
Patterns for Data and Metadata Evolution in
Adaptive Object-Models

Hugo Sereno Ferreira
Faculty of Engineering

University of Porto
Rua Dr. Roberto Frias, s/n
hugo.sereno@fe.up.pt

Filipe Figueiredo Correia
Faculty of Engineering

University of Porto
Rua Dr. Roberto Frias, s/n
filipe.correia@fe.up.pt

Leon Welicki
ONO (Cableuropa S.A.)
lwelicki@acm.org

ABSTRACT
An Adaptive Object-Model (AOM) is an architectural pat-
tern based upon a dynamic meta-modeling technique where
the object model of the system is explicitly defined as data to
be interpreted at run-time. The object model encompasses
the full specification of domain objects, states, events, con-
ditions, constraints and business rules. Several design pat-
terns, that have before been documented, describe a set of
good-practices within this domain. This paper approaches
data and metadata evolution issues in the context of AOMs,
by describing three additional patterns — History of Op-
erations, System Memento and Migration. They es-
tablish ways to track, version, and evolve information, at
the several abstraction levels that may exist in an AOM.

Keywords
Adaptive object models, Model driven engineering, Design
patterns, Meta-modeling, System Memento, History of Op-
erations, Migration.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns

1. INTRODUCTION
Developers who are faced with the system requirement of

a highly-variable domain model, by systematically searching
for higher flexibility of object-oriented models, often con-
verge into a common architecture style typically known as
Adaptive Object-Model (AOM) [28].

The Adaptive Object-Model architecture fulfills particular
needs of the several Model-Driven Development methodolo-
gies [13], and allows for on-the-fly adaptivity by the use of
runtime models. It can be summarized as an architectural
style that uses an object-based meta-model as a first-class
artifact from where all domain information can be obtained,
or derived from: structure (such as classes, attributes and
relations), behavior (rules and workflow) and presentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a writ-
ers’ workshop at the 15th Conference on Pattern Languages of Programs
(PLoP).
PLoP’08 October 18-20, Nashville, TN, USA
Copyright 2008 is held by the authors. ACM 978-1-60558-151-4 .

(graphical user interfaces). At runtime this information is
interpreted, instructing the system which behavior to take.
Changing the model immediately results on the system fol-
lowing a different business domain model. For the purposes
of this paper, whenever we refer to system, we mean both
data and metadata.

One of the key aspects of Adaptive Object-Models is their
ability to allow changes to the model even at run-time.
Model evolution is thus a recurrent problem that developers
adopting this architecture face, since it may introduce in-
consistency in its structure. This problem can be split into
three complementary issues:

Track. How to keep track of the operations performed for
evolving the system?

Time Travel. How to access specific key states of the sys-
tem at any particular point of its evolution?

Evolution. How to introduce changes into the system while
preserving its integrity?

This paper presents three domain specific design patterns
that have risen from the experience implementing Adaptive
Object-Models, and researching how other systems, partic-
ularly Object-Oriented Databases and Version Control Sys-
tems, deal with these problems [22, 25, 4]. These patterns
aim to contribute to the on-going effort on defining a pattern
language for AOMs [27, 26].

Patterns under the name of History and Versioning
have been foreseen as part of a Pattern Language for AOMs
[27]. In this work, we now call these two patterns History
of Operations and System Memento, and add a third
one — Migration — which aims to further decouple the
concerns of system evolution.

1.1 Levels of Abstraction
Traditional literature on AOMs usually describe two dif-

ferent levels: (a) the knowledge level, which defines the do-
main model, such as classes, attributes, relationships, and
behavior, and (b) the operational level which consists in
the run-time instances of the domain model [28]. However,
there’s also a third level: the model which describes the con-
cept of an AOM. Making the parallel with the nomenclature
used by the OMG and their MOF initiative [19], instances
of the operational and knowledge levels are equivalent to M0

and M1 levels respectively, where M0 are instances (entities)
of M1 defined elements (entity types). M2 is roughly equiv-
alent to the models used to define an AOM. M2 may be
defined either implicitly, through the target programming

language during implementation, or explicitly, through the
usage of a meta-metamodel (see Figure 1). It should be
noted that MOF is a closed meta-modeling architecture,
since M3 is compliant to itself.

