

Design Patterns

for Domain

Services
Fundamental Design Solutions for Service

Oriented Architectures

Rob Daigneau

Rob.Daigneau@ArcSage.com

Abstract

Service Oriented Architecture (SOA) means

many things to many people. For some it is a

way to expose application capabilities to

different types of consumers usually via

platform-independent mechanisms. For

others, it provides a new way to integrate

systems or direct the manner in which they

collaborate. Unfortunately, these all-

encompassing definitions have left many

wondering what SOA really is.

To date we have witnessed the rise of two

general categories of services which I’ll

refer to as being Enterprise Services and

Domain Services. Whereas the former are

essentially composite services that typically

leverage technologies such as Message-

Oriented-Middleware, the latter are the

building blocks upon which the composites

depend. Each service category encompasses

a distinct set of design solutions and is

therefore worthy of individual attention.

The patterns that follow are early excerpts

from a book forthcoming from Addison

Wesley on this subject. This book will

focus upon patterns specific to the creation

of Domain Services. I’ll expand upon the

Service Layer concept [Stafford, Patterns of

Enterprise Application Architecture], and

will also show how Domain Services might

be used with Enterprise Integration

Patterns [Hohpe, Woolf].

Pattern Overview

Asynchronous

Response Pull

How can a client submit a

request to a long-running

service operation and

acquire a response, yet be

free to move on to other

work?

Dataset

Element

How can service

operations be designed to

not only promote

extensibility, but to also

minimize the burden of

having to maintain the

signatures of each

operation that uses the

same data?

Command

Driven

Operation

How can the number of

operations on a service be

minimized so that the

potential for high

coupling with clients can

be averted?

Dataset Batch How can service

operations be designed to

help mitigate the inherent

performance weaknesses

of distributed computing?

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists,

requires prior specific permission. A preliminary version of

this paper was presented in a writers’ workshop at the 15th

Conference on Pattern Languages of Programs (PLoP). PLoP

’08, October 18–20, 2008, Nashville, TN, USA. Copyright

2008 is held by the author(s). ACM 9781605581514.

Asynchronous

Response Pull

Service Design Style: SOAP, REST

How can a client submit a request to a long-

running service operation and acquire a

response, yet be free to move on to other

work?

Some of the work incurred by client requests

can be rather lengthy or “long-running” in

nature. Of course, the definition of what this

means depends upon the context of the

problem, system requirements, and your

perspective. In many cases, long-running

work may be defined as requests that exceed

a few seconds (e.g. the default time-out span

of client proxies). Lengthy operations may

also involve elaborate Messaging

Conversations that transpire between

several parties over many days. In the first

situation, it is usually better not to block the

client from moving on to other work. In the

latter case, it’s just not feasible to have the

client waiting for the response.

While some operations can be tuned in order

to make them run faster, there will be times

when no amount of code optimization,

refactoring, or database tuning can save you.

The business use-cases for which these

operations were written may just be terribly

complex. The multi-party messaging

conversation mentioned above is just one

example. More commonly, complex

operations may involve dozens of domain

objects that each need to perform many

queries or updates. We might try to look for

ways to shorten the overall duration of the

operation by having it invoke methods on

the domain objects in an asynchronous

fashion, but this isn’t always feasible. On

many occasions the results of one method

must feed into the next method, and the

same might be true for each successive call

mediated by the service operation. So we’re

stuck with an operation that takes a long

time to complete! But it gets even worse. If

the operation simply processes each request

as soon as it comes in, a tidal wave of

requests could bring the systems behind the

service façade to their knees.

When faced with this situation, service and

client developers alike may concede that the

client does not need to be blocked waiting

for the service response. There are a few

ways to handle this situation without having

to make drastic changes to the service

operation. The client may create a Proxy

[GOF] that contains methods allowing for

asynchronous invocation of service

operations (e.g. Polling Methods and

Callbacks). Unfortunately, clients that use

these patterns remain vulnerable to timeouts,

and responses are lost if the client crashes.

Furthermore, these patterns do nothing to

alleviate the risk of the service being

overwhelmed by requests.

Another way to solve this problem is for the

client to use Request/Acknowledge in

conjunction with Notifications, a pattern

that may be referred to as the Message

Relay pattern. In this approach, the client

submits a request message to a service, the

service hands that request off to an

asynchronous worker, and then returns a

simple acknowledgement indicating that the

request has been received. When the

asynchronous worker completes, it sends a

notification message (i.e. a type of One-

Way Message) to a Return Address [EIP]

provided in the original request. This

notification message contains the final

response. Unfortunately, the Message Relay

pattern cannot be used in all situations. In

order to implement that pattern, the client

organization must create a Service

Endpoint used to receive the notifications.

The client may not want to alter the firewall

rules of their network to allow inbound

traffic, or they may not want to create or

maintain services for some other reason.

When service designers have a long-running

operation, how can they possibly appease

clients such as these?

Design service operations such that the

submission of a request and the receipt of

the ultimate response occur within separate

client/service interactions. In the first

exchange, the client sends a request to a

service and receives a quick

acknowledgement. The client will then

issue subsequent requests to a different

service operation or resource URI in order to

pull back the response.

The Asynchronous Response Pull pattern

is comprised of two separate

Request/Response exchanges between a

client and one or more services. The first

interchange uses the Request/Acknowledge

variation of the Request/Response pattern.

In this exchange the service receives the

request and generates a unique identifier

called a Request ID
1
. This ID may be used

by the client in subsequent requests when

querying upon the status of the original

request. Perhaps it should go without saying,

but the client and service must agree upon

both the data type used for the Request ID

and the location where it will appear within

the message. Once the Request ID has been

generated, the service will add it to the

message. Usually the best place to put this

type of information will be in the Message

Header because such information is not

truly a part of the domain data found within

1
 The Request ID may also be referred to as being a
Correlation Identifier [EIP] or Transaction ID.

the body of the message. After the Request

ID has been generated and added to the

message, the service will quickly push the

message to a queue, or it may write the data

from the message to a table
2
. Other than

adding the Request ID to the message, the

service does not act on the message at all.

Once the message has been sent to a queue

or written to a table, the service will quickly

return an acknowledgement (i.e. a response

message) containing the Request ID to the

client.

Meanwhile, an asynchronous worker (a.k.a.

Request Processor) will pop messages off

of the queue or read new rows from the

designated database table. In some cases it

will process the request by instantiating an

object in the Domain Layer [POEAA] in

order to invoke the necessary domain logic.

The request processor may also create a

specific Command object [GO4] that

encapsulates the process logic associated

with the incoming message. In the most

sophisticated scenarios, the request

processor may be a workflow or rules

engine. The possible implementation

approaches for the request processor are

many, and while this entity plays an

important role in this pattern, its

implementation is not central to this pattern.

What is important here is that the service

receives a request and quickly passes it on to

some type of request processor that runs

asynchronously in a process apart from the

service.

Once the service has returned an

acknowledgement, the client must retrieve

the Request ID provided in that

acknowledgement. The client will use this

ID in a second Request/Response exchange

in order to query upon the status of the

original work request. Clients of SOAP

services are frequently coded ahead of time

to invoke a second known service operation

designed for this purpose. In a more

2
 Given the choice between using queues and database
tables, the former is superior in many cases where
inter-process or inter-application integration is required.
For more information on this topic, I recommend
Enterprise Integration Patterns [EIP]

sophisticated approach available to clients of

both RESTful and SOAP services, the

service may return a URI within the

acknowledgement. The client may use this

URI to dynamically construct a proxy so

that it can check on the status of the initial

request. While there is currently no common

construct for RESTful services to pass this

type of information back to clients, SOAP

services may leverage the ReplyTo

construct of WS-Addressing.

The client may execute the second request

query at any time. It may even check on the

status of the work request multiple times

using the Request ID provided in the

acknowledgement. Depending upon the

design of the systems behind the service

façade, inclusive of all request processors,

the status of the work request may change

with each call. For example, a request may

return a status of Open on the first call,

appear as InReview in the next call, and

change to be Fulfilled in a final query by the

client. Furthermore, the data provided by the

service in each response may change

significantly over time as well.

One characteristic of this pattern is that the

client that invokes each subsequent request

doesn’t have to run on the same thread of

execution as the original requestor. For

example, a user may submit a request

through one application, and when that

application receives the acknowledgement it

might save the Request ID to a database

table. Another user working a different shift

might use a different application to review

work in progress, and by doing so, could

initiate additional requests that check for

updates using the saved Request IDs. Since

responses can be retrieved by different

threads or applications, this pattern also

helps to provide resiliency upon the event of

a crash in the initial requestor. Additionally,

Fault Messages can be returned to the client

during any interaction with a SOAP service.

With RESTful services, error information

may be passed back in the HTTP return

codes.

