
A Metric for Measuring the Abstraction Level of
Design Patterns

Atsuto Kubo1, Hironori Washizaki2, and Yoshiaki Fukazawa1

1 Department of Computer Science, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

a.kubo@fuka.info.waseda.ac.jp, fukazawa@waseda.jp
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
washizaki@nii.ac.jp

Abstract. The abstraction level of the problem treated by a design pat-
tern has wide variety, from architecture to near implementation. There
is no objective metric indicating the abstraction level of the problems
addressed by patterns. Thus, it is difficult to understand the abstraction
level of each pattern and to position a new pattern. In this paper, a met-
ric is proposed. It indicates relative abstraction level of each pattern’s
problem. We propose a metric obtained from inter-pattern relationships.
We also propose a visualization method for the metric. Using such met-
ric, we aim to help developers on easily understanding the abstraction
level of each pattern and therefore to better decide about its usefulness
for the problem at hand.

1 Introduction

A software pattern is a proven solution to recurrent problems that appear in the
context of software development [1]. Describing the knowledge of experienced de-
velopers promotes sharing and reusing their knowledge. Many authors published
many patterns, and most of the patterns have relationships to other patterns. A
Pattern catalog is a set of patterns that are related to each other.

In the design phase, developers break the system down gradually. Initially, the
system has higher abstraction level, and is independent from details in design and
implementation. Near the end of development, the system has lower abstraction
level, and depends on a concrete language and environment. There are software
patterns addressing problems for each phase. A pattern have an abstraction level
according to the system’s abstaction level.

Developers should select patterns according to their development phase be-
cause the pattern mismatched with the system’s abstraction level is not effec-
tive. Therefore, developers need to know the abstraction levels of patterns. In
the phase of basic design, developers will not be aware of idioms, and in the
phase of implementation, developers will not be aware of architectural patterns.
The patterns mismatching current development phase may make developers con-
fused. However, abstraction levels of patterns are different even if they belong

to a same pattern catalog. Developers cannot clearly classify some patterns into
architectural patterns, design patterns, or idioms.

For example, let’s consider Gang of Four (GoF)’s object-oriented design pat-
terns [2] and PoSA’s patterns [1]. The GoF’s design patterns deal with the
problems at the granularity of class design, and PoSA’s patterns deal problem
at the granularity of system architecture design. However, for example, GoF’s
Interpreter pattern is near an architectural pattern because it uses many other
patterns directly and/or indirectly in its solution. It can be thought that the
Model-View-Controller (MVC) pattern [3] [1] is near a design pattern because
it treats individual applications. As in the above situations, it can be difficult for
developers to select patterns fitting into considering level of abstraction. If there
is a metric that position the Interpreter pattern near architectural patterns,
developers can discuss whether to use it or not. However, actually, there is no
objective metric capable to indicate that.

In this paper, we propose a metric that indicates the relative abstraction level
of each pattern in a set of patterns. The proposed metric is based on partially-
ordered relationships between two patterns, which aims to assist on understand-
ing pattern’s abstraction level, classifying patterns, and selecting patterns to
solve faced problems.

2 A metric measuring abstraction level of design patterns

There is a wide variation in software design’s abstraction level from architecture
to detailed design near implementation. Developers focus on dividing a system
into subsystems at first. Next, they focus on the design of each subsystem, mod-
ules, and implementation. There are software patterns in each abstraction level
of software design.

Most of patterns have one or more inter-pattern relationships. Authors of pat-
terns often describe relationships in Related Patterns sections. Table 1 lists some
examples of inter-pattern relationships. The Partially-ordered column shows
whether each relationship is partially-ordered or not. For example, the struc-
ture of Interpreter pattern’s syntax tree would be designed using Composite
pattern. That is a Uses relationship. Some inter-pattern relationships exist across
different pattern catalogs. As another example, MVC pattern uses Observer pat-
tern.

In this metric, we use only Uses, Refines, and Provides context relationships,
i.e., the partially-ordered relationships shown on Table 1. The proposed metric
has two principals below:

– Patterns that use other patterns, patterns which are more generalized, and
patterns that is applied before other patterns have higher abstraction level.