M2

M1

M0 John Doe

Person

EntityEntityType

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

0..*

Figure 1: AOM as a meta-modeling technique.

While the traditional AOM architecture only considers the
M0 and M1 levels, nothing keeps system developers from
defining higher-level models. To decouple each of these pat-
terns from a particular model-level, we define a simple ex-
tension to the Type-Square pattern [28] (see Figure 2).

 Type-Square

Thing

Elemental
Thing MetaThing

‹‹instanceOf››

Property

Entity EntityType

PropertyType*

*

* *

Figure 2: Extension to the Type-Square pattern.

The concept of Thing is here defined as being special-
ized into either an ElementalThing, which represents data
(i.e. Entities and Properties), or a MetaThing, which rep-
resents metadata (i.e. EntityTypes and PropertyTypes).
Any object of type Thing is actually an instantiation of a
MetaThing, thus allowing an unbounded definition of meta-
levels. Eventually, the upper-bound may be delimited when

a defined MetaThing is regarded as an instantiation of it-
self (or simply not defined). Because every class in our
model and meta-model derives from Thing, this extension
allows one to explicitly state the Identity [12] of an object
(EntityTypes, PropertyTypes...).

It’s worth highlighting that, in the context of this paper,
Things may be both ElementalThings and MetaThings so,
when something is said to be applicable to a Thing, it may
be used regardless of the model-level.

The notation used in this paper complies to the UML 2.1
and OCL 2.1 specifications [20, 18].

1.2 Data and Metadata Patterns
This paper documents the following three patterns:

History of Operations. Addresses the problem of main-
taining a history of operations that were taken upon a
set of objects.

System Memento. Deals with preserving the several states
the system has achieved upon its evolution.

Migration. Addresses the concern of performing evolution
upon the system while maintaing its structural integrity.

Migration

System
Memento

History of
Operations

uses uses

may help

Figure 3: Data and metadata evolution patterns.

All patterns further presented are closely related (see Fig-
ure 3). Migration depends upon the concepts of History
of Operations and System Memento (which in turn may
be helped by History of Operations). Migration or-
chestrates the coordination between the other two patterns,
so that enough semantics is gathered to fulfill its intended
purpose.

1.3 Target Audience
The patterns presented in this paper deal with instru-

mentation issues, specifically, evolution concerns, that arise
when working with AOMs [27]. Developers, either working
or designing these type of systems, who recognizes the pre-
sented forces and problem statements as being part of their
systems’ functional requirements, will benefit from knowing
these patterns.

Nonetheless, developers can still adapt them to uses out-
side the scope of AOMs, particularly in other meta-modeling
based architectures, always taking into consideration AOM-
specific issues in these solutions which probably should be
re-evaluated outside this context.

2. HISTORY OF OPERATIONS PATTERN
Addresses the problem of maintaining a history of opera-

tions that were taken upon a set of objects.

2.1 Context
An application based on the Adaptive Object-Model as

the main architectural style is being developed, and there is
the need to track the system’s usage by end-users, including
changes to both the knowledge and operational levels.

2.2 Example
Consider an information system based upon the AOM ar-

chitecture, using a variant of the Type-Square pattern [28,
16] that conforms to the previously mentioned design (see
Figure 2).

Imagine an insurance company who’s users keep chang-
ing the system’s information at a fast pace. There is the
need to keep track of what, how and probably when and by
whom it has been changed. For this example system, meta-
information is as important as the information itself.

Keeping track of the operations’ history can go beyond
auditing purposes, like performing statistical analysis (e.g.
number of created instances per user), controlling user be-
havior (i.e. without recurring to explicit user access control),
automating activities (e.g. finding systematic modifications
to the information) or recovering past states of the system.

