part of a larger
calculation with enough total work to justify the overhead
of managing data parallelism.

Known Uses
• Programs using one of the programming environments

described earlier. Examples using Accelerator can be
found in [24]; examples using the PeakStream Platform
can be found at the company’s Web site [22].

x0 ∑1
0 xi x2 ∑3

0 xi x4 ∑5
4 xi x6 0

x0 ∑1
0 xi x2 0 x4 ∑5

4 xi x6 ∑3
0 xi

0 ∑0
0 xi ∑1

0 xi ∑2
0 xi ∑3

0 xi ∑4
0 xi ∑5

0 xi ∑6
0 xi

x0 0 x2 ∑1
0 xi x4 ∑3

0 xi x6 ∑5
0 xi

Figure 15: Computing partial sums of an array
(exclusive scan) using Blelloch’s algorithm, part 2
(down-sweep phase). Dashed boxes show elements
that make up the tree described in the text. Not
shown is the first step of the phase, which simply
stores the identity element (0) in the last element of
the array.

integer a(0:N-1)
integer t(0:N-1) ! array of temporary variables
integer j, k
! code to initialize a omitted

! up-sweep phase
do j = 0, log2(N)-1

! execute body of forall only for every
! 2**(j+1)-th element
forall (k = 0 : N-1, mod(k, 2**(j+1)) == 0)
a(k + 2**(j+1) - 1) = &

a(k + 2**j - 1) + a(k + 2**(j+1) - 1)
end forall

end do

! down-sweep phase
a(N-1) = 0
do j = log2(N)-1, 0, -1

! execute body of forall only for every
! 2**(j+1)-th element
forall (k = 0 : N-1, mod(k, 2**(j+1)) == 0)

t(k) = a(k + 2**j - 1)
a(k + 2**j - 1) = a(k + 2**(j+1) - 1)
a(k + 2**(j+1) - 1) = &

t(k) + a(k + 2**(j+1) - 1)
end forall

end do

Figure 16: Work-efficient data-parallel Fortran 95
code for computing partial sums of an array (exclu-
sive scan). N is the size of the array.

• Examples used in the PLPP Recursive Data pattern:

– Finding, for each node in a forest of trees, the
root of the tree to which it belongs, in time pro-
portional to the logarithm of the height of the
forest, as discussed in [11].

– Finding partial sums in a linked list, as discussed
in [7].

• Other data-parallel algorithms from [7].

Related Patterns
The SIMD pattern joins and complements the other Sup-
porting Structures patterns describing program structure
(SPMD , Loop Parallelism, and so forth). As described
in [19], which of these patterns to use for a particular appli-
cation usually depends on a combination of target program-
ming environment and the overall strategy for exploiting
concurrency (i.e., which Algorithm Structure patterns are
being used). Just as SPMD is a good fit for MPI and Loop
Parallelism is a good fit for OpenMP, SIMD is a good fit if
the target programming environment provides the features
described in the Solution section of this pattern. An addi-
tional pattern at this level will probably be needed in order
to properly address stream-processing programming envi-
ronments; these environments target similar hardware, but
express calculations in terms of a kernel (sequence of instruc-
tions) operating in parallel on elements of a data structure
(stream) rather than in terms of a single sequence of opera-
tions, each of which operates concurrently on elements of a
data structure.

With regard to overall strategy, the Algorithm Structure
patterns that map best to SIMD are Task Parallelism, Geo-
metric Decomposition, and Recursive Data, since all have
a kind of regularity that lends itself to being expressed
in terms of operations on parallel data structures. The
other Algorithm Structure patterns (Divide and Conquer ,
Pipeline, and Event-Based Coordination) do not map as well
to SIMD .

3. ACKNOWLEDGMENTS
We gratefully acknowledge the help of our shepherd for

this paper, Danny Dig.

4. REFERENCES
[1] Microsoft Accelerator. http:

//research.microsoft.com/research/downloads/

Details/25e1bea3-142e-4694-bde5-f0d44f9d8709/

Details.aspx?CategoryID.

[2] F. Black and M. Scholes. The pricing of options and
corporate liabilities. Journal of Political Economy,
81(3):637–654, 1973.

[3] G. E. Blelloch. Prefix sums and their applications. In
J. H. Reif, editor, Synthesis of Parallel Algorithms.
Morgan Kaufmann, 1990.

[4] Brook. http:
//graphics.stanford.edu/projects/brookgpu/.