– Patterns used by other patterns, patterns that are more specified, and pat-
terns that are applied after other patterns have lower abstraction level.

In the following, we will present an intuitive explanation and a formal definition.

Table 1. A list of inter-pattern relationships

Kind of relationship Description Partially-ordered

Similar to [4, 5] Pattern X is similar to Pattern Y. No

Uses[4–6] Pattern X uses another pattern Y in
its solution.

Yes

Refines [1, 5], Specific [6] Pattern Y provides more specific so-
lution than pattern X.

Yes

Combinable [1] Pattern X and Pattern Y can be com-
bined.

No

Variation [1] Pattern Y is pattern X with some
changes of Y’s solution.

No

Provides context [6] Pattern X and Pattern Y can be ap-
plied sequentially.

Yes

MVC

Observer

Composite

Strategy

Prototype Singleton

Flyweight

reference： 6
backward reference： 0

reference： 0
backward reference： 6

reference： 1
backward reference： 2

Fig. 1. Inter-pattern relationships

We use only the partially-ordered relationships because a unordered relation-
ship cannot determine its direction. To use the unordered relationships in addi-
tion to the partially-ordered relationships, we should determine a unordered rela-
tionship as two opposed partially-ordered relationships. This assumption equates
the abstraction levels of the two patterns at the both ends of the unordered re-
lationship. Therefore most of patterns finally have a same abstraction level.

2.1 Intuitive explanation of the proposed metric

By an intuitive reasoning, the reference count of a pattern means the total num-
ber of patterns that the pattern can refer transitively. Backward reference count
of a pattern means the total number of patterns that can refer the pattern tran-
sitively. In Figure 1, ellipses indicate patterns, arrows indicate partially-ordered
inter-pattern relationships. For example, MVC pattern transitively refers six other
patterns, so reference count of MVC patterns is six, and backward reference count
of MVC pattern is zero because no pattern refers the MVC pattern. In the same
way, the reference count of Composite pattern is two, and backward reference
count is one.

Patterns that use other patterns do not describe details in its solution and
delegate details into other patterns. Reversely, a pattern that is used by other
patterns treats details delegated from other patterns. The metric score of a
pattern is a difference between the reference count and the backward reference
count of the pattern. In the example shown in Figure 1, the metric score of MVC
pattern is six, and of the Composite pattern is one. Therefore, developers can
think that the MVC pattern is more suitable for architectural design.

2.2 Formal definition of the proposed metric

The reference count of a pattern means the total number of patterns that the
pattern can refer transitively on the graph. The graph is composed of patterns
(vertices) and inter-pattern relationships (edges). Backward reference count of a
pattern means the total number of patterns that can refer the pattern transitively
on the graph.

The set of N patterns for which we want to calculate the metric score is
represented as P .

P = {p1, p2, . . . pn}, n ∈ N.

The partially-ordered relationship between a pattern p1 and another pattern p2,
p1, p2 ∈ P , is represented as ⟨p1, p2⟩. Therefore, the set of the relationships R is
represented as

R ⊂ P × P.

Note that × denotes the direct product of two sets. (P,R) is a directed graph.
R+ is a transitive closure on R. R+ is defined as below:

R1 ◦ R2 = {⟨p1, p3⟩|∃p2 ∈ P (⟨p1, p2⟩ ∈ R1 ∧ ⟨p2, p3⟩ ∈ R2)}.
R1 = R.

Rn+1 = Rn ◦ R.

R+ =
∞∪

i=1

Ri.

Note that ∧ means ”and”, ∈ means inclution of the left-side argument by the
right-side arugument. At the last line of the above equations,

∪∞
i=1 means the

union of the sets R1, R2, . . . , R∞.
In addition, the set of patterns that can be retrieved transitively from a cer-

tain pattern p is a descendant of p, represented as D(p). The set of patterns that
a certain pattern p can be retrieved transitively are ancestral of p, represented
as A(p).

D(p) = {p0|p, p0 ∈ P ∧ ⟨p, p0⟩ ∈ R+} ⊂ P.

A(p) = {p0|p0, p ∈ P ∧ ⟨p0, p⟩ ∈ R+} ⊂ P.

