
Rendering Patterns for Adaptive Object-Models
León Welicki

ONO (Cableuropa S.A.)
Basauri, 7-9

28023, Madrid, Spain
+34 637 879 258

lwelicki@acm.org

Joseph W. Yoder
The Refactory, Inc.

7 Florida Drive
Urbana, Illinois USA 61801

1-217-344-4847

joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates
24003 S.W. Baker Road
Sherwood, Oregon USA

1-503-625-9529

rebecca@wirfs-brock.com

ABSTRACT

An Adaptive Object-Model is an instance-based software system

that represents domain-specific classes, attributes, relationships,

and behavior using metadata.. This paper presents three patterns

for visually presenting and manipulating AOM domain entity

objects.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented

Programming; D.2.2 [Design Tools and Techniques]: Object-

oriented design methods, User Interfaces; D.2.11 [Software

Architectures]: Patterns

General Terms

Design

Keywords

Visual Rendering, Adaptive Object-Models, Patterns

1. INTRODUCTION
An Adaptive Object-Model is an instance-based software system

that represents domain-specific classes, attributes, relationships,

and behavior using metadata [19, 20]. Typically in an Adaptive

Object-Model, metadata descriptions are stored in a database and

interpreted at runtime. This is similar to a UML Virtual Machine

described by [12]. The object model is adaptable and tools are

often provided with AOM systems that allow end users or domain

experts to edit and change these metadata descriptions. So when

changing requirements cause the domain model to be updated, end

users edit metadata. These changes can immediately be reflected

in the running system without any software program changes.

In contrast, in a typical object-oriented program, classes are

designed to represent domain entities and their attributes. A

change in requirements that results in changes to the domain

model causes developers to modify and/or add new classes,

leading to a new application version.

Adaptive Object-Model architectures are typically made up of

several interrelated patterns. TYPE OBJECT [8] is used to define

a domain entity. An entity has attributes, which are represented

using the PROPERTY pattern [5]. The TYPE OBJECT pattern is

used again to define the legal types of attributes, called

PropertyTypes. Thus Entity, EntityType, Property, and

PropertyType are the core set of constructs used to represent

Adaptive Object-Models [13].

An Adaptive Object-Model expresses relationships between

entities using metadata. Any rules and constraints governing these

relationships can also be described with metadata. In contrast,

with traditional object-oriented programs, relationships between

domain entity objects are implemented via a direct reference or an

appropriate structuring object (e.g. hash table or a collection).

Constraints on relationships are implemented by methods in

related classes.

In an Adaptive Object-Model, the STRATEGY pattern [6] can be

used to define the behavior of EntityTypes. If behavior is

complex, instead of using Strategies, an interpreted rule-based

language can be defined. In contrast, with a typical object-

oriented programming language implementation of an entity,

simple behavior is typically implemented in class methods.

The above core AOM patterns have been described previously.

One area that has not been described are how to implement the

user interface in an AOM system. Since an AOM is instance

based rather than class based and has metadata which drives

domain entity behavior, interpretation of the entities needs to be

considered when constructing a user interface. This paper

describes patterns for dynamically building the GUI layer which

supports the modification and visualization of AOM domain

objects.

2. TOWARDS AN ADAPTIVE OBJECT-

MODEL PATTERN LANGUAGE
Adaptive Object-Model architectures are usually made up of

several smaller patterns. In the existing literature they are

documented by the patterns TYPE OBJECT, ATTRIBUTES,

PROPERTY LIST, TYPE SQUARE, ACCOUNTABILITY

(Entity-Relationship), STRATEGY, RULE OBJECTS,

COMPOSITE, BUILDER, and INTERPRETER.

Besides these patterns, less widely-known patterns are often used

in AOM systems. In the AOM current literature descriptions of

these other patterns are scattered among a number of different

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLoP'07, September 5-8, Monticello, IL, U.S.A..

Copyright 2007 Hillside Group.

Figure 1 - AOM Pattern Language Map

patterns papers with different templates and styles. Additionally,

not all these papers work through similar examples. Some patterns

have not been updated to reflect implementation trends, new

programming language environments or development platforms.

We ultimately see the patterns described in this paper as part of a

more complete pattern language for building Adaptive Object-

Models. Patterns in this pattern language are organized into these

categories:

Core: patterns that represent the basic implementation of

AOM entities, their behavior and relationships. They are the

ones that govern this architectural style.

Process: patterns that describe how to create and evolve

AOM systems. They establish guidelines and advice on when

and where the use of meta-description based approaches is

warranted.

Presentation: patterns which describe how to visually

represent and manipulate objects representing domain

entities, their attributes and relationships to other objects in

an AOM.

Creational: patterns for creating instances of AOMs

Behavioral: patterns for dynamically adding, removing or

modifying AOM system behavior.

Miscellaneous: patterns for instrumentation, usage, and

version control of AOMs. These patterns also provide

mechanisms which support non-functional requirements such

as performance or auditing.