[5] M. J. Flynn. Some computer organizations and their
effectiveness. IEEE Transactions on Computers,
C-21(9), 1972.

[6] W. D. Hillis. The Connection Machine. MIT Press,
1985.

[7] W. D. Hillis and G. L. Steele, Jr. Data parallel
algorithms. Communications of the ACM,
29(12):1170–1183, 1986.

[8] High Performance Fortran Forum: High Performance
Fortran Language specification, version 2.0.
http://dacnet.rice.edu/Depts/CRPC/HPFF, 1997.

[9] IBM Corporation. XL Fortran for AIX 8.1 language
reference. http://www.ncsa.uiuc.edu/UserInfo/
Resources/Hardware/IBMp690/IBM/usr/share/man/

info/en_US/xlf/html/lr.HTM.

[10] K. E. Iverson. A Programming Language. Wiley, 1962.

[11] J. JáJá. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[12] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Patterns for parallel application programs. In
Proceedings of the Sixth Pattern Languages of
Programs Workshop (PLoP 1999), August 1999.

[13] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Patterns for finding concurrency for parallel
application programs. In Proceedings of the Seventh
Pattern Languages of Programs Workshop (PLoP
2000), August 2000.

[14] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
More patterns for parallel application programs. In
Proceedings of the Eighth Pattern Languages of
Programs Workshop (PLoP 2001), September 2001.

[15] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Some algorithm structure and support patterns for
parallel application programs. In Proceedings of the
Ninth Pattern Languages of Programs Workshop
(PLoP 2002), September 2002.

[16] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Additional patterns for parallel application programs.
In Proceedings of the Tenth Pattern Languages of
Programs Workshop (PLoP 2003), September 2003.

[17] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Reengineering for parallelism: An entry point into
PLPP (pattern language for parallel programming) for
legacy applications. In Proceedings of the Twelfth
Pattern Languages of Programs Workshop (PLoP
2005), September 2005.

[18] B. L. Massingill, T. G. Mattson, and B. A. Sanders.
Reengineering for parallelism: An entry point into
PLPP (pattern language for parallel programming) for
legacy applications. Concurrency and Computation:
Practice and Experience, 19(4):503–529, 2007.

[19] T. G. Mattson, B. A. Sanders, and B. L. Massingill.
Patterns for Parallel Programming. Addison-Wesley,
2004. See also our Web site at http:

//www.cise.ufl.edu/research/ParallelPatterns.

[20] M. Metcalf and J. K. Reid. Fortran 90/95 Explained.
Oxford University Press, 1996.

[21] NVIDIA CUDA (Compute Unified Device
Architecture).
http://developer.nvidia.com/object/cuda.html.

[22] The PeakStream platform.
http://www.peakstreaminc.com/.

[23] The RapidMind platform.
http://www.rapidmind.net/.

[24] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general-purpose

uses. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems. ACM Press, 2006.

APPENDIX
A. REVIEW OF PLPP

This section provides a brief overview of our pattern lan-
guage (PLPP) as described in [19], for the convenience of
readers unfamiliar with the language.

The pattern language is organized into four design spaces,
corresponding to the four phases of the underlying method-
ology and described in the subsequent sections. Program-
mers normally start at the top (in Finding Concurrency)
and work down through the other design spaces in order
until a detailed design for a parallel program is obtained.

A.1 The Finding Concurrency Design Space
This design space is concerned with structuring the prob-

lem to expose exploitable concurrency. The designer work-
ing at this level focuses on high-level algorithmic issues and
reasons about the problem to expose potential concurrency.
Patterns in this space include the following.

• Decomposition patterns, used to decompose the prob-
lem into pieces that can execute concurrently:

– Task Decomposition: How can a problem be de-
composed into tasks that can execute concurrently?

– Data Decomposition: How can a problem’s data
be decomposed into units that can be operated on
relatively independently?

• Dependency-analysis patterns, used to help group the
tasks and analyze the dependencies among them:

– Group Tasks: How can the tasks that make up a
problem be grouped to simplify the job of managing
dependencies?

– Order Tasks: Given a way of decomposing a
problem into tasks and a way of collecting these
tasks into logically related groups, how must these
groups of tasks be ordered to satisfy constraints
among tasks?

– Data Sharing : Given a data and task decomposi-
tion for a problem, how is data shared among the
tasks?

• Design Evaluation: Is the decomposition and depen-
dency analysis so far good enough to move on to the
Algorithm Structure design space, or should the design
be revisited?