A pattern that has many ancestors tends to be a part of other patterns. A
pattern that has many descendants tends to use other patterns. Where |D(p)|
denotes the number of patterns included in D(p), and |A(p)| denotes same of
A(p), the abstraction level of a certain pattern p is defined as:

a(p) = |D(p)| − |A(p)|.

2.3 Visualization

Developers cannot understand intuitively only using abstraction levels as plain
values. In this section, we propose a visualization technique that uses the above-
mentioned abstraction level.

In this technique, patterns with larger a(p) should be positioned above, pat-
terns with smaller a(p) should be positioned below. Position in horizontal axis
indicates nothing. In Figure 2, proposed visualization technique positions GoF’s
design patterns. Ellipses indicate patterns and arrows indicate partially-ordered
inter-pattern relationships. The abstraction level a(p) is used as a hint to position
each pattern.

3 Experimentation

In order to experiment he metric and visualization techniques, we built a tool
that calculates and presents abstraction level of each pattern visually using Java
and Graphviz[7]. The results of experiments are in Figure 2 and 3.

8

5

3

2

1

0

-1

-2

-3

-4

-5

-6

-12

Abstract Factory

Bridge

Facade

Factory Method

Prototype

Singleton

Adapter

Builder

Composite

Chain of Responsibility

Command

Memento

Decorator

Flyweight

Interpreter

Iterator

VisitorMediator

Observer

ProxyState

Strategy

Template Method

Fig. 2. A pattern map of GoF’s design patterns (vertical position depends on the score
a(p), the abstraction level)

In Figure 2, we used ”Uses”, ”Refines” and ”Provides context” relationships.
The abstraction level of each pattern is calculated according to the method de-
scribed in Section 2.2. The figure shows that Interpreter pattern and Abstract
Factory pattern have higher abstraction level. Actually, the Interpreter pat-
tern refers many other patterns, such as Visitor pattern, Iterator pattern
and Composite pattern, directly or indirectly. In the opposite side of that, the
figure also shows that Prototype pattern and Singleton pattern have lower
abstraction level. Actually, the Prototype and Singleton patterns are referred
directly or indirectly by many other patterns directly or indirectly. Using the
proposed visualization technique, shown in Figure 2, developers can easier un-
derstand that some patterns are close to architectural patterns, and other some
patterns are close to idioms.

In Figure 3, we performed a similar analysis on GoF’s design patterns and
PoSA’s patterns. Some architectural patterns, such as Layers pattern and Pipes
and Filters pattern, are positioned at the top of the figure. It means they
have highest abstraction level in shown patterns. Interestingly, Interpreter
pattern (a kind of design pattern) is positioned above Broker pattern (a kind
of architectural pattern). In the middle of Figure 3, patterns belonging to each
pattern catalog are mixed. Patterns can be connected if there are relationships
of two patterns from each pattern catalog.

The abstraction level and its visualization cannot be obtained without the
proposed metric. Moreover, the developer can apply the proposed metric to a
set of patterns, possibly from different catalogs, as we have exemplified.

A
bs

tr
ac

t F
ac

to
ry

B
ri

dg
e

Fa
ct

or
y

M
et

ho
d

Pr
ot

ot
yp

e

Si
ng

le
to

n

Fa
ca

de

B
ui

ld
er

C
om

po
si

te

C
ha

in
 o

f
R

es
po

ns
ib

ili
ty

C
om

m
an

d

M
em

en
to

D
ec

or
at

or

In
te

rp
re

te
r

Fl
yw

ei
gh

t

It
er

at
or

V
is

ito
r

M
ed

ia
to

r

O
bs

er
ve

r

Pr
ox

y

St
at

e

St
ra

te
gy

Te
m

pl
at

e
M

et
ho

d

L
ay

er
s

C
om

po
si

te
 M

es
sa

ge

M
ic

ro
ke

rn
el

PA
C

B
ro

ke
r

R
ef

le
ct

io
n

M
V

C

V
ie

w
-H

an
dl

er

Pi
pe

s
an

d
Fi

lte
rs

Fo
rw

ar
de

r-
R

ec
ei

ve
r

C
lie

nt
-D

is
pa

tc
he

r-
Se

rv
er

A
cc

ep
to

r
C

on
ne

ct
or

M
in

i-
B

ro
ke

r

W
ho

le
-P

ar
t

C
om

m
an

d
Pr

oc
es

so
r

17 13 8 6 5 4 3 2 1 0 -1 -3 -4 -5 -6 -1
0

-1
3

-1
9

Fig. 3. A pattern map of GoF’s design patterns and Buschmann’s patterns. vertical
position depends on the score a(p)