Figure 1 from [19] is a map of our AOM pattern language as

presented at the OOPSLA 2007 Poster Session.

2.1 THE AOM VISUALIZATION LAYER
In the existing literature [5, 14, 20, 21, 22], the core architecture

of AOMs is represented by two different levels:

Knowledge Level: which defines the general rules that

govern the behavior [4] and the structure of domain

entities (TypeObjects, PropertyTypes).

Operational Level: which contains instances of the

domain (in our case, instances of entities and properties

for representing values) whose behavior is governed by

associated objects in the knowledge level [4]

Because of the way objects are represented in the operational

level, a specialized rendering layer is almost always needed. It

consists of “instructions” for how to construct the UI which

presents AOM domain objects for viewing and modification. This

visualization behavior is embodied in rendering components

which can be composed at runtime (from configuration

information) and combined dynamically (and adaptively) to

generate complex views of AOM domain objects. Separating this

behavior into a rendering layer allows us to abstract and

encapsulate presentation issues [17].

3. AOM RENDERING PATTERNS
This paper contains the following patterns:

Property Renderer: describes how to render the UI code for

instances of specific properties using their data.

Entity View: describes the coordination of several property

renderers to produce more complex UI fragments for an entity

(rendered from descriptive data from the type objects).

Entity-Group View: given a set of entities, renders UI code

(including layout issues). Several different views can exist for the

same set of entities and they can be linked dynamically at run-

time (useful to present a set of entities).

The patterns presented in this paper are interrelated. While they

can be used individually, more commonly they are used in

combination. Figure 2 shows the relationships between these

rendering patterns. The most fine-grained pattern is PROPERTY

RENDERER, which renders individual property instances. It is

connected with all the other patterns: an ENTITY VIEW

coordinates several PROPERTY RENDERERS to generate a

fragment of a UI for an entity, and the ENTITY-GROUP VIEW

uses these elements to render a set of entities. The ENTITY-

GROUP VIEW is coarser-grained, since it generates a coherent

UI for related entities. To implement its behavior it can either use

the other patterns or be hand coded.

Patterns presented in this paper discuss presentation concerns

which arise when working with AOMs. Therefore, any developer

working with this kind of systems (mainly TYPE OBJECT,

PROPERTIES [8], and TYPE-SQUARE [20] or DYNAMIC

OBJECT MODEL [13] based architectures) can benefit from

using these patterns to visually represent and manipulate AOMs.

These rendering patterns may apply also to other rendering

scenarios, but our main focus is on AOM-based architectures. We

describe these patterns in that context. Use of these patterns in

other contexts is outside the scope of this paper.

If you are unfamiliar with Adaptive Object-Model based systems,

you will need to become familiar with the core AOM patterns

before you can appreciate the rendering patterns described in this

paper. An appendix at the end of this paper briefly explains the

core concepts and patterns of AOM systems. We invite the reader

visit to www.adaptiveobjectmodel.com for additional publications

that offer more comprehensive discussions and examples.

3.1 Shared Pattern Context
All the patterns in this paper share the same basic context

scenario: You are creating an application using an Adaptive

Object-Model. This model relies on a variant of TYPE SQUARE and

therefore you are using a combination of TYPE OBJECT and

PROPERTIES patterns. Each pattern then adds its own issues and

forces to this general context and presents a problem accompanied

with its respective solution.

Figure 2 - Rendering Patterns Map

Entity View Property Renderer coordinates several…

Entity-Group View

can use… can use…

3.2 Property Renderer

3.2.1 Context
You want to render the entities in your model using a standardized

approach. You want to minimize code redundancy and present a

GUI with a consistent look and feel.

3.2.2 Example
Imagine you’ve created a Content Management System (CMS)

using AOM patterns. New content types can be created by end

users. A tool allows them to compose several pre-defined property

types. For example, an instance of a content of type Document

may be composed of a property called “name” that is of type

“string property”, a property called “description” also of type

“string property”, and another property called “binaryElement”

that is of type “binary property”. Your system is implemented

using common variant of TYPE SQUARE pattern.

You have several applications that rely on this Document entity.

Application create instances of entities based on the “Document”

type object and present them to users in a UI. Each time you want

to render a property, you have to write very similar rendering

code. Your code for rendering each type of property may in the

best case be duplicated in all your applications. In the worst case,

it may be duplicated in each visualization layer as well as

additional application code (for example, when rendering the

name and description properties of the document two different

pieces of very similar code may be invoked).

This redundancy leads to a higher degree of maintenance and

potential inconsistency in your UIs. Slightly different approaches

may exist in each application for rendering the same type of

properties (for example, each application may render differently

the “binary” properties).

3.2.3 Problem
How can you encapsulate how the properties of different types are

rendered?

3.2.4 Forces

 An entity may have several properties of different types and

the properties can be attached to and detached from entities

at any time.

 You want to ensure UI consistency across applications.

 You want to encapsulate the rendering code.

 You want to avoid rendering code duplication.