The Asynchronous Response Pull pattern

can be beneficial in other scenarios as well.

First, the client can choose when to check

for the response, an option that may be

preferred if the client wants to be in charge.

If the data in the response changes

frequently over time, the client can

repeatedly check in to discover the latest

status of their request. While the Message

Relay pattern puts the burden on the service

to notify clients about prepared responses,

the burden shifts to the clients when using

this pattern. One disadvantage with this

approach occurs when the client doesn’t

check back in a timely manner. When this

happens there may be a significant delay

between the time the response has been

prepared and the time the client retrieves the

response. If the client must be alerted as to

the completion of their requests without

delay, it may be better to use Notifications

or Callback Methods.

This pattern provides organizations an

effective means to throttle incoming

requests, thereby protecting the system’s

resources from being overwhelmed.

Organizations can easily “scale out” the

servers hosting the services, yet throttle the

requests by forcing them through a queue.

At the other end of the queue one might find

Competing Consumers [EIP] which can

also be scaled out horizontally. The

Asynchronous Response Pull pattern is

therefore a viable choice when high loads

are anticipated.

Figure 2: Asynchronous Response Pull can

be scaled out by deploying the services to a

load-balanced server farm.

This pattern incurs more network round-trips than the simple Synchronous Request/Response

style of client/service interaction. The burden is placed upon the client to check back with the

service in a timely manner, and if the client doesn’t do this then there may be a significant delay

between the time the response has been prepared and the time the client retrieves the response.

Therefore, the client developer must put some thought into determining how frequently they

should poll the service for a response. This frequency will vary for different applications.

Example: SOAP Service
This example shows a service that provides two operations, PlaceOrder and GetOrder. The first

is used by clients to make the initial request, and the second is used to pull the response.

@WebService()
public class OrderService {

 @WebMethod(operationName = "PlaceOrder")
 public OrderStatus PlaceOrder
 (@WebParam(name = "order")
 Order order)
 {
 OrderStatus status = new OrderStatus();

 String requestId = System.currentTimeMillis().toString() +
 java.util.UUID.randomUUID().toString();

 status.setOrderStage("Open");
 status.setRequestId(requestId);

 order.setCorrelationId(requestId);

 FulfillmentSystem.SubmitOrder(order);

 return status;
 }

 @WebMethod(operationName = "GetOrder")
 public OrderStatus GetOrder
 (@WebParam(name = "requestId")
 String requestId)
 {
 return FulfillmentSystem.CheckOrderStatus(requestId);
}

This listing demonstrates how a unique Request ID may be generated by using simple Java APIs.

The identifier is assigned to an OrderStatus object and an Order object that has been deserialized

from the request message. This is used by the client to retrieve the response for the original

request regardless of the keys used by internal systems to refer to the order.

Once these activities have been performed, the service proceeds to push the order to the

fulfillment system by calling a static method named SubmitOrder. This method presumably

serializes the order onto a JMS queue
3
 so that it may be picked up by a request processor within

the fulfillment system.

All of the logic which occurs before the acknowledgement is sent to the client must be designed

with the highest levels of performance in mind. Therefore, it is best if the service does nothing

more than attach the Request ID to the message, pass the message off to a request processor, and

return an acknowledgment.

I decided not to show how clients would interact with this service as it should be rather obvious.

Suffice it to say that after the client has submitted a request to PlaceOrder, it must retrieve the

Request ID from the acknowledgement and then use it when calling the GetOrder operation.

Example: RESTful Service

This example shows how the Asynchronous Response Pull pattern might be used with a RESTful

service. You will notice that the Resource Mapper pattern is used to map HTTP PUT and GET

requests into operations named PlaceOrder and GetOrder, respectively.

@Path("/orders")
public class OrdersResourceMapper {

 private static String BaseURL =
 "http://www.acmeCorp.com/orders/";

 public OrdersResourceMapper() {;}

 @PUT
 @ConsumeMime("application/xml")
 @ProduceMime("text/plain")
 public String PlaceOrder(Order order) {

 String requestId = System.currentTimeMillis().toString() +
 java.util.UUID.randomUUID().toString();

 order.setCorrelationId(requestId);

 FulfillmentSystem.SubmitOrder(order);

 return BaseURL + requestId;
 }

 @GET
 @Path("/{requestId}")
 @ProduceMime("application/xml")
 public Order GetOrder(
 @UriParam("requestId")
 String requestId){

 return FulfillmentSystem.CheckOrderStatus(requestId);
 }
}

3
 JMS, or Java Message Service, provides an API for a Message Oriented Middleware that supports the ability to send
messages asynchronously between clients and servers. The .Net equivalent is MSMQ, or Microsoft Message Queuing.

Assuming that clients which issue PUT requests to this resource prepare requests in accordance

with the structure defined by the Order class and also send these requests to a URI which maps to

“BaseURL + /orders”, the PlaceOrder method will receive each request and function in a manner

similar to what was demonstrated in the SOAP Service example. The primary difference is that

this version of PlaceOrder returns a String response (i.e. acknowledgement) which provides each

client a URI it may use to inquire about the status of its order. The client may then issue a GET

request to this URI to retrieve the order status.

It should be noted that, in each of these examples, clients are not prevented from inquiring about

the status of orders submitted by other clients. Therefore, it should be apparent that one should

also use appropriate authentication mechanisms such as Identity Tokens or Digital Certificates.

Related Patterns and Known

Uses:

1. Brown, Kyle. Asynchronous

Queries in J2EE.

http://www.javaranch.com/journal/2

004/03/AsynchronousProcessingFro

mServlets.html

This article illustrates an approach

that is quite similar to the pattern

described here. The solution shows

how long-running queries may be

processed by a pair of servlets, a

pair of JMS queues, and a Message-

Driven Bean. The servlet that

receives requests extracts pertinent

information from the request,

creates a Correlation ID [EIP], and

then creates a Command object

[GOF] which encapsulates the logic

required to process the request. The

command is provided the

Correlation ID along with the data

from the request message, and is

then serialized by the servlet onto a

designated JMS “Request Queue”.

Once this is done, the servlet returns

the Correlation ID to the client.

The Message-Driven Bean (MDB)

which listens to the JMS request

queue deserializes the command and

invokes its logic through a well-

known interface. Once the

command has completed, the MDB

serializes the response onto a special

JMS “Reply Queue”. A second

servlet is used to dequeue the

response that contains the

Correlation ID [EIP] for the original

request.

2. Snell, James. Asynchronous Web

Service Operations using JMS

http://www-

128.ibm.com/developerworks/librar

y/ws-tip-altdesign1/

This article demonstrates a design

approach nearly identical to the one

shown in Kyle’s article. While

Kyle’s article shows how to

implement the pattern with servlets,

this article shows how to do the

same thing with web services.

3. WS-Polling

http://www.w3.org/Submission/ws-

polling/

This specification defines a set of

common SOAP extensions that may

be used by clients to asynchronously

retrieve messages stored by a

service or a designated third party.

The rationale for this specification

was to free clients from the need of

having to set up a service endpoint

where services would return

notifications (i.e. One-Way response

messages containing the final results

of a request). By allowing the client

to poll for the response rather than

having the client set up an endpoint,

the client doesn’t need to alter any

firewall rules.

4. WS-Addressing

http://www.w3.org/Submission/ws-

addressing/

This specification defines a way for

any messaging participant to include

address related information for

services, service endpoints, and

messages within a SOAP header.

References:

[EIP]

Hohpe, Gregor; Woolf, Bobby. Enterprise

Integration Patterns: Designing, Building,

and Deploying Messaging Solutions.

Addison-Wesley, 2003

[GO4]

Gamma, Helm, Johnson, Vlissides. Design

Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995

[POEAA]

Fowler, Martin. Patterns of Enterprise

Application Architecture. Addison-Wesley,

2002

[REST]

Fielding, Roy T. Architectural Styles and the

Design of Network-based Software

Architectures. Doctoral dissertation.

University of California Irvine, 2000.

http://www.ics.uci.edu/~fielding/pubs/disser

tation/top.htm

Dataset Element
A service operation accepts parameters that

are logically related and might be used in

other operations.

Service Design Style: SOAP

How can service operations be designed to

not only promote extensibility, but to also

minimize the burden of having to maintain

the signatures of each operation that uses the

same data?

Developers frequently design service

operations in such a way that they possess

long input parameter lists. In so doing, they

have inadvertently increased the coupling

between clients and those operations, and

have also set the stage for maintenance

headaches. Service operations with this kind

of “Flat API” are inherently inflexible. If

ever the need arises to add or remove

optional parameters, there is no viable way

to do so within the operation’s signature.

Consider the WSDL provided in Listing 1.

Listing 1

Service operations that contain long input parameter lists are a common occurrence.