A.2 The Algorithm Structure Design Space
This design space is concerned with structuring the al-

gorithm to take advantage of potential concurrency. That
is, the designer working at this level reasons about how to
use the concurrency exposed in working with the Finding
Concurrency patterns. The Algorithm Structure patterns
describe overall strategies for exploiting concurrency. Pat-
terns in this space include the following.

• Patterns for applications where the focus is on organi-
zation by task:

– Task Parallelism: How can an algorithm be orga-
nized around a collection of tasks that can execute
concurrently?

– Divide and Conquer : Suppose the problem is for-
mulated using the sequential divide and conquer
strategy. How can the potential concurrency be
exploited?

• Patterns for applications where the focus is on organi-
zation by data decomposition:

– Geometric Decomposition: How can an algorithm
be organized around a data structure that has been
decomposed into concurrently updatable“chunks”?

– Recursive Data: Suppose the problem involves an
operation on a recursive data structure (such as a
list, tree, or graph) that appears to require sequen-
tial processing. How can operations on these data
structures be performed in parallel?

• Patterns for applications where the focus is on organi-
zation by flow of data:

– Pipeline: Suppose that the overall computation in-
volves performing a calculation on many sets of
data, where the calculation can be viewed in terms
of data flowing through a sequence of stages. How
can the potential concurrency be exploited?

– Event-Based Coordination: Suppose the appli-
cation can be decomposed into groups of semi-
independent tasks interacting in an irregular fash-
ion. The interaction is determined by the flow of
data between them, which implies ordering con-
straints between the tasks. How can these tasks
and their interaction be implemented so they can
execute concurrently?

A.3 The Supporting Structures Design Space
This design space represents an intermediate stage be-

tween the Algorithm Structure and Implementation Mecha-
nisms design spaces: It is concerned with how the parallel
algorithm is expressed in source code, with the focus on
high-level program organization rather than low-level and
very specific parallel programming constructs. Patterns in
this space include the following.

• Patterns representing approaches to structuring pro-
grams:

– SPMD : The interactions between the various units
of execution (UEs) cause most of the problems
when writing correct and efficient parallel pro-
grams. How can programmers structure their par-
allel programs to make these interactions more
manageable and easier to integrate with the core
computations?

– Master/Worker : How should a program be orga-
nized when the design is dominated by the need
to dynamically balance the work on a set of tasks
among the units of execution?

– Loop Parallelism: Given a serial program whose
runtime is dominated by a set of computationally
intensive loops, how can it be translated into a par-
allel program?

– Fork/Join: In some programs, the number of con-
current tasks varies as the program executes, and
the way these tasks are related prevents the use
of simple control structures such as parallel loops.
How can a parallel program be constructed around
such complicated sets of dynamic tasks?

• Patterns representing commonly-used data structures:

– Shared Data: How does one explicitly manage
shared data inside a set of concurrent tasks?

– Shared Queue: How can concurrently-executing
units of execution (UEs) safely share a queue data
structure?

– Distributed Array : Arrays often need to be parti-
tioned between multiple units of execution. How
can we do this so as to obtain a program that is
both readable and efficient?

This design space also includes brief discussions of some
additional supporting structures found in the literature, in-
cluding SIMD (Single Instruction Multiple Data), MPMD
(Multiple Program, Multiple Data), client server, declara-
tive parallel programming languages, and problem solving
environments.

A.4 The Implementation Mechanisms Design
Space

This design space is concerned with how the patterns of
the higher-level spaces are mapped into particular program-
ming environments. We use it to provide descriptions of
common mechanisms for process/thread management and
interaction. The items in this design space are not pre-
sented as patterns since in many cases they map directly
onto elements within particular parallel programming envi-
ronments. We include them in our pattern language anyway,
however, to provide a complete path from problem descrip-
tion to code. We discuss the following three categories.

• UE5 management: Concurrent execution by its nature
requires multiple entities that run at the same time.
This means that programmers must manage the cre-
ation and destruction of processes and threads in a par-
allel program.

• Synchronization: Synchronization is used to enforce a
constraint on the order of events occurring in different
UEs. The synchronization constructs described here
include memory fences, barriers, and mutual exclusion.

• Communication: Concurrently executing threads or
processes sometimes need to exchange information.
When memory is not shared between them, this ex-
change occurs through explicit communication events.
The major types of communication events are mes-
sage passing and collective communication, though we
briefly describe several other common communication
mechanisms as well.

5Units of execution — generic term for processes or threads.