4 Related work

Buschmann et al. proposed a classification of patterns: architectural patterns,
design patterns, idioms [1]. This classification is based on abstraction level, how-
ever, we think it is too course-grained. The abstraction levels of patterns seem
to be consecutive. Our metric can classify patterns into consecutive categories.

Martin proposed two metrics on packages [8], such as Afferent Couplings (Ca)
and Efferent Couplings (Ce). Our metric and Martin’s OO-metrics have a similar
part on the abstract structure of patterns/packages, however, our metric is for
software patterns. Though our metric is defined as a very simple subtraction,
Martin’s metrics use a more complex calculation, such as a division.

Cutumisu et al. have proposed four metrics of pattern catalogs: usage, cov-
erage, utility and precision [9]. Those metrics use the number of patterns in a
pattern catalog and the number of adapted/unadapted instances of patterns. In
contrast, our metric uses partially-ordered inter-pattern relationships.

There is a lot of research about inter-pattern relationships [4–6, 1]. Especially,
Noble discussed finely [5]. Noble has surveyed inter-pattern relationships and has
roughly classified into three categories, such as Use, Refine, Confrict. The Use
and Refine relationships are partially-ordered, but the Confrict relationship is
unordered. Since our metric is based on partially-ordered relationships, the meric
works on Use and Refine relationships.

5 Conclusion

There is a wide variation in software design’s abstraction level from architec-
ture to detailed design near implementation. However, there are only three-level
classifications such as architectural patterns, design patterns, idioms. A pattern
catalog can contain patterns with different abstraction levels, however, they are
not explicitly considered. Therefore, it is difficult for developers to consider de-
sign patterns close to architectural patterns, such as the considered Interpreter
pattern.

In this paper, we proposed a metric to measure abstraction level of each
pattern, based on partially-ordered inter-pattern relationships. The advantages
and disadvantages of the proposed metric are the following:

– (Advantage) The metric can be applied to mixed pattern catalogs because
the method only uses inter-pattern relationships.

– (Advantage) The metric scores can be used as a hint to position patterns in
a pattern map.

– (Disadvantage) The metric score is a relative value, so there is not possible
to compare scores calculated from different sets of patterns.

– (Disadvantage) Before applying the metric, the analyzer has to obtain inter-
pattern relationships on the targeted set of patterns.

In the future, we plan to perform experiments on other sets of patterns. We
also plan to make the metric scores normalized using a statistical technique, such
as standard deviation.

References

1. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern Oriented Software Architecture: A System of Patterns. Wiley, New
York, 1996.

2. Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

3. E. Krasner and Stephen T. Pop. A cookbook for using the model-view-controller
user interface paradigm in smalltalk-80. Journal of Object-Oriented Programming,
Vol. 1, No. 3, pp. 26–49, 1988.

4. Walter Zimmer. Relationships between design patterns. In Pattern Languages of
Program Design Vol.1, pp. 345–364. Addison-Wesley, 1995.

5. James Noble. Classifying relationships between object-oriented design patterns.
In Proceedings of 1998 Australian Software Engineering Conference (ASWEC’98).
IEEE CS Press, 1998.

6. Markus Volter. Server-side components - a pattern language. In proceedings of
EuroPLoP ’2000, 2000.

7. AT&T. Graphviz. http://www.graphviz.org/.
8. Robert Martin. OO design quality metrics, 1994. http://www.objectmentor.com/

resources/articles/oodmetrc.pdf.
9. M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,

J. Siegel, and M. Carbonaro. Evaluating pattern catalogs: the computer games
experience. In Proceeding of the 28th international conference on Software engi-
neering (ICSE2006), pp. 132–141, 2006.