<portType name="HotelPortal">
 <operation name="CheckHotelAvailability">
 <input message="tns:CheckHotelAvailability" />
 <output message="tns:CheckHotelAvailabilityResponse" />
 </operation>
</portType>

<message name="CheckHotelAvailability">
 <part name="parameters" element="tns:CheckHotelAvailability" />
</message>

<message name="CheckHotelAvailabilityResponse">
 <part name="parameters"
 element="tns:CheckHotelAvailabilityResponse" />
</message>

<xs:complexType name="CheckHotelAvailability">
 <xs:sequence>
 <xs:element name="GuestCount" type="xs:int" />
 <xs:element name="HotelChainCode” type="xs:string" />
 <xs:element name="City" type="xs:string" />
 <xs:element name="StateOrRegion" type="xs:string" />
 <xs:element name="ArrivalMonth" type="xs:int" />
 <xs:element name="ArrivalDay" type="xs:int" />
 <xs:element name="ArrivalYear" type="xs:int" />
 <xs:element name="DepartureMonth" type="xs:int" />
 <xs:element name="DepartureDay" type="xs:int" />

 <xs:element name="DepartureYear" type="xs:int" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="CheckHotelAvailabilityResponse">
 <xs:sequence>
 <!-- element definitions would appear here -->
 </xs:sequence>
</xs:complexType>

The corresponding Java code for this WSDL is provided in Listing 2.

Listing 2

A Java web method with a “Flat API”

@WebMethod(operationName = "CheckHotelAvailability")
public TravelOptions CheckHotelAvailability(
 @WebParam(name = "GuestCount") int GuestCount,
 @WebParam(name = "HotelChainCode") String HotelChainCode,
 @WebParam(name = "City") String City,
 @WebParam(name = "StateOrRegion") String StateOrRegion,
 @WebParam(name = "ArrivalMonth") int ArrivalMonth,
 @WebParam(name = "ArrivalDay") int ArrivalDay,
 @WebParam(name = "ArrivalYear") int ArrivalYear,
 @WebParam(name = "DepartureMonth") int DepartureMonth,
 @WebParam(name = "DepartureDay") int DepartureDay,
 @WebParam(name = "DepartureYear") int DepartureYear
)
 throws InvalidDataRequestFault
{

 // implementation would appear here
}

This seems innocent enough, but what

would you do if you needed to add optional

parameters to meet the requirements of new

clients? Perhaps the client might want to

indicate the guest’s room preferences (e.g.

room size, smoking or non-smoking, bed

type, or room view)? Sure, we could insert

these as additional parameters to the end of

this list, and most client proxies wouldn’t

need to be updated because the majority of

service frameworks are able to ignore

parameters they don’t recognize when these

parameters occur at the end of the list.

However, this is a pretty messy solution

because now we’re separating related

parameters. It would be much nicer if we

could insert these new parameters alongside

the GuestCount so that we could keep all

things “guest-related” together.

Unfortunately, if we did try to squeeze new

parameters into the middle of the argument

list, we would likely incur a breaking change

that would also raise several vexing

questions. Should the service designer

create a new operation, retire the old

operation, and coax his clients onto the new

one? Should he create a new operation and

keep the older operation to maintain

backward compatibility? Neither of these

options seems very appealing.

If we anticipated the need to add new guest-

related parameters, we might decide to move

the GuestCount to the end of this operation

so that all new parameters related to the

guest would follow. However, this shuffling

of parameters would do little to alleviate our

problems in the long term because the same

situation could arise time and again for other

parts of the operation’s signature. For

example, we might want to further constrain

the hotel search to those of a particular

rating (e.g. 3, 4, or 5-star hotels), or to hotels

that support certain discount programs (e.g.

American Automobile Association

discounts). The scenarios are endless.

Given all of this, it should be evident that

“Flat APIs” not only produce brittle and

inflexible service contracts, they also

frequently cause developers to do a lot of

repetitive coding. With respect to the guest-

related parameters discussed above, the

chances are good that these same arguments

might be required in other service operations

(e.g. an operation might later be created to

maintain guest profiles). We can quickly

conclude that this design style results in a

maintenance nightmare for services and

clients alike.

Given the obvious drawbacks of “Flat

APIs”, why do we continue to design service

operations in this way? There are many

possible reasons. Some developers may

have a distorted understanding of what

YAGNI
4
 really means, and as a result, they

haven’t pondered the consequences of their

short-sightedness. These developers may

think that they can simply refactor their

operations, but they do not take into account

how clients will immediately become

coupled to the service design once it is made

public. In most cases, however, this style of

design may have become a habit that was

nurtured. Many of us were taught that

Simple Data Coupling [Code Complete],

wherein all of the parameters of a procedure

are passed in as primitive non-structured

data, was the best way to reduce coupling

between modules. Many vendor tutorials

and books have further enforced this

philosophy by providing lessons that show

4
 YAGNI: You Aren’t Gonna Need It: The philosophy
that developers should not implement features until
they are actually required.

service operations with “Flat APIs”. While

simple data coupling was recommended for

procedural programming, and perhaps to a

lesser degree for object-oriented

programming, it tends to defeat extensibility

and maintainability in SOA. But what

recourse do we have, and how do we

change?

Design all operations such that the input

parameter list employs reusable data

structures that group logically related sets of

data together.

Dataset Elements (DSEs)
5
 are reusable

compound types that contain related data.

They are roughly analogous to C Structs or

Pascal Records. DSEs may be created in

code as classes with XML serialization

annotations, or they may be defined with

XML Schema Language as Complex Types.

The data within these structures may either

be primitive data types (e.g. integer, string,

etc.) or compound types. The child elements

within a DSE may be marked to indicate that

they are required or optional, their allowed

values can be constrained, and the order in

which they are serialized to XML within

SOAP messages can be easily controlled.

When a DSE contains one or many children,

the structure of the DSE resembles a

hierarchical tree.

DSEs do not encapsulate business logic. If

they do have any methods, then these

methods are only used to set or get the

values of private member variables. DSEs

provide a container in which data may be

transferred from clients to services or vice

5
 Dataset Elements should not be confused with
Microsoft’s platform specific data access technology
that manages an in-memory cache of table-like data
structures.

versa. Given this characterization, one

might rightfully conclude that they are the

same as Data Transfer Objects (a.k.a.

DTO) [POEAA]. However, the context and

forces that might lead one to use these

patterns are somewhat different, as is their

technical implementation. Martin Fowler

describes a DTO as being “An object that

carries data between processes in order to

reduce the number of method calls”. While

DSEs are also used to carry data between

processes, in this case between a client and

the service, their main purpose is not to

minimize method calls, a problem that is of

great concern with distributed objects.

Instead, their primary function is to group

related data so that maintenance of the

service’s contractual obligation with its

clients can be simplified. Given this, I like

to think of DSEs as being specialized

implementations of DTOs for use in

services.

One might also recognize a similarity

between DSEs and Document Messages

[EIP]. While Document Messages provide

the means to transfer related data as

comprehensive messages between

applications, DSEs occur as child elements

within Document Messages. DSEs therefore

provide a strategy to chunk out the data in a

Document Message into smaller,

meaningful, reusable, and manageable

structures. DSEs can also be used to build

up to a Canonical Data Model [EIP] in a

very pragmatic way. This latter pattern is

used when there is a desire to define an

application-independent model that

represents an enterprise-view of data.

The name of a DSE identifies an abstract

type or logical grouping of data for some

problem domain. This name should usually

not be used to indicate the operation that

manipulates the data. This is where the

differences between DSEs and Document

Messages become apparent. Whereas the

names of messages oftentimes describe what

a service should do (e.g. GetLoanTerms), or

what part of a message exchange the data

occurs in (e.g. GetLoanTermsResponse),

DSEs do nothing of the sort. Instead, DSEs

simply provide a logical grouping of data

(e.g. LoanTerms) that can be used in any

number of message exchanges, operations,

and services.

Generally, DSEs should be kept as small and

as compact as possible, and should only

include child DSEs if those children are

used in most use-case scenarios where the

DSE appears. There are few reasons for

these recommendations. First, as the

breadth or depth of a DSE increases, it can

become increasingly cumbersome to work

with. Additionally, it is likely that some of

the members of a large DSE will not be

populated, and the absence of data could

have unintended semantic importance to

certain clients. Not only that, but these

empty DSE members will still be serialized

causing the server to do more work and

increasing the message payload size; the net

result is a negative impact on performance.

So the trick in determining the right sizing

of a DSE is to find that combination of

members that seem to belong together and

are usually always populated by the service

operations they are used in.

DSEs provide a point of extensibility that is

superior to what can be done within a

service operation’s definition. When DSEs

appear as arguments within the service

operation, it’s easy to add new optional

elements to any DSE by using the Contract

Amendment
6
 pattern. Not only that, but one

can still maintain the fidelity of the entire

service operation, even if the DSE appears

in the middle of the operation’s argument

list. This is possible because changes made

to a DSE will not alter the WSDL port,

binding, message, or operation definition.