 You want rendering aspects to be composable into more

complex visual representations.

 You want your UI code to evolve independently of entities.

 You want to vary the way a property is rendered according to

its rendering context (e.g., target device, state of the

application, client options, etc.).

 You don’t want to bloat rendering code with conditional

statements to handle each rendering context.

3.2.5 Solution
Create rendering objects that have the responsibility for

rendering the UI for a certain type of property within a given

context. Each rendering object will encapsulate the way an

instance of a property of a concrete type (when TYPE OBJECT

pattern is applied) is visualized in a certain context. We call these

objects “Property Renderers”.

A PROPERTY RENDERER contains code that generates the UI for an

instance of a property in a particular context. This renderer is

coupled both with the property type (it knows how to handle it)

and the target context (it knows how to generate appropriate UI

code for it).

To start, provide a default PROPERTY RENDERER implementation

that generally knows how to interpret all properties and to

generate minimal UI code targeted to a prototypical context. This

default implementation may not accurately render the property or

generate nice UI code, but allows you to marginally render any

property in any context. While this default implementation is

likely not suitable for production code, it can be useful when

prototyping or evolving an adaptive system.

Then, define individual PROPERTY RENDERERS as needed.

Each PROPERTY RENDERER will be responsible for rendering a

concrete visualization of some specific property type, and may be

specialized for a concrete context (it may be included in a Web

Form, an e-Mail, a report, etc.). Since individual property

renderers are specific and “fine-grained” they can be combined to

create complex UI visualizations (see ENTITY VIEW and ENTITY-

Figure 3 - Property Renderer Structure

GROUP VIEW).

PROPERTY RENDERERS enforce a strong separation between the

domain entities and their visualization, isolating all presentation

related code into distinct objects.

Figure 3 shows the UML class diagram of the solution.

PropertyRenderer is the base class for all the renderers and

provided default implementations for behaviors that each concrete

renderer must redefine. As shown, PropertyRenderer has

two methods: one for rendering a property, render(), and other

for receiving sets of parameters setParameters() (parameters

can be any arbitrary piece of data to be used in the rendering

process). Subclasses of PropertyRenderer can either be

primitive (stand-alone renderers of strings, numbers, dates, etc.) or

composite (combining several renderers to create more complex

output). Instances of PROPERTY RENDERERs are created using a

factory (PropertyRendererFactory). Finally, the Client

uses the PROPERTY RENDERERs to compose the UI.

3.2.6 Example Resolved
Thus you can create a PropertyRenderer class for each type

of Property and use it in all applications. In our example, two

renderers may be created: one for the StringProperty and

other for the BinaryProperty. These renderers may be used

in all applications, giving consistency to their UIs and simplifying

maintenance (the property rendering code is in a single well-

known location).

In Figure 4 four property instances are shown (the name of the

property is in bold and the property type is in italic below the

name). In this example, some property renderers are applied to

instances of properties to render data entry UI widgets in a web

application. All the properties shown (Title, Description,

BinaryElement and DateCreated) belong to the Document entity

type. The PropertyRenderers create the appropriate UI

elements for the properties. Note that in the example: 1) the UI

elements have a standardized look and feel and behavior which

provides a consistent user experience; and 2) the property

renderers could also contain additional logic which analyzes

certain characteristics of the properties used when producing the

appropriate UI elements (for example, a string property renderer

might analyze the length of the input text and produce an

appropriately sized single text box or a text area for data entry).

3.2.7 Resulting Context
 Responsibility for rendering instances of properties of

concrete types is assigned to fine-grained rendering objects.

 UI code is separated from entities and encapsulated in

specialized property renderers.

 UI code can evolve independently from the model consisting

of entities, properties and relationships between them.

 New PropertyRenderers can be created, allowing for

dynamic change in how instances of property of a specific

type are rendered.

 PropertyRenderers can contain context-related (target

device, purpose, state, etc.) presentation code, eliminating

complex conditional code in the UI (e.g. a different

PropertyRenderer might exist for each kind of target

device).

 Since properties are fine-grained elements with specific

responsibilities they can be easily combined to create more

complex visual representations.

 The base PropertyRenderer class provides a generic

implementation that allows for rendering any entity,

facilitating prototyping and evolving adaptive systems.

 A PropertyRenderer is strongly coupled with its

respective PropertyType.

 A PropertyRenderer is coupled to its rendering context.

 The indirection found in this solution can lead to lower

performance than in a non-AOM system.

Figure 4 - Example Property Renderers for

Generating Data Entry HTML UI Widgets

3.2.8 Related Patterns
PROPERTY RENDERERS are a special type of STRATEGY concerned

with the generation of UI code for instances of properties of a

given property type.

PROPERTY RENDERERS instances can be created using a FACTORY.

PROPERTY RENDERERS instances can be created using a PRODUCT

TRADER. If so, the rules for selecting one renderer or another are

not hardcoded in the factory but determined at run-time using

Specification objects [3].