In an AOM based application, there are different levels
at which Things can change (data, model...). For exam-
ple, consider an EntityType named Person and a particular
Entity named John. The kind of actions we may perform
can be as simple as CRUD-like operations (e.g. deleting the
Entity, or changing its name), or model operations (e.g.
adding the attribute Number of Children, or moving it to
the superclass).

The history of operations must be made available in the
application, since it will be used by end-users. However, sim-
ply storing messages in a file or database makes the mapping
between them and the operations over things, a complex
(if at all possible) activity. Furthermore, as the underlying
AOM interpreter evolves, the type of operations that should
be recorded may also evolve. This can result in an set of
messages to parse, with obsolete syntactic details that may
no longer be directly mappable.

2.3 Problem
Given a set of Things, how do we keep track of the his-

tory of operations that were performed upon them, without
knowing the specific details of each operation?

2.4 Forces

Encapsulation. We don’t want to pollute the system with
logging structures wherever they are needed.

Extendability. We may want to add additional informa-
tion to the history (e.g. before, user, time...).

Operations’ Semantics. Operations should have enough
semantics to allow automatization.

Simplicity. Occurred operations should be easy to store
and retrieve.

Modifiability. The allowed operations can be expanded or
evolved.

Performance. There should be minimal performance im-
pact on the system.

Reusability. We want to use the same mechanism regard-
less of the model-level.

Consistency. Operations should comply to semantic con-
straints assuring system’s integrity.

Reproducibility. Operations should be able to be re-executed
and achieve the same result (e.g. deterministic).

Resource Consumption. Additional manipulated and stored
information should be carefully minimized.

2.5 Solution
Encapsulate the allowed Operations in a set of commands

that operate over Things. A sequence of invoked commands
constitutes the History of Operations.

Create Operations, using the Command pattern[14], with
the responsibility of defining and encapsulating the types of
modifications allowed (i.e. Evolution Primitives [22]). These
may be elemental — Concrete Operations —, or grouped
in a sequence — Macros – through the use of Composite
pattern [14].

Every action taken by the application must occur by in-
stantiating and executing a defined Operation. Creating an
History object is as simple as storing the sequence of the
invoked Operations. Each Operation will retain enough in-
formation in order to be mappable to the Things it operates
over (see Figure 4). However, note that if operations are
not versioned, they should be made either static or seman-
tically equivalent upon evolution, otherwise the history may
become unusable.

By using the History of Operations pattern, devel-
opers can factor the responsibility of creating and storing
modifications in a semantically rich way. This will allow
an easier evolution of the underlying interpreter and other
automatizations.

2.6 Example Resolved
Consider five employees from the automobile insurance

department, working as a team. During a week, they cre-
ate and alter information on the system, either from ex-
ternal demands (e.g. clients) or from the rest of the com-
pany. Namely, they subscribe clients to policies, answer to
the events of new occurrences, and redefine conditions for
upcoming policies.

On this particular week, the same client record happened
to be edited by three different users. Yet, there was an incor-
rectly registered occurrence for that client, and it’s impor-
tant to understand why it happened in order to prevent fu-
ture mistakes. The history of operations registered through-
out the week allows users to find out exactly what happened:
the occurrence was registered by one particular employee on
Tuesday, because the client was wrongly chosen to begin
with, since it was selected by searching his name, instead of
his client-number.

By Friday, the department’s director wants to know how
the week went, before the weekly meeting with his staff. He
uses the system’s functionality that collects several statistics
from that week’s history of operations, and realizes it was
in fact a particularly busy week.

2.7 Resulting Context
This pattern results in the following benefits:

History ThingOperation
operates-over

0..*1
{ordered}

results-from

Figure 4: Class diagram of the History of Operations pattern. A History results from a set of Operations

done over Things.

• Because every modification is abstracted into an evo-
lution primitive (as an Operation), the history is made
simply by storing the sequence of performed commands
— encapsulation – which also simplifies the control
of semantic/constraints checking, auditing and secu-
rity issues.