Instead, this variability is pushed down into

an XML Complex Type. This means that

backward compatibility with clients that

only know the older versions of the service

contracts will not be compromised, and

these clients will not need to generate new

6
 The Contract Amendment pattern describes an
approach that allows service designers to publish minor
(non-breaking) changes to service contracts by
explicitly defining the addition of new optional elements
at the end of a DSE. This pattern stands in contrast to
Extension Elements, which are more open-ended.

proxies. Of course, the more difficult part is

ensuring that any new logic introduced

behind the service façade does not corrupt

the results expected by clients using older

versions of the DSEs. New DSEs can also

be created from base DSEs, much like

classes in object-oriented languages such as

C# and Java can be extended.

DSEs provide a few other benefits as well.

For one, developers may leverage XPath in

order to extract out from the message only

those DSEs they are interested in. Once the

required DSEs have been plucked out of the

message, validation of the DSE’s structure

and content is quite simple.

DSEs need not be used if you only have a

few input parameters on a particular

operation and the combination of parameters

is not repeated across operations. However,

whenever you are able to recognize a logical

grouping of data that has the potential for

reuse, then designing your operations to use

DSEs might save you some grief in the

future.

The Relationship between

Dataset Elements and Domain

Objects

DSEs shouldn’t be created by simply

annotating classes in the domain model with

JAX-WS or WCF attributes. One problem

with this approach is that it can be very

difficult to serialize XML messages from an

object graph because of the fundamental

structural differences between object graphs

and XML Infosets. XML messages are

essentially tree structures, while object

graphs may be unbounded structures with

circular references. If an XML serializer is

given the task of serializing an object graph

with circular references (e.g. child objects

pointing to parents and vice versa), the

serializer will usually throw an exception

because it will not be able to find a

terminating node. While there are ways to

work around this, they tend to be rather

kludgey.

Another problem with annotating classes in

the domain model with XML serialization

attributes is that it creates a very strong

coupling between the domain model and the

messages being exchanged. If you ever need

to redesign or reorganize your domain

model, your changes could inadvertently

alter the XML types that are generated, and

this would ripple straight out through the

service contract. Therefore, in order to set

the stage for the independent evolution of

the domain model and the clients that use

your services, DSEs should be created as

distinct and separate elements within the

Service Layer [POEAA], and service

designers should strive to use these

constructs as a means to insulate clients

from the internal design of both the domain

layer and any database objects (i.e. tables,

views, stored procedures) that are accessed.

Of course, the challenge with this approach

is that it will increase the amount of work

you will need to do. Not only will you need

to generate classes from your WSDL or vice

versa, you will also need to write logic to

move data back and forth between the DSEs

and the domain model. This is a tedious and

non-trivial task which might call for the use

of an Entity Mapper
7
, and is one of the

biggest drawbacks to using DSEs.

The data in a DSE is ultimately mapped to

one or many domain objects or database

tables. There need not be a one-to-one

correlation between DSEs and entities

within the domain layer or database. In fact,

the structure or design of DSEs may be quite

different from these things. The reason for

this is that the content of DSEs will typically

be driven by client use-cases, and the data

employed in a use-case doesn’t always map

neatly to a domain model or database

schema. Regardless, on many occasions the

design of a DSE will mirror the design of

classes in your domain layer or the tables in

your database.

7
 The Entity Mapper pattern is similar to the Message
Translator [EIP] pattern. The primary difference is that it
is used to map from DSEs that have been deserialized
by the framework onto Domain Entities and vice versa.

A Few Parting thoughts on the

Dataset Element

It can take significant amounts of time and

effort to devise reusable types. Inevitably,

different operations will use the information

in the DSEs in various ways. The path of

least resistance is to design DSEs as “one-

off solutions” for each operation or a small

grouping of operations. Unfortunately, this

may result in a large assemblage of DSEs

that have small differences but are strikingly

similar. The consequence of taking this path

may be a failure to achieve the desired

reuse. The more difficult path is when the

team attempts to design a Canonical Data

Model [EIP]. Unfortunately, this approach

may not be very pragmatic. Service

designers must therefore carefully evaluate

the trade-offs with these two extremes.

Example: Dataset Elements in Java and JAX-WS

This example shows how we might refactor the code from Listing 1 to use DSEs. All getter and

setter methods have been eliminated for the sake of brevity.

@WebMethod(operationName = "CheckAvailability")
public AvailabilityResults CheckAvailability
 (@WebParam(name = "request")
 HotelSearchCriteria request) {

 // implementation here
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "HotelSearchCriteria",
 propOrder = {"GuestCriteria", "HotelCriteria",
 "ArrivalDate", "DepartDate"})
@XmlRootElement(name = "HotelSearchCriteria")
public class HotelSearchCriteria {

 @XmlElement(name="GuestCriteria",required=true)
 public GuestInfo GuestCriteria;

 @XmlElement(name="HotelCriteria",required=true)
 public HotelInfo HotelCriteria;

 @XmlElement(name="ArrivalDate",required=true)
 public TravelDate ArrivalDate;

 @XmlElement(name="DepartDate",required=true)
 public TravelDate DepartDate;
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "GuestInfo",
 propOrder = {"GuestCount"})
@XmlRootElement(name = "GuestInfo")
public class GuestInfo {

 @XmlElement(name="GuestCount",required=true)
 public int GuestCount;
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "HotelInfo",
 propOrder = {"ChainCode", "City", "StateOrRegion"})
@XmlRootElement(name = "HotelInfo")
public class HotelInfo {

 @XmlElement(name="ChainCode")
 public String ChainCode;

 @XmlElement(name="City")
 public String City;

 @XmlElement(name="StateOrRegion")
 public String StateOrRegion;
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "TravelDate",
 propOrder = {"Month","Day","Year"})
@XmlRootElement(name = "TravelDate")
public class TravelDate {

 @XmlElement(name="Month",required=true)
 public int Month;

 @XmlElement(name="Day",required=true)
 public int Day;

 @XmlElement(name="Year",required=true)
 public int Year;
}

This is obviously a fair amount of code. Fortunately, the tools in most IDEs make quick work of

all of this. You can see in the listing above that the CheckHotelAvailability operation has been

refactored to receive a single DSE of the type HotelSearchCriteria. By having one argument in

the parameter list, the service designer has much more flexibility in that they can do things like

adding optional child elements while still not breaking the service contract. Some might say that

because the operation signature has changed from being one with many arguments to one with

only a single argument that we have now achieved a “Document Messaging” style of interaction

rather than an RPC style. The truth of the matter is that even if I left this operation with a “Flat

API”, the service framework would have wrapped my parameters in a document message of its

own because, by default, most frameworks implement the “Document/Literal/Wrapped” pattern.

This wrapper can be seen easily enough in the next listing.

<portType name="HotelPortal">
 <operation name="CheckAvailability">
 <input message="tns:CheckAvailability" />
 <output message="tns:CheckAvailabilityResponse" />
 </operation>
</portType>

<message name="CheckAvailability">
 <part name="parameters" element="tns:CheckAvailability" />
</message>

<message name="CheckAvailabilityResponse">
 <part name="parameters"
 element="tns:CheckAvailabilityResponse" />
</message>

<xs:element name="AvailabilityResults"
 type="tns:AvailabilityResults" />
<xs:element name="CheckAvailability"
 type="tns:CheckAvailability" />
<xs:element name="CheckAvailabilityResponse"
 type="tns:CheckAvailabilityResponse" />
<xs:element name="GuestInfo" type="tns:GuestInfo" />
<xs:element name="HotelInfo" type="tns:HotelInfo" />
<xs:element name="HotelSearchCriteria" type="tns:HotelSearchCriteria"/>
<xs:element name="TravelDate" type="tns:TravelDate" />

<!-- the wrapper element for the request -->
<xs:complexType name="CheckAvailability">
 <xs:sequence>
 <xs:element name="request" type="tns:HotelSearchCriteria"
 minOccurs="0" />
 </xs:sequence>
</xs:complexType>

<!-- the wrapper element for the response -->
<xs:complexType name="CheckAvailabilityResponse">
 <xs:sequence>
 <xs:element name="return" type="tns:AvailabilityResults"
 minOccurs="0" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="HotelSearchCriteria">
 <xs:sequence>
 <xs:element name="GuestCriteria" type="tns:GuestInfo" />
 <xs:element name="HotelCriteria" type="tns:HotelInfo" />
 <xs:element name="ArrivalDate" type="tns:TravelDate" />
 <xs:element name="DepartDate" type="tns:TravelDate" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="GuestInfo">
 <xs:sequence>
 <xs:element name="GuestCount" type="xs:int" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="HotelInfo">
 <xs:sequence>
 <xs:element name="ChainCode" type="xs:string" minOccurs="0" />
 <xs:element name="City" type="xs:string" minOccurs="0" />
 <xs:element name="StateOrRegion" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="TravelDate">

 <xs:sequence>
 <xs:element name="Month" type="xs:int" />
 <xs:element name="Day" type="xs:int" />
 <xs:element name="Year" type="xs:int" />
 </xs:sequence>
</xs:complexType>

Related Patterns and Known

Uses:

1. WCF Data Contracts

Microsoft describes their

DataContract construct as “a formal

agreement between a service and a

client that abstractly describes the

data to be exchanged … A data

contract precisely defines, for each

parameter or return type, what data

is serialized (turned into XML) in

order to be exchanged”.

http://msdn.microsoft.com/en-

us/library/ms733127.aspx

2. Javax.xml.bind.annotation.XmlType

and

Javax.xml.bind.annotation.XmlRoot

Element

These allow Java developers to map

a class or enumerated type to an

XML Schema Type or Element,

respectively

http://java.sun.com/javaee/5/docs/ap

i/javax/xml/bind/annotation/XmlTy

pe.html

http://java.sun.com/javase/6/docs/ap

i/javax/xml/bind/annotation/XmlRo

otElement.html

References:

[Code Complete]

McConnell, Steve. Code Complete.