PROPERTY RENDERERS have code for rendering the PROPERTY

TYPES of the PROPERTIES instances when using TYPE SQUARE.

ENTITY VIEW organizes the way several PROPERTY RENDERERS are

combined to generate a UI code fragment.

PROPERTY RENDERER performance can be improved using

CACHING [11].

PROPERTY RENDERER can be combined with FLYWEIGHT [6] to

improve performance and resource utilization of pre-allocated

rendering instances.

ANYTHING [15] have a similar abstraction called Renderers, but

with a more broad scope. If you want to use this pattern to render

ANYTHING instances, the PROPERTY RENDERER can be seen as

specialized instance of such renderers.

3.3 Entity View

3.3.1 Context
To encapsulate and abstract the presentation you are using

PROPERTY RENDERER. You have several property renderers and

want to coordinate them and produce a more complex output. This

output may be a fragment of the UI or a complete screen.

An entity contains one or more properties that need to be rendered

and might have different views.

3.3.2 Example
Consider again the CMS example presented previously (see

Example section in PROPERTY RENDERER) and the Document

entity.

You may want several ways to render the properties for a

Document entity. For instance, you may want to render it as a

form for editing purposes or as a set of text fields for

visualization. You have property renderers for each kind of

property, but you will have to coordinate each screen to produce

desired behavior. This could result in duplicate code within the

same application or lack of consistency across applications.

3.3.3 Problem
How can you coordinate several property renderers to render a

complex UI fragment for different views of an entity?

3.3.4 Forces
 You want to combine several property renderers to

produce a complex UI fragment for an entity.

 UI fragments should be easy to change.

 The resulting structure should be easy to change.

 You don’t want redundant UI code.

 You may want to use different sets of fragments in

different contexts (for example, you may use different

renders for a mobile device than for a web browser).

3.3.5 Solution
Create view components which coordinate the presentation of

several property renderers of an entity to produce different

complex UI fragments. Each property renderer is specialized to

generate UI code for instances of a property type in a certain

context. A view component will coordinate several fine-grained

renderers and produce more complex UI code for an entity.

The sequence and composition of renderers could be specified

using source code or with metadata stored in a database or a file.

To simplify the coordination of compositions of renderers a

Domain Specific Language might be created.

The ENTITY VIEW is aware of its rendering context (target device,

state, etc.) and therefore must contain instances of the suitable

property renderers for that context. It may also contain additional

contextual information used when rendering.

The ENTITY VIEW may have several constraints (such as

validations, rules, etc) that are used while rendering an entity. You

can create new types of constraints, by creating a new

specialization of the abstract class EntityViewConstraint,

for use in an EntityView. When the constraints are applied, a

variant of the WARNING MESSAGE ACCUMULATOR pattern [1] can

be used and consequently a set of ConstraintResult

instances may be returned. It is important to stress that the

constraints included are focused on UI concerns such as client

side data validations. Any other business validation or rule

enforcement should be delegated to the domain specific

constraints associated with the core AOM instance being rendered

and not be located in presentation-layer code.

The ENTITY VIEW will primarily be used to generate fragments of

the UI for an entity, although it could also generate a full page.

Figure 5 presents the UML class diagram of the solution. The

abstract class EntityView defines the public interface and basic

behavior of all entity views. It also maintains a set of

PropertyRenderer instances (see the PROPERTY RENDERER

pattern in this paper) which are coordinated to generate UI code

for an entity instance. The concrete EntityViews can be leafs

(stand-alone views) or composite (composing several entity views

to generate the output). An EntityView receives context

information from its associated RenderingContext. Some

constraints can be applied to the orchestration process (classes

EntityViewConstraint, Validation and Rule). These

constraints can be composed to create dynamically complex

validation or composition rules.

3.3.6 Example Resolved
You can create two different kinds of EntityViews: ones for

editing and others for visualizing. These views may be used in all

Figure 5 - Entity View Structure

applications, giving consistency to their UIs (the same group of

elements is rendered in a consistent way in all applications) and

simplifying maintenance (the property renderer coordination code

is in a single, well-known location).

In Figure 6, two EntityViews are shown: the first, called

EditableEntityView, allows for editing an instance of an

entity (in this case to create a new Document entity representing

the paper “Dynamic Object Model” [13]). Notice how all the

editing UI widgets shown are the same as those shown previously

in Figure 4 for the PROPERTY RENDERER pattern. The second

EntityView, called ReadOnlyEntityView, in the lower

section of the figure renders a read-only representation of the

Document entity. In this view no Document entity properties

can be edited. Note that this EntityView shows additional

Document properties.

3.3.7 Resulting Context
 UI composition of rendering entities can be abstracted,

encapsulated and easily modified.

 The rules for showing an instance of an AOM entity can be

modified dynamically at runtime.

 The rules for showing an instance of an AOM entity can be

modified declaratively (when rules are stored as metadata).

 The rules for showing an entity are explicitly stated.

 It is easy to change the way entities are shown.