• A side-effect of mapping the allowed operations to Com-
mands is the further promotion of reuse, easier main-
tenance and consistency.

• If enough information is stored with each evolution
primitive — semantics — it becomes possible to play-
back the executed operations.

• The use of the Composite pattern to create Macros
of operations addresses the issue of atomicity, thus pre-
serving consistency.

This patterns has the following liabilities:

• The quantity — space consumption — of addition-
ally stored meta-information may be considerable, as
it will always grow with time, despite the size of the
current valid objects and meta-objects. However, the
use of compression techniques and the external archiv-
ing of unnecessary history may lessen the impact of
this liability.

• The performance may be affected because of the
quantity of instantiated objects and the necessary pointer
dereferencing/set joins associated with particular im-
plementations.

• The implementation may be more complex.

2.8 Implementation Notes
Semantic Consistency. The semantic consistency of

Things can be kept by enforcing constraints defined at an
upper abstraction level (i.e. operational-level constraints are
defined at the knowledge-level). One way to enforce these
constraints is to use pre and post operation conditions.

Keeping operations as general as possible will leverage
their reusability and maintainability, but leads to operations
of low granularity. The use of CRUD-like operations is a
good example, as they focus on very straightforward tasks,
and cover a wide scope of use cases when combined.

However, some sequences of operations may be impossi-
ble to carry out while ensuring consistency at the end of
each of them, although information would be in a consistent
state upon completion of the entire sequence. Consider two
classes, A and B, with a mandatory one to one relation be-
tween them, and two particular instances of these classes, a
and b, thus connected through that same relation. Suppose
we replace b by a new instance b’, as the other end of the

relation. If we consider only CRUD-like operations, three
different operations would be needed: the deletion of the
relation between a and b, the creation of a new relation con-
necting a and b’ and the deletion of b. By the end of these
operations, information would be in a consistent state, but
that would not be the case just after each individual opera-
tion completes, since mandatory relations would not exist.

As described, through the use of the Composite pattern,
Operations can be grouped in sequence — Macros. These
macros are a means to the reuse of operations, but may also
be used to establish consistency-checking frames. Instead of
checking the consistency of information after each individual
elemental operation, it may be checked only at the end of
the macro in which they are enclosed. This notion is akin
to the concept of transactions in database systems.

2.9 Related Patterns
Operations are structured using the Command pattern

[14]. The hierarchy of operations are also related to the
Composite pattern [14]. The storage of information may
be done similarly to the AuditLog pattern [7], though with
more semantics to increase traceability and automation.

The Identity pattern [12] is also used as described in
Section 1.

2.10 Known Uses
This pattern is common in Object-oriented Database Man-

agement Systems and Data Warehouses [22, 25, 4]. The Pre-
vayler framework [21] and the COPE tool [15] are also known
to use this pattern, as well as the work presented in [1].

3. SYSTEM MEMENTO PATTERN
Deals with preserving the several states the system has

achieved upon its evolution.

3.1 Context
An application based on the AOM architectural style is

being developed, and there is the need to access the state of
the system at any point (present or past) of its evolution.

3.2 Example
We are developing an information system based upon the

AOM architecture, using a variant of the Type-Square pat-
tern [16, 28] that conforms to the previously mentioned de-
sign (see Figure 2).

Imagine a heritage research center where its users keep
collecting information as they perform their regular activi-
ties. Due to the nature of the research, uncertainty of the
information is common, leading to several changes over time.
While the pace of collected information is not high, any
change in the system is critical since no previous informa-
tion should be lost, and even if deleted at one point, should

Version State Thing
1..*

previous
0..*0..*

1..*1..*

inv: self.states->isUnique(s | s.thing)

consists-of has

Figure 5: Class diagram of the System Memento pattern. A Version is a collection of States, one per Thing

(i.e. there cannot be multiple states of the same thing in the same version).

be recoverable in the future, by the same or other user.
Because we are using an AOM based system, there are

several levels at which we want to persist the state of the
objects as they are evolved (data, model, meta-model...).
For example, suppose we have an EntityType named Arche-
ological Survey and a particular Entity called Survey of the
Coliseum. At a certain point in time, the Coliseum could
have been dated as 100AC, but recent research has casted
doubt on that date, and it has since been oscillating between
200BC and 500AC.