Microsoft Press, 1993

[Complex Type Definitions]

http://www.w3.org/TR/xmlschema-

1/#Complex_Type_Definitions

The official description of how XML

Schema Language is used to create complex

types.

[EIP]

Hohpe, Gregor; Woolf, Bobby. Enterprise

Integration Patterns: Designing, Building,

and Deploying Messaging Solutions.

Addison-Wesley, 2003

[POEAA]

Fowler, Martin. Patterns of Enterprise

Application Architecture. Addison-Wesley,

2002

[YAGNI]

An acronym for the phrase “You Aren’t

Going to Need It”. This is a philosophy from

the Extreme Programming school of thought

that suggests developers should only

implement things when they are actually

required.

http://c2.com/xp/YouArentGonnaNeedIt.ht

ml

Command

Driven Operation
A service provides several operations that

receive and manipulate the same data.

Service Design Style: SOAP

How can the number of operations on a

service be minimized so that the potential

for high coupling with clients can be

alleviated?

Services typically offer operations for a set

of related use-cases. A product company

might publish an initial version of a

Customer service with operations such as

CreateCustomer, ReadCustomer,

UpdateCustomer, and DeleteCustomer. A

financial services company might supply a

MutualFundOrder service with operations

used to Buy, Sell, or Exchange mutual fund

positions. In both examples, each operation

usually receives the same data, and will

probably invoke methods on the same

Domain Objects [POEAA] in order to

complete their respective functions. As the

story often goes, with each new use-case

that is identified, a new service operation is

added thereby increasing the service’s

Surface Area. Large surface areas on

services are unfortunately the cause for a

few less than desirable side-effects. First,

the client will be faced with a confusing glut

of operations to choose from. Second, the

clients might just use those operations and

become dependent upon them. This

increased dependency, or coupling, can

make it harder for services and clients to

evolve over time. If, for example, the

service owner ever wants to consolidate or

retire operations, the designers’ options may

be limited if the operations are heavily used.

Ironically, the service has become a victim

of its own success.

As the number of operations on a service

increases, service designers are required to

maintain more Command Messages [EIP]
8

as well. With SOAP services, we generally

find a one-to-one correspondence between

Command Messages and service operations.

In the Customer service example outlined

above we would have four Command

Messages … CreateCustomer,

ReadCustomer, UpdateCustomer, and

DeleteCustomer. These messages would

either be explicitly created by the developer

when starting with WSDL, or they might be

auto-generated by the service framework if

the developer started in the code (re: XML

Document Binding). Unfortunately, when

the service designer creates one operation

for each client request, she will usually have

an equal number of messages to maintain as

well. This can quickly get out of hand as the

service supports more and more use-cases.

Prior to the advent of service oriented

design, developers sometimes addressed a

proliferation of methods by using Control

Data [Code Complete]. In this style of

design, multiple methods would be

consolidated down into a single method, and

the client would pass control data in one

argument to tell the method what it should

do. Listing 1 illustrates this approach on a

WCF service.

8
 Hohpe and Woolf describe Command Messages as
constructs that may be used to “reliably invoke a
procedure in another application”.

Listing 1

A poorly designed WCF service that uses unconstrained Control Data.

[ServiceContract]
interface ICustomerService
{
 [OperationContractAttribute(IsOneWay = true)]
 void RaiseCustomerEvent(string command, Customer customer);
}

public class CustomerService:ICustomerService
{
 public void RaiseCustomerEvent(string command, Customer customer)
 {
 switch (command)
 {
 case "Create":
 // call domain objects here
 break;
 case "Update":
 // call domain objects here
 break;
 case "Delete":
 // call domain objects here
 break;
 default:
 // throw a SOAP fault
 }
 }
}

The command parameter provides the client

the means to tell the service whether it

should create, update, or delete the data

passed via the customer parameter. The

problem here is that the consumer has to

know something about the internal

implementation of the service operation,

specifically what values should be provided

for the command parameter. If you ever

decide to alter the internal implementation

of the RaiseCustomerEvent operation, then

you’ll need to carefully coordinate this

change so that your clients will know how to

properly call this routine. Therefore, the

deficiency with this approach is that the

client becomes coupled to the internal

implementation of the service.

Some also believe that this last approach is

poor style because it complicates the

operation and does little to describe what the

operation actually does; it only suggests that

it may do a number of things. In light of

these very legitimate arguments, many

suggest that we should create one operation

for each logical command (e.g.

CreateCustomer, UpdateCustomer,

DeleteCustomer). At least with this

approach, the purpose of the operation is

explicit, and the implementation details of

the service are hidden. Unfortunately, this

puts us back at square one and we are left to

battle a growing number of service

operations that will inevitably multiply like

rabbits. Is there a way that we can reduce

the number of operations (and associated

Command Messages) on a service, yet not

suffer the negative consequences found in

more traditional styles of programming?

Create a service operation that receives a

common set of data and includes a

parameter that may be set by the client to

specify the nature of the request. Implement

this parameter with enumerated types so that

the client will not only understand how to

use the operation, but will also be restricted

to the choices within the enumeration.

Command Driven Operations seek to

alleviate the potential for high degrees of

coupling between clients and services by

reducing the number of operations that

receive and work with the same data. Rather

than defining multiple operations that use

the same Dataset Elements, the service

designer creates a single operation that

receives these elements. Since this pattern

uses one request message (i.e. Command

Message) for a variety of purposes, the

service designer must introduce a

mechanism that allows the client to indicate

the reason why they are invoking the

operation. This item, known in this pattern

as a Command Element, is implemented as

an enumerated type. Enumerated types are

useful in this context because they constrain

the set of allowable values the client may

choose from. The values appearing in the

enumerated type describe what the service

operation will do should that particular value

be selected by the client. So, while the

name Command Element is reminiscent of

the famous Command [GOF] pattern, it is

not meant to encapsulate behavior or data

related to a request. Instead, it is a simply a

directive from the client.

Command Elements appear as children of

Command Messages [EIP]. In most cases,

the client will send a SOAP message that

includes a single Command Element. This

indicates that the service should use all of

the Dataset Elements within the message to

accomplish the task represented by the

Command Element. In a sense, this pattern

“takes the command out of the Command

Message” by pushing the command

instruction further down into the message

body. What results is a SOAP message that

is more generic. Listing 1 shows a typical

SOAP envelope for a Command Driven

Operation. In this example, the Command

Message is named PlaceMutualFundOrder,

and the Command Element has a value of

“Buy”.

Listing 1

A SOAP Message for a Command Driven Operation. Notice that the Command

element indicates the nature of the client request.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" >
 <s:Header>
 <!-- Header detail would appear here -->
 </s:Header>
 <s:Body>
 <PlaceMutualFundOrder>
 <order xmlns:a="http://www.acmeCorp.org/schemas"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <a:Command>Buy</a:Command>

 <a:BuySymbol>ACME</a:BuySymbol>
 <a:DollarValue>5000</a:DollarValue>
 </order>
 </PlaceMutualFundOrder>
 </s:Body>
</s:Envelope>

When a Command Driven Operation

receives a message, it will use the Command

Element to determine what the client would

have the service do. Sometimes the

operation will simply use this data to drive a

simple conditional construct (e.g. switch or

if statement). In more complex scenarios it

might call upon a Factory Method [GOF]

in order to acquire a related Command

object [GOF]. In this latter case, the

Command Driven Operation first acquires

an interface to a family of Commands, and

then invokes a method on that interface. The

benefit of this approach is that the business

logic associated with the Command Element

remains fully encapsulated within

specialized Command Objects, a design

approach that usually facilitates the ease

with which the business logic is maintained.