 Better adaptability to new visualization requirements.

 More flexibility in constructing different visualizations than

with hand-coded solutions.

 This introduces more complexity in the form of additional

classes and interpretation of metadata.

 The indirection interpretation of metadata found in this

solution can lead to lower performance than in a non-AOM

system.

3.3.8 Variants
Form Entity View: orchestrates several property renderers to

create a form for data input. It may also contain constraints which

establish input validations, and rules for showing or hiding groups

of renderers, etc.

Table Row Entity View: orchestrates several property renderers

to create a table showing an each entity in a row of a grid. To

show a full grid this Entity View must be applied to a set of

entities in an ENTITY-GROUP VIEW.

Selection of Fields Entity View: in this case the view selects a set

of the fields of an entity type (or a discrete set of property

instances) and generates the output. For example, you can have

several views for a type of entity where each view shows a

different subset of entity properties. For example, in case of an

entity type “Patient” you could have an entity renderer that only

shows its contact info and another one that shows only the ID, the

name and the birth date.

Full Display Entity View: this view displays all the fields in the

entity type or the provided set of property instances.

Rule Based Entity View: this more complex entity view selects

the property renderers to be used by applying rules. For example,

you may have an entity view that shows or hides fields according

to profile of the target user.

3.3.9 Related Patterns
An ENTITY VIEW coordinates several PROPERTY RENDERERS.

ENTITY VIEW can be seen as a typed COMPOSITE of PROPERTY

RENDERERS for displaying entities.

Figure 6 - Entity View Example

Figure 6 - Entity View Example

ENTITY VIEW generates output using PROPERTY RENDERERS;

ENTITY-GROUP VIEWS display a set of related entities.

RENDERING ORCHESTRATOR performance can be dramatically

enhanced using CACHING [11].

ANYTHING [15] has a similar abstraction called Renderer, but with

a broader scope. To use this pattern to render ANYTHING

instances, you can construe ENTITY VIEW to be a specialized

instance of such renderers.

3.4 Entity-Group View

3.4.1 Context
You want to generate UI code for several entities but you don’t

want to have any kind of coupling or to reference the UI in your

model. Additionally you may want to attach or detach views to

models, allowing for different views of the same entity to be

selected dynamically. You want several views applied to the same

model and you want to have the possibility of selecting any of

them according to arbitrary decisions.

3.4.2 Example
You are developing a Web-based Content Management

application (the one quoted in the Property Renderer pattern). You

built a Document Management module on top of the CMS engine.

This content management module has entities Document and

Link that are contained in Categories (a special kind of

entity which contains other entities). Categories simulate

Folders in the document management module.

Whenever a user selects one Folder, its contents (the contained

entities) should be displayed in one of several ways depending on

the specific context. You want to be able to attach and detach

views to the folders. For example, a thumbnails view might only

be applied to folders which contain images. Views should be

easily linked to and unlinked from categories, allowing users to

specify how they want to view folder contents according to their

preferences.

Having the UI generation code static on a web page is not a very

good idea because it would complicate your abstraction of a

rendering algorithm that could be applied to different contexts.

Additionally, if you want to reuse the UI generation code for

another application you won’t be able to, since it would be

contained in a page and therefore could not be reusable artifact in

another application (in the best case, you might copy the page, but

if you want to change a single feature of that “common page”, you

would need to modify all instances of that page in all client

applications).

3.4.3 Problem
How can you abstract the visualization (including the complex

layout) of a set of dynamic entities from an AOM so as to

decouple this visualization from the model?

3.4.4 Forces
 You want to be able to attach and detach views

dynamically to sets of entities.

 You want to abstract layout details.

 You want to render several entities in the same

presentation.

 You want to reuse that rendering code in different

contexts.

 You don’t want redundant UI code.

 You want to have control of all the generated UI code.

 You may not be using PROPERTY RENDERERS or ENTITY

VIEWS.

 When using PROPERTY RENDERERS or ENTITY VIEWS

you may want to add additional UI code (layout code,

glue code to give consistency and context to the

renderer properties, or perhaps code unrelated to

entities).

3.4.5 Solution
Abstract the UI code generation into a view component that

processes a set of entities to produce UI code. The

EntityGroupView is a component specialized in generating

UI code for a set of one or more entities. It will produce the

appropriate UI code according to the purpose of the view. As in

Figure 7 - Entity-Group Views Structure

cd Attachable Views

EntityGroupView

+ Render(Entity[]) : object

+ SetParameters(Hashtable) : void

ConcreteEntityGroupViewA

- propertyRenderers: ProperyRenderer[]

ConcreteEntityGroupViewB

- orchestrator: EntityView

ConcreteEntityGroupViewC

PropertyRenderer

- id: string

+ Render(Property) : object

+ SetParameters(Hashtable) : void

EntityView

+ Render(Entity, RenderingContext) : object

+ SetParameters(Hashtable) : void

+ ApplyConstraints() : ConstraintResult[]

1..*

MVC, the view components present information to the user.