One can also consider a case in which this system has
been running for a considerable amount of time, and several
thousand Archeological Surveys have been registered. Yet,
through acquired experience, users have now found the need
to additionally register the leader of each archeological ex-
pedition. As such, an evolution would need to take place at
the model level, to accommodate this new property of the
Archeological Survey’s EntityType.

3.3 Problem
How can we access the state of a system, at any particular

point of its evolution?

3.4 Forces

Reusability. Usage of the same versioning mechanism re-
gardless of model-level (i.e. data and metadata).

Encapsulation. We don’t want to pollute the system with
versioning logic everywhere it’s needed.

Identity. It should be possible to reference either an object
or one of its states, independently of each other.

System-Level Semantics. Versions should represent the
evolution of the system, and not of a particular object.

Time Independence. Though evolution usually occurs with
the passage of time, the system shouldn’t have to be
aware of it (the concern is the sequence of changes).

Accessibility. It should be possible to access the system at
any arbitrary point of its evolution.

Space Consumption. The data-set at hand should be kept
to a manageable size.

Branching. Allowing information to be branched may re-
quire merge mechanisms.

Consistency. Any particular state of the system must com-
ply to integrity constraints (e.g. an M0 object must be
compliant to its M1 definition).

3.5 Solution
Separate the identity of a Thing from its properties such

that, by aggregating a particular State of Things, one can
capture the global state of the system at any particular point
of its evolution.

Applying this pattern usually starts by decoupling Things

from their States [12]. While Things represent the identity
of an object, States represent its content, which will evolve
over the use of the system’s information (see Figure 5).
A Version thus captures the global state of the system, by
referencing all the valid States at some point of the system’s
lifetime. Each Version maintains references to the those
that gave origin to it (previous), and to those that originated
from it (subsequent). Usually, however, each Version is
based on a single previous Version, and will give origin to
a single other Version, thus resulting in a linear time-line.
However, more than one previous and/or next Versions may
be considered, specially in concurrent usage environments,
for purposes of data reconciliation.

Each individual Version may accommodate both instance
and model-level Things. This results in a particularly useful
design, since a change at the model-level can often lead to
changes at the instance-level. In order to aggregate a con-
sistent group of States, every Version need to be able to
reference States from both levels. In fact, this is an essen-
tial issue for the Migration pattern, since changes to the
model usually require changes to the data.

3.6 Example Resolved
Consider the aforementioned Survey of the Coliseum (see

Example). Over the last year new information about the
Coliseum was acquired, through the study of newly found
manuscripts. Users updated the information on the system,
such that it would reflect their best knowledge at each phase
of the research. Therefore, the description of this monument
evolved over time. As such, several Versions may have been
created, each representing a consistent point on the evolu-
tion of the available information. Thus, it becomes possible
to access, and even recover, previous states of the system.

Eventually, the model may also need to evolve. As de-
scribed in the example, a new AttributeType may be added
to accommodate the name of the leader of each archeolog-

carA: Entity

carAState0:
State

carAState1:
State

V2: VersionV1: VersionV0: Version V3: Version

wheelA: Entity

wheelAState0:
State

versions

states

things

Head: Version

wheelB: Entity

wheelAState1:
State

carB: Entity

carBState0:
State

wheelBState0:
State

Figure 6: Object diagram for an example instantiation of the System Memento pattern.

ical expedition. Since an AttributeType is a Thing, a new
Version will be created that references model-level States
and Things.

3.7 Resulting Context
This pattern results in the following benefits:

• We are now able to use the same versioning mechanism
regardless of the model-level — reusability.

• By decoupling the state from the object, we are able
to isolate the object’s identity.

• Because the concept of version is now at system level
— system-level semantics — instead of object-level,
we are now able to address consistency.