The net result is that the Command Driven

Operation merely dispatches the incoming

requests to a Command, and that Command

mediates all interactions with the Domain

Model [POEAA].

Figure 2: A Command Driven Operation

passes a Command Element into a Factory

Method [GOF]. The factory uses this

information to decide what type of

Command [GOF] to instantiate, and then

returns a common interface for a family of

commands. Next, the service invokes the

Execute method on this interface, and by so

doing, executes the business logic associated

with the Command Element passed to the

service.

This pattern facilitates the ease with which

new “logical operations” may be introduced

over time. I refer to these as being logical

operations because this pattern can eliminate

the need to implement concrete service

operations on a given port. This technique

goes a long way towards maintaining both

forward and backward compatibility for

clients because the WSDL port, binding,

message, and operation definitions remain

stable, and the variability (i.e. the addition or

deletion of logical operations) is pushed

down into the Command Element. You

could, for example, gracefully remove

commands from the Command Element

enumeration. If a client were to send a

request with a Command Element that is no

longer supported, you could easily use a

Validating Interceptor
9
 to capture this, and

then send the client a SOAP Fault informing

them of this deprecation. Therefore, this

pattern can be helpful when you anticipate

that the “logical operations” for the service

will change over time.

Command Driven Operations can sometimes

resemble “God Methods”. These are service

operations that simply take on too much

responsibility. However, judicious

management of the enumerations included

within the Command Element will mitigate

this problem.

Some who consider using this pattern balk at

the idea of defining Command Elements as

enumerated types that are a part of the

service contract. The typical objection is

that if there’s ever the need to add, change,

9
 Validating Interceptors make use of the Pipes and
Filters [EIP] infrastructure found in popular service
frameworks. They allow developers to create message
validation logic that can be defined to execute before
messages are delivered to the service implementation
code.

or remove items in the enumeration, then

clients must regenerate their Service

Proxies. This is usually only true if the

clients want to take advantage of new

logical operations. Changes to the enums

are rarely a problem. As for the deletion of

specific items in the enumerated types,

service designers can leverage Validating

Interceptors in the manner described above.

Example: A Command Driven Operation developed in C# and WCF

The business scenario for this pattern is an overly simplified Mutual Fund service. Let’s say that

this service should offer clients the following logical operations …

• Buy a new fund (position
10
) with X dollars

• Sell all shares of an existing position

• Sell X shares of an existing position

• Sell a specific dollar amount of an existing position

• Sell all shares of an existing position in order to buy a new position

• Sell X shares of an existing position in order to buy a new position

• Sell a specific dollar amount in order to buy a new position

Upon first approaching this design problem, the designer might be tempted to create seven

service operations, one for each use-case. However, upon further consideration, one can see that

all use-cases involve the same data entities, albeit with slight variations to the input parameters

that drive the logical operations.

Let’s first review the WSDL and XSD for a service operation named PlaceMutualFundOrder. If

you trace down through the WSDL, you’ll see that this message contains a type named

MutualFundOrder, which in turn contains an element of the type OrderCommand.

<wsdl:portType name="IMutualFund">
 <wsdl:operation name="PlaceMutualFundOrder">
 <wsdl:input name="PlaceMutualFundOrder"
 message="tns:PlaceMutualFundOrder" />
 <wsdl:output name="PlaceMutualFundOrder"
 message="tns:PlaceMutualFundOrder" />
 </wsdl:operation>
</wsdl:portType>

<wsdl:message name="PlaceMutualFundOrder">
 <wsdl:part name="Order" element="q1:Order"
 xmlns:q1="http://www.acmeCorp.org/schemas/" />
</wsdl:message>

<xs:element name="MutualFundOrder" nillable="true"
 type="tns:MutualFundOrder" />
<xs:element name="Order" nillable="true"
 type="tns:MutualFundOrder" />
<xs:element name="OrderCommand" nillable="true"
 type="tns:OrderCommand" />

10
 When you own shares of a stock or mutual fund, you have a Position in that stock or fund

<xs:complexType name="MutualFundOrder">
 <xs:sequence>
 <xs:element name="Command" type="q1:OrderCommand" />
 <xs:element name="BuySymbol" minOccurs="0" nillable="true"
 type="xs:string" />
 <xs:element name="SellSymbol" minOccurs="0" nillable="true"
 type="xs:string" />
 <xs:element name="Value" minOccurs="0" type="xs:decimal" />
 <xs:element name="ConfirmationId" minOccurs="0" nillable="true"
 type="xs:string" />
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="OrderCommand">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Buy" />
 <xs:enumeration value="SellAllShares" />
 <xs:enumeration value="SellShares" />
 <xs:enumeration value="SellDollarAmount" />
 <xs:enumeration value="SellAllSharesToBuy" />
 <xs:enumeration value="SellSharesToBuy" />
 <xs:enumeration value="SellDollarAmountToBuy" />
 </xs:restriction>
</xs:simpleType>

Granted, looking at WSDL and XSD can give even the most seasoned developer a headache.

Therefore, let’s move right along to the platform code associated with the WSDL you see above.

For the sake of brevity, public fields are used rather than properties in all classes.

[ServiceContract]
public interface IMutualFund{
 [OperationContract]
 PlaceMutualFundOrder PlaceMutualFundOrder(
 PlaceMutualFundOrder order);
}

[MessageContract(
 WrapperNamespace = "http://www.acmeCorp.org/schemas/",
 IsWrapped=false)]
public class PlaceMutualFundOrder{
 [MessageBodyMember(Name="Order",
 Namespace="http://www.acmeCorp.org/schemas/")]
 public MutualFundOrder Order;
}

[DataContract(Name="MutualFundOrder",
 Namespace="http://www.acmeCorp.org/schemas/")]
public class MutualFundOrder{
 [DataMember(Order= 1, IsRequired= true)]
 public OrderCommand Command;

 [DataMember(Order= 2, IsRequired=false)]
 public string BuySymbol;

 [DataMember(Order= 3, IsRequired=false)]
 public string SellSymbol;

 [DataMember(Order= 4, IsRequired=false)]
 public decimal Value;

 [DataMember(Order= 5, IsRequired=false)]
 public string ConfirmationId;
}

[DataContract]
public enum OrderCommand{
 [EnumMember(Value="Buy")]
 Buy,
 [EnumMember(Value = "SellAllShares")]
 SellAllShares,
 [EnumMember(Value = "SellShares")]
 SellShares,
 [EnumMember(Value = "SellDollarAmount")]
 SellDollarAmount,
 [EnumMember(Value="SellAllSharesToBuy")]
 ExchangeAllShares,
 [EnumMember(Value = "SellSharesToBuy")]
 SellSharesToBuy,
 [EnumMember(Value = "SellDollarAmountToBuy")]
 SellDollarAmountToBuy
}

public abstract class MutualFundCommand{
 protected MutualFundCommand() { ;}
 public abstract string Execute();
 public abstract bool HasValidationErrors();
 public abstract List<string> ValidationErrors();
}

public class MutualFund : IMutualFund{
 public PlaceMutualFundOrder PlaceMutualFundOrder(
 PlaceMutualFundOrder request){
 PlaceMutualFundOrder response = request;

 MutualFundCommand cmd =
 CommandFactory.GetCommand(request.Order);

 response.Order.ConfirmationId = cmd.Execute();
 return response;
 }
}

public class CommandFactory{

 private static Dictionary<string, MutualFundCommand>
 _commands;

 public static MutualFundCommand GetCommand(
 MutualFundOrder order)
 {
 InitializeRegistry();

 MutualFundCommand command =
 (_commands[order.Command.ToString()]).Clone();

 command.setOrder(order);

 return command;

 }

 private static void InitializeRegistry()
 {
 if (_commands != null) return;

 // excluded thread-safe locking code to simplify a bit

 _commands =
 new Dictionary<string, MutualFundCommand>();

 AddPrototypicalInstancesOfCommands();
 }

 private static void AddPrototypicalInstancesOfCommands()
 {
 _commands.Add("Buy", new BuyCommand());

 _commands.Add("SellAllShares",
 new SellAllSharesCommand());
 // add other commands here
 }
}

There is certainly much to take in with this

example as it involves several patterns. At

the top of the listing we see that

IMutualFund defines an interface used for

the WSDL port definition. The operation

PlaceMutualFundOrder on this interface

indicates that a Command Message [EIP]

of the type PlaceMutualFundOrder is used

as both the request and response message

type. Note that a WCF MessageContract is

used and “automatic wrapping” is turned off

in order to control the name of the message.

It only contains a single message part of the

type MutualFundOrder so that it will remain

compliant with the WS-I Basic Profile

specification. MutualFundOrder is a Dataset

Element which contains a number of

parameters including a Command Element

of the type OrderCommand. This

enumeration defines the logical operations

supported by the PlaceMutualFundOrder

operation.