Different views can then present the information in the model in

different ways.

The EntityGroupView can contain complex layout logic. The

layout code may even allow dynamic set up and modification of

the layout (for example like the models in WinForms [9] or Swing

[7]) or may represent in a fixed way a specific set of entities (the

layout is hard-coded in the view).

The views can generate all UI code from scratch or can use

PROPERTY RENDERERS and ENTITY VIEWS.

Several views may render the same set of entities. The views can

be linked to the entities (and entity types) dynamically, allowing

easy run-time adaptation through the creation of multiple-view

based interfaces.

Figure 7 shows a UML class diagram of the solution. The abstract

class EntityGroupView defines the public interface and

default behavior of all EntityGroupViews. Concrete

EntityGroupView subclasses can generate their output using

several approaches: using Property Renderers

(ConcreteViewA), using Entity Views (ConcreteViewB) or

generating all UI code themselves (ConcreteViewC).

3.4.6 Example Resolved
If the UI rendering code for an EntityGroupView is

represented as metadata, it can be stored in a views repository.

This can then be linked to existing entities in order to generate UI

code for them.

In our example, several views are created (e.g. Details View,

Icons View and Thumbnails View) and then linked to the

categories that represent the folders. When the user selects a

Folder and views its contents, it is displayed on a container that

allows the user to select any of the views attached to the folder.

Whenever the user selects one of them it generates the appropriate

UI code (delegated to the concrete View) as shown in Figure 8.

In this example, a set of documents can be rendered in several

ways (detailed list, big icons, and thumbnails).

You could also define more views and attach them to any

category. For example, for a particular set of folders may need to

have some special rendering logic such as hiding documents older

than three weeks. To achieve this, you would create a new view

and attach it to the appropriate folders.

3.4.7 Resulting Context
 UI composition can be abstracted, encapsulated and easily

modified.

 The rules for showing sets of entities can be modified

dynamically at runtime.

 The rules for showing sets of entities can be modified

declaratively (when they are stored in metadata).

 The rules for showing sets of entities are explicitly stated.

 It is easy to change the way sets of entities are shown.

 Better adaptability to new visualization requirements.

 More flexibility.

 More complexity.

 Lower performance.

3.4.8 Related Patterns
ENTITY-GROUP VIEWS can use several PROPERTY RENDERERS.

ENTITY-GROUP VIEW can use several ENTITY VIEWS.

Figure 8 - Several views applied to the same entities.

ENTITY-GROUP VIEW instances should be created using a

FACTORY.

ENTITY-GROUP VIEW can be seen as a special type of STRATEGY

that is concerned with the generation of UI code for sets of

entities.

An ENTITY-GROUP VIEW can be applied in MODEL VIEW

CONTROLLER [10] scenarios.

ENTITY-GROUP VIEW performance can be dramatically enhanced

using CACHING [11].

4. Putting It All Together
This paper presented a set of patterns for dealing with dynamic

presentation of Adaptive Object-Models. Each pattern presented

in this paper address the rendering problem at a different level of

granularity as shown in Figure 9.

We used as an example building an application on top of a CMS

system that is based on an AOM. In our CMS we created a

Document entity type that contained several properties for

storing the title, description, binary element (e.g. word, pdf, excel,

etc.), creation date, and author of a document. These Document

entity types are stored in Categories, which are abstractions

that gather several instances of entities (in our case Document

entities). We wanted a consistent UI decoupled from the

application logic that could be easily changed and reused

throughout this application or other systems.

Figure 9 - Granularity level of the patterns in the language.

Since we wanted to render consistently all the properties of

similar types, we determined to use the PROPERTY RENDERER

pattern to generate the UI widgets for each property type. The first

step was to create a PropertyRenderer for each

PropertyType in Document: one for strings, another for

binaries and one for dates. Thinking more deeply, we quickly

realized that this is not enough: in some cases, we need two

renderers for each property type, one for editing it and another for

visualizing it. Therefore, we created these six property renderers:

 StringInputPropertyRenderer

 FileInputPropertyRenderer

 DateInputPropertyRenderer

 StringPropertyRenderer

 FilePropertyRenderer

 DatePropertyRenderer

After our renderers were created, we needed to establish how to

present Document entities to end users. We used the ENTITY

VIEW pattern to generate the UI for the entities. We applied the

ENTITY VIEW pattern three times to create the following views:

FormDocumentEntityView (for creating and editing

documents), ReadOnlyEditableEntityView (for viewing

instances of Document entities), and

TableRowDocumentEntityView (for rendering a row for a

table of entities). These kinds of Entity Views were addressed in

the Variants section of the Entity View pattern.