Next we see an abstract class named

MutualFundCommand. This class is used to

define a common interface for a family of

Commands [GOF]. The service

implementation class named MutualFund

receives the PlaceMutualFundOrder

Command Message and passes it into a

Parameterized Factory Method [GOF]

named GetCommand. This factory method

uses a Registry [POEAA] that contains

Prototypes [G04] of

MutualFundCommands. It retrieves a

prototypical instance of the desired

command and clones that instance. Once the

command has been cloned, the factory

method provides the Order to the command

via the setOrder method and then returns the

command back to the

PlaceMutualFundOrder operation. Now the

service operation is able to call the Execute

method in order to carry out the client’s

request

Related Patterns and

References:

[Code Complete]

McConnell, Steve. Code Complete.

Microsoft Press, 1993

[EIP]

Hohpe, Gregor; Woolf, Bobby. Enterprise

Integration Patterns: Designing, Building,

and Deploying Messaging Solutions.

Addison-Wesley, 2003

[GO4]

Gamma, Helm, Johnson, Vlissides. Design

Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995

[POEAA]

Fowler, Martin. Patterns of Enterprise

Application Architecture. Addison-Wesley,

2002

Dataset Batch

Service Design Style: SOAP

How can service operations be designed to

help mitigate the inherent performance

weaknesses of distributed computing?

In the not too distant past we discovered that

our application of Distributed Object

technologies (e.g. CORBA, DCOM) created

significant performance problems. What

should have been obvious to everyone is

now accepted as conventional wisdom. This

wisdom may be imparted through a simple

metaphor. If the time required to execute a

procedure in-process is akin to walking

across the room, then the time used to

execute a process on another machine is like

travelling in a spaceship to Proxima

Centauri
11
. This analogy is as true for SOA

as it was for distributed object architectures.

There will always be a performance penalty

to pay for “out-of-process” calls, even when

clients and services are deployed to the same

machine
12
. When we decide to use SOA, we

are selecting an architectural approach that

has an inherent Achilles heel. This factor

must be considered when designing services,

but all too often it is not.

Service designers usually provide operations

that are meant to complete singular and

relatively small transactional requests.

Examples include operations named

UpdateCustomer and ExchangeFund
13
. The

11
 The closest star to Earth, excluding our own Sun of
course.
12
 When clients and services are co-located, the
performance penalty can be partially attributed to the
time it takes to marshall and unmarshall the data across
processes. It’s not as bad as cross-machine calls, but it
still hurts.
13
 Assume that this operation provides the ability to sell
either a dollar or share amount in some mutual fund
position in order to buy a position in another fund. In
other words, the operation sells one fund to buy
another.

common characteristic shared by these

operations is that each connotes an atomic

transaction whereby the information

extracted from the Dataset Elements

(DSEs) are either saved in their entirety or

are rolled back. In many cases, this style of

design will suffice. However, clients

oftentimes possess multiple datasets they

would like to push over to the service.

Sometimes these datasets will need to be

persisted within the scope of a larger

transaction, other times they won’t.

Regardless, the client is preparing for that

proverbial trip across the galaxy.

The decision to design services to process

“small” and singular entities one at a time

causes a few problems for both the client

and the service. First, the client must call

the necessary service operations for each

Dataset Element or logical business

transaction repeatedly. If, for example, the

client has five customers whose information

needs to be updated, the client would have

to call the UpdateCustomer operation five

times. If we wanted to execute three

ExchangeFund orders, we’d have to call that

operation three times. Each invocation of a

service operation incurs a network round-

trip, so the act of updating five customers or

executing three fund exchanges would incur

a significant amount of network activity,

which would also have a negative impact on

overall performance.

The second problem that can arise with

service operations that process “small” and

singular entities relates to the issue of how

service errors are detected and handled. All

clients that call upon these types of services

to save multiple datasets would also be

responsible for the logic required to detect

and handle any errors that might occur part

way through the execution of the larger

logical transaction. So, in our example, if a

client has three ExchangeFund orders to

execute, and the first two invocations

complete successfully but the last one fails,

the client would be responsible for

implementing the exception logic (i.e. the

error detection and rollback logic). Making

the client responsible for these things is

usually undesirable for a few reasons. First,

a common goal of services is to encapsulate

both the “successful execution path” of a

transaction and the related exception

handling logic. The design approach in

question obviously violates this principle.

Furthermore, consistency of any error

handling logic implemented in the clients

becomes much harder to achieve as the

number of clients increase. In addition to all

of this, the use of traditional error handling

techniques (e.g. rolling data back) in

distributed scenarios can be slow and

unreliable, especially when transports like

HTTP are used or when the client and

service are developed for different

platforms. It all adds up to many “inter-

stellar sojourns”.

While there are many benefits to be realized

from SOA, we must be realistic and

recognize its inherent weakness. Is there

anything we might learn from the space-

traveler analogy? Perhaps it is this …

maybe we should load up the ship before we

depart.

Design service operations to receive

messages that contain collections of related

Dataset Elements that could be processed

within a single transaction mediated by the

service.

Dataset Batches provide clients the means

to submit messages containing collections of

related DSEs. With this pattern, the client

can send a single batch of DSEs and related

commands to a service, thus minimizing

network round trips. Services that use

Dataset Batches can effectively manage

each dataset within the scope of a larger

service-side transaction. The service also

encapsulates all error handling logic for the

batch. All of this results in an encapsulated,

consistent, and centralized approach for such

matters, and tends to greatly simplify the

clients.

The simplest form of this pattern exists

when a given service operation carries out

the same transaction for a collection of

related DSEs sent by the client. For

example, an operation named

UpdateCustomers would receive a collection

of Customer DSEs and would typically

execute the appropriate domain layer logic

repeatedly for each Customer DSE found in

the collection. To do this, the service would

leverage classes that implement well known

domain layer patterns (e.g. Table Module,

or Domain Model [POEAA]) or data source

access patterns (e.g. Table Data Gateway,

Row Data Gateway, Active Record

[POEAA]). If any problems occurred along

the way, then the logic provided through

these same patterns could be used to

effectively undo these updates. By sending

a batch of datasets to a service, network

traffic is minimized and consistency in error

handling for all of the DSEs that should be

processed within the transaction is ensured.

A more complex usage of this pattern occurs

when a service operation is responsible for

executing the logic associated with many

different transaction types. In this case, the

collection received by the service is still

comprised of related DSEs, but now each

contains a different Command Element (re:

Command Driven Operation)
14
. After the

14
 In some variations of this pattern the client will send a
collection of Command Elements, each of which
contains a DSE.

service has received the client’s request, it

will iterate through the DSE collection and

extract the Command Elements for each.

These elements provide clients the means to

tell the service what transaction should be

invoked for the associated DSE. This usage

of the Dataset Batch pattern provides clients

the ability to submit a series of disparate

requests within a single message. The client

may even want the service operation to

execute all of the commands within the

scope of one logical transaction. For

example, a client might send a batch of

Customer DSEs which contain a mix of

create, update, and delete commands to a

service operation named SaveCustomers.

This use of the pattern not only helps to

minimize network traffic and ensure

consistency in error handling, it also tends to

reduce the service’s Surface Area, which

can help to minimize client/service coupling.

Use of this pattern does tend to increase the

relative size of the message payloads when

compared to the payloads of operations that

handle “small” and singular entities or

transactions. This being said, the

performance penalty attributable to the

somewhat larger message payload is usually

offset by the performance gains achieved by

minimizing network activity.

Another issue that sometimes crops up with

this pattern is that clients which typically

submit requests for a service to process a

single DSE at a time may find this approach

to be a bit annoying. These clients are forced

to create messages which contain arrays of

DSEs, even though the client might only

submit one DSE in the collection. In an

effort to pacify such clients, service

designers will sometimes leave the

“singular” versions of the operations

available on the port. In order to minimize

code duplication, the service implementation

that uses the Dataset Batch may call upon

the singular version of the operation to

process each DSE passed in the collection.

The disadvantage of this approach is that it

introduces complexity on the service side,

and also increases the service’s Surface

Area.

Finally, since the service is responsible for

processing multiple DSEs within a single

request, it has much more work to do than if

it were to only process a single DSE.

Consequentially, the response time of the

operation may become excessive.

Therefore, clients that use these types of

service operations should consider using the

Dataset Batch in conjunction with

asynchronous invocation patterns (e.g.

Polling Method, Callbacks). If a response

is required by the client, then the service

designer should consider also using patterns

such as the Asynchronous Response Pull

or the Message Relay. If a response is not

required then the message containing the

Dataset Batch may be sent to an Event

Sink.

Example: A C# service receives a Dataset Batch

The first example shows how a WCF service operation named UpdateCustomers can be designed

to receive a batch of Customer DSEs and save all information from these DSEs as part of one

logical transaction.

[ServiceContract]
public interface ICustomerService{
 [OperationContract]
 [XmlSerializerFormat]
 CustomerMessage UpdateCustomers(CustomerMessage request);
}

[MessageContract(IsWrapped=false)]
public class CustomerMessage{

 [MessageBodyMember(Name = "ArrayOfCustomers")]
 public ArrayOfCustomers ArrayOfCustomers;
}

[Serializable]
[XmlType("ArrayOfCustomers")]
[XmlRoot("ArrayOfCustomers")]
public class ArrayOfCustomers{
 [XmlArray]
 public Customer[] Customers;
}

[Serializable]
[XmlRoot("Customer")]
[XmlType("Customer")]
public class Customer{
 [XmlAttribute("Id")] public int Id;
 [XmlAttribute("FirstName")] public string FirstName;
 [XmlAttribute("LastName")] public string LastName;
 [XmlAttribute("Address")] public string Address;
 [XmlAttribute("City")] public string City;
 [XmlAttribute("State")] public string State;
 [XmlAttribute("ZipCode")] public string ZipCode;
 [XmlAttribute("UpdateDate")] public DateTime UpdateDate;
}

public class CustomerService : ICustomerService{
 public CustomerMessage UpdateCustomers(CustomerMessage request)
 {
 CustomerMessage response = request;

 using (TransactionScope txnScope = new TransactionScope())
 {
 try
 {
 foreach (Customer customer in
 response.ArrayOfCustomers.Customers)
 {
 // Invoke logic in the business or data source access
 // layers in order to update customer information given
 // data provided in the current customer Dataset Element
 }

 txnScope.Complete();
 }
 catch (Exception ex)
 {
 // Perform any logic required to handle the exception.
 // All updates will automatically be rolled back.
 }
 }

 return response;
 }
}

The interface ICustomerService in this listing contains a single operation named

UpdateCustomers that receives and returns a CustomerMessage
15
. This message contains one

message part so that compliance with the WS-I Basic Profile specification will be maintained;

this message part simply wraps an array of Customers.

When the UpdateCustomers method receives a request, it first directs the response message to

reference the request message. This is done so that we can echo back to the client the information

it sent. After this statement has completed, the service instantiates a TransactionScope. This is a

.Net construct that is roughly equivalent to starting a database transaction. Next, we iterate

through the Customers in the response object and invoke logic in either the business or data

source layers in order to persist the information passed in via the Customer DSEs. If all updates

complete without any exceptions, then the updates will be committed by calling the Complete

method of the transaction scope object. If any exceptions did occur, then the catch block will be

executed, and all updates will automatically be rolled back.

Example: A Java service receives a Dataset Batch

This example demonstrates how a Java service can be designed to process many different

transaction types for the Dataset Elements provided. It does this by looking at the Command

Element associated with each DSE.

@WebService(targetNamespace = "http://www.acmeCorp.org",
 name="MutualFundInterface")
public interface MutualFundInterface {

 @WebMethod(operationName = "PlaceMutualFundOrders")
 @WebResult(name="MutualFundOrdersMessage")
 public MutualFundOrdersMessage PlaceMutualFundOrders
 (@WebParam(name = "orderRequest")
 MutualFundOrdersMessage orderRequest);
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name="MutualFundOrdersMessage", propOrder = {"Orders"})
@XmlRootElement(name = "MutualFundOrderMessage",
 namespace="http://www.acmeCorp.org/schemas")
public class MutualFundOrdersMessage {
 @XmlElement(name="Orders",
 namespace="http://www.acmeCorp.org/schemas/")
 public List<MutualFundOrder> Orders;
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "MutualFundOrder",
propOrder = { "Command","BuySymbol","SellSymbol","Value",
 "ConfirmationId","ValidationErrors"})
@XmlRootElement(name = "MutualFundOrder",
 namespace="http://www.acmeCorp.org/schemas")
public class MutualFundOrder {

 @XmlElement(name="Command",required=true)

15
 Notice that the OperationContract for UpdateCustomers uses the XML Serializer rather than WCF’s default

DataContract Serializer. This was done so that types containing XML attributes can be properly serialized.

 public MutualFundOrderCommand Command;

 @XmlElement(name="BuySymbol",required=false)
 public String BuySymbol;

 @XmlElement(name="SellSymbol",required=false)
 public String SellSymbol;

 @XmlElement(name="Value",required=false)
 public java.math.BigDecimal Value;

 @XmlElement(name="ConfirmationId",required=false)
 public String ConfirmationId;
}

@XmlEnum(String.class)
public enum MutualFundOrderCommand {
 Buy,
 SellAllShares,
 SellShares,
 SellDollarAmount,
 ExchangeAllShares,
 SellSharesToBuy,
 SellDollarAmountToBuy
}

public abstract class MutualFundCommand {
 public abstract String Execute();
 public abstract void Undo();

 private MutualFundOrder _order;

 public MutualFundCommand(){;}

 public MutualFundOrder getOrder() {
 return _order;
 }

 public void setOrder(MutualFundOrder order) {
 this._order = order;
 }
}

@WebService(
 endpointInterface="ServiceContracts.MutualFundInterface")
public class MutualFund {
 public MutualFundOrdersMessage PlaceMutualFundOrders
 (MutualFundOrdersMessage request)
 {
 MutualFundOrdersMessage response = request;

 List<MutualFundCommand> commands =
 new ArrayList<MutualFundCommand>();

 MutualFundCommand currentCommand;

 try{

 for(MutualFundOrder order : response.Orders){
 currentCommand = CommandFactory.GetCommand(order);
 commands.add(currentCommand);
 order.ConfirmationId = currentCommand.Execute();
 }
 }
 catch(Exception ex){
 // perform appropriate logic to handle the
 // current exception here

 // Undo all commands
 for(MutualFundCommand command : commands){
 command.Undo();
 }
 }

 return response;
 }
}

public class CommandFactory {

 public static MutualFundCommand GetCommand(
 MutualFundOrder order){

 if(order.Command == MutualFundOrderCommand.Buy){
 return new BuyCommand(order);
 }

 if(order.Command == MutualFundOrderCommand.SellAllShares){
 return new SellCommand(order);
 }

 // etcetera

 return null;
 }
}

// A sample command object
public class BuyCommand extends MutualFundCommand {

 public BuyCommand(MutualFundOrder order){
 this.setOrder(order);
 }

 @Override
 public String Execute() {
 // command logic goes here;
 return "something";
 }

 @Override
 public void Undo() {
 // logic to undo this command goes here
 }
}

This listing starts by showing an interface

used to define a service contract. This

contract contains one operation named

PlaceMutualFundOrders that receives and

returns a message of the type

MutualFundOrdersMessage. This type

serves as a wrapper for a List of

MutualFundOrder Dataset Elements. Each

of these DSEs contains a Command Element

of the type MutualFundOrderCommand.

This element provides clients the means to

direct the service to use each DSE for a

particular transaction type (e.g. Buy,

SellAllShares, etc.).

When the service receives the client’s

request, it first copies the request to a

response message of the same type so that it

can echo the client’s request back. It then

instantiates an array of

MutualFundCommand objects. This

abstract class serves as the base class for a

family of Command Objects [GOF]. Each

concrete specialization of a Command

would contain the logic specific to one of

the transaction types defined by the

MutualFundOrderCommand enumeration.

A skeleton example of one of these

Commands is provided in the BuyCommand

class.

After the service operation instantiates the

array of MutualFundCommand objects, it

iterates through the array of

MutualFundOrder DSEs accessible via

response.Orders. For each DSE retrieved

from this list, it will call upon a Factory

Method [GOF] of the type

CommandFactory in order to acquire a

concrete Command Object. It then adds the

concrete command to the array of

MutualFundCommand objects, and calls the

Execute method of that object. Presumably,

each concrete command returns a

Confirmation ID, which the service

operation then assigns to the current order.

If any exceptions are trapped in the course

of executing the commands, the service will

iterate through the current array of

MutualFundCommand objects and direct

each one to Undo whatever it had done

within its Execute method. The details of

how the Execute and Undo methods might

be implemented are beyond the scope of this

book.

Related Patterns and

References:

[GO4]

Gamma, Helm, Johnson, Vlissides. Design

Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995

[POEAA]

Fowler, Martin. Patterns of Enterprise

Application Architecture. Addison-Wesley,

2002

[WS-I Basic Profile]

Defines a set of specifications whose

purpose is to promote interoperability.

http://www.ws-i.org/Profiles/BasicProfile-

1.0-2004-04-16.html

[XML Substitution Groups]

XML Schema Part I: Structures Second

Edition

http://www.w3.org/TR/xmlschema-1/