These patterns work together to provide a consistent and reusable

way for rendering AOM properties and entities. However,

rendering concrete properties or entities is not enough to create

the UI for our example document management application. To

address this final gap we need to use the ENTITY-GROUP VIEW

pattern to create several coherent fragments of UI for entering and

retrieving Document entity instances. We thus create several

EntityGroupViews that use the PropertyRenderers and

EntityViews outlined in previous steps. These views can be

dynamically linked to sets of Document entities to produce fully

functioning and consistent UI fragments. The

EntityGroupViews have content layout code such as in the

case of the DocumentGridDynamicView which uses several

TableRowDocumentEntityViews for generating an HTML

table of Document entities.

There is a very important issue in the solution we present:

performance and resource usage can be prohibitive, leading to a

poor user experience and degradation of service scenarios

(especially for web applications). To address these problems we

propose the careful use of CACHING [11, 15]. We propose several

levels of caching according to what we are trying to render: we

can have caches for a property type (applied to PROPERTY

RENDERER), for an entity (applied to ENTITY VIEW), or for set of

entities (applied to ENTITY-GROUP VIEW) [18]. The decision on

how to apply caching should be carefully considered, keeping in

mind that caching, too, adds considerable complexity to an

application. Additionally, we might enhance the performance and

resource usage of the application by applying other patterns (like

POOLING, LAZY ACQUISITION, etc. [11]).

There are also several other high level patterns for dynamic screen

layout of the entities and properties which have not been

addressed in this paper. The authors intend on addressing these at

a later date.

5. ACKNOWLEDGEMENTS
We would like to thank our shepherd Dirk Riehle for his great

help and advice for improving the contents of this paper. We

would also like to gratefully thank to the participants of the PLoP

2007 “Sun Singer” Writers Workshop (Richard Gabriel, Ricardo

Lopez, Jason Yip, Christian Kohls, Scott Henninger, Avraham

Zilverman, and Vibhu Mohindra) and to the OOPSLA 2007 Mini-

PLoP writers workshop participants (Peter Sommerlad, Ademar

Aguiar, and Andre Santos).

6. REFERENCES
[1] Ahluwalia, K. Warning Message Accumulator Pattern. 13th

Pattern Language of Programs Conference (PLoP 2005),

Monticello, Illinois, USA, 2005.

[2] Adaptive Object-Models.

http://www.adaptiveobjectmodel.com

[3] Bäumer, D ; D. Riehle. Product Trader. Pattern Languages

of Program Design 3. Edited by Robert Martin, Dirk Riehle,

and Frank Buschmann. Addison-Wesley, 1998.

Entity-Group View

Property Renderer

Entity View

Single Property

Single Entity

Sets of Entities

Fine
grained

Coarse
grained

[4] Fowler, M. Analysis Patterns: Reusable Object Models.

Addison-Wesley, 1997.

[5] Foote B, J. Yoder. Metadata and Active Object Models.

Proceedings of Plop98. Technical Report #wucs-98-25, Dept.

of Computer Science, Washington University Department of

Computer Science, October 1998.

[6] Gamma, E.; R. Helm, R. Johnson, J. Vlissides. Design

Patterns: Elements of Reusable Object Oriented

Software. Addison-Wesley. 1995.

[7] Trail: Creating a GUI with JFC/Swing.

http://java.sun.com/docs/books/tutorial/uiswing/

[8] Johnson, R., R. Wolf. Type Object. Pattern Languages of

Program Design 3. Addison-Wesley, 1998.

[9] Microsoft .NET Framework. http://www.microsoft.com/net/

[10] Buschman, F. et al. Pattern Oriented Software Architecture,

Volume 1: A System of Patterns. Wiley & Sons. 1996

[11] Kircher, M.; P. Jain. Pattern Oriented Software Architecture,

Volume 3: Patterns for Resource Management. Wiley &

Sons, 2004.

[12] Riehle, D., Fraleigh S., Bucka-Lassen D., Omorogbe N. The

Architecture of a UML Virtual Machine. Proceedings of the

2001 Conference on Object-Oriented Program Systems,

Languages and Applications (OOPSLA ’01), October 2001.

[13] Riehle D., M. Tilman, and R. Johnson. "Dynamic Object

Model." In Pattern Languages of Program Design 5. Edited

by Dragos Manolescu, Markus Völter, James Noble.

Reading, MA: Addison-Wesley, 2005.

[14] Revault, N, J. Yoder. Adaptive Object-Models and

Metamodeling Techniques Workshop Results. Proceedings

of the 15th European Conference on Object Oriented

Programming (ECOOP 2001). Budapest, Hungary. 2001.

[15] Sommerlad, P.; M. Rüedi. Do-it-yourself Reflection.

European Conference on Pattern Languages of Programs

(EuroPLoP 98), Irsee, Germany, July 1998.

[16] Welicki, L.. The Configuration Data Caching Pattern. 14th

Pattern Language of Programs Conference (PLoP 2006),

Portland, Oregon, USA, 2006.

[17] Welicki, L; J. Cueva Lovelle; L. Joyanes Aguilar. Meta-

Specification and Cataloging of Software Patterns with

Domain Specific Languages and Adaptive Object Models.

European Conference on Pattern Languages of Programs

(EuroPLoP 2006), Irsee, Germany, July 2006.

[18] Welicki L; O. Sanjuan Martinez. Improving Performance and

Server Resource Usage with Page Fragment Caching in

Distributed Web Servers. International Conference on

Parallel and Distributed Processing Techniques and

Applications (PDPTA 2007), Las Vegas, Nevada, June 2007.

[19] Welicki L; J. Yoder; R. Wirfs-Brock; R. Johnson. Towards a

Pattern Language for Adaptive Object Models. Companion

of the ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages and Applications

(OOPSLA 2007), Montreal, Quebec, Canada, 2007.

[20] Yoder, J.; F. Balaguer; R. Johnson. Architecture and Design

of Adaptive Object-Models. Proceedings of the ACM

SIGPLAN Conference on Object Oriented Programming,

Systems, Languages and Applications (OOPSLA 2001),

Tampa, Florida, USA, 2001.

[21] Yoder, J.; R. Johnson. The Adaptive Object-Model

Architectural Style. IFIP 17th World Computer Congress -

TC2 Stream / 3rd IEEE/IFIP Conference on Software

Architecture: System Design, Development and Maintenance

(WICSA 2002), Montréal, Québec, Canada, 2002

[22] Yoder, J.; R. Razavi. Metadata and Adaptive Object-Models.

ECOOP Workshops (ECOOP 2000), Cannes, France, 2000.

APPENDIX- A BRIEF SUMMARY OF THE

ARCHITECTURAL STYLE OF AOMS
Important Notice: This section is a summary extracted from [21]

and [20] and has been included to help readers unfamiliar with

the AOM architectural style. To get a more complete view we

recommend the reader read the original papers found at

www.adaptiveobjectmodel.com.

The design of Adaptive Object-Models differs from most object-

oriented designs. Normally, object-oriented designs have classes

which model the different types of business entities and associate

attributes and methods with them. The classes model the

business, so a change in the business causes a change to the code,

which leads to a new version of the application. An Adaptive

Object-Model does not model these business entities as classes.

Rather, they are modeled by descriptions (metadata) which are

interpreted at run-time. Thus, whenever a business change is

needed, these descriptions are changed, and can be immediately

reflected in a running application.

Adaptive Object-Model architectures are usually made up of

several smaller patterns. TYPE OBJECT [8] provides a way to

dynamically define new business entities for the system. TYPE

OBJECT is used to separate an Entity from an

EntityType. Entities have Attributes, which are

implemented using the PROPERTY pattern [5]. The TYPE OBJECT

pattern is used a second time in order to define the legal types of

Attributes, called AttributeTypes. As is common in

Entity-Relationship modeling, an Adaptive Object-Model usually

separates attributes from relationships.

The STRATEGY pattern [6] can be used to define the behavior of

EntityTypes. These strategies can evolve, if needed into a

rule-based language that gets interpreted at runtime. Finally, there

is usually an interface for non-programmers which allows them to

define the new types of objects, attributes and behaviors needed

for the specified domain.

Therefore, we can say that the core patterns that may help to

describe the AOM architectural style are:

 TYPE OBJECT

 PROPERTY

 ENTITY-RELATIONSHIP / ACCOUNTABILITY

 STRATEGY / RULE OBJECT

 INTERPRETER (of Metadata)

Adaptive Object-Models are usually built from applying one or

more of the above patterns in conjunction with other design

patterns such as COMPOSITE, INTERPRETER, and BUILDER [6].

COMPOSITE is used for building dynamic tree structure types or

rules. For example, if the entities need to be composed in a

dynamic tree like structure, the COMPOSITE pattern is applied.

BUILDERS and INTERPRETERS are commonly used for building the

structures from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for building

Adaptive Object-Models. Every Adaptive Object-Model is a

framework of a sort but there is currently no generic framework

for building them. A generic framework for building the

TypeObjects, Properties, and their respective relationships could

probably be built, but these are fairly easy to define and the hard

work is generally associated with rules described by the business

language. These are usually very domain-specific and varied

from application to application.

Type Square
In most Adaptive Object Models, TYPE OBJECT is used twice:

once before using the PROPERTY pattern, and once after it. TYPE

OBJECT divides the system into Entities and EntityTypes.

Entities have attributes that can be defined using

Properties. Each Property has a type, called

PropertyType, and each EntityType can then specify the

types of the properties for its entities. Figure 10 represents the

resulting architecture after applying these two patterns, which we

call TYPE SQUARE [20].

Figure 10. The Type Square.

TYPE SQUARE often keeps track of the name of the property and

whether the value of the property is a number, a date, a string, etc.

The result is an object model similar to the following: Sometimes

objects differ only in having different properties. For example, a

system that just reads and writes a database can use a Record with

a set of Properties to represent a single record, and can use

RecordType and PropertyType to represent a table.

cd AOM

Entity EntityType

Property PropertyType

+type0..*

0..*+properties 0..*+properties

+type0..*