• If multiple evolution branches are used, concurrency
may be coped with more easily.

This pattern has the following liabilities:

• The quantity of stored information may be larger than
affordable — space consumption. The choice of ap-
propriate persistency strategies may reduce this issue
(see Implementation Notes).

• The branching of versions will require additional merg-
ing mechanisms.

• Performance may be affected by the overhead intro-
duced while changing, storing and accessing informa-
tion.

• It may increase the systems’ complexity due to ad-
ditional object dereferenciation.

3.8 Implementation Notes
Coping with state explosion. It should be noted that

a literal implementation of this approach may lead to an
unnecessary use of space as the system evolves. Versioning
systems typically deal with this issue by partially inferring,
instead of explicitly storing, the complete set of states that
define a particular version (i.e. by just keeping the deltas).

Because this issue can determine the feasibility of a system,
we present some notes overviewing one possible solution.

Consider the following sets of operations (a) create carA,
(b) create wheelA, wheelB and carB, (c) modify wheelA, and
(d) modify carA and delete wheelA. The resulting set of ver-
sions can be observed as an object diagram in Figure 6.

Any Thing that doesn’t change its State in any subse-
quent version, would have its State replicated across those
versions. Using a strategy where only changes to states are
stored, thus inferring (instead of storing) the complete set
of states for any version, the stated example would become
as observed in Figure 7.

In english, the inference rules can be summarized as: if
a state belongs to a delta, then it also belongs to the corre-
sponding and subsequent versions, until a new state is de-
fined or the null state is reached (i.e. when an object is
deleted).

3.9 Related Patterns
The patterns Temporal Property [10], Effectivity

[8], Memento [14], Temporal Object [9], Snapshot [5],
and several others [2, 3], are directly related to the problem
of storing the changing values of an object. However, none
of them explicitly addresses the concerns of system-level se-
mantics (i.e. they focus on the change of a single object
instead of the whole system) and Meta-modeling (i.e. the
change of an object’s specification).

The Migration Pattern, described in this work, uses Sys-
tem Memento to allow arbitrary evolution of the system
between any two versions.

The Identity pattern [12] is also used as described in
Section 1.

3.10 Known Uses
This pattern is common on Wikis and Version Control

Systems. The work presented in [3] also details the imple-
mentation of several versioning techniques in object-oriented
design. Several Object-oriented Database Management Sys-
tems and Data Warehouses [22, 25, 4], as well as the Pre-
vayler framework [21] and the AMOR system [1], are known
uses of this pattern.

carA: Entity

carAState0
:State

carAState1
:State

V2: VersionV1: VersionV0: Version V3: Version

wheelA: Entity

wheelAState0
:State

versions

states

things

Head: Version

wheelB: Entity

wheelAState1
:State

carB: Entity

carBState0
:State

wheelBState0
:State

wheelAState2
:NullState

Figure 7: Object diagram for the delta strategy instantiation of the System Memento pattern.

4. MIGRATION PATTERN
Addresses the concern of performing evolution upon the

system, while maintaing its structural integrity.

4.1 Context
An application based on the AOM architectural style is

being developed, and it will be necessary to evolve model
and data definition (assuring consistency) after system’s de-
ployment.

4.2 Example
We are developing an information system based upon the

AOM architecture, using a variant of the Type-Square pat-
tern [16] that conforms to the previously mentioned design
(see Figure 2).

Consider an insurance company where several domain rules
and structure, due to the nature of the business, keep chang-
ing to fulfill market needs. One example is the insurance
payback for any particular kind of incident, which is based
on a complex formula that takes into account several fac-
tors. Not only the formula changes as the system evolves,
but also the factors taken into account change, thus needing
new information to be either collected or inferred (e.g. the
number of children of an individual while calculating his life
insurance payment).

However, even simple evolutions of the structure or be-
havior, like removal of information, can have a significant
impact in the system. Valid objects may depend on the
information being changed, thus leading to inconsistency.
These issues need to be addressed upon each evolution step,
to guarantee that the integrity of the system holds to the
specification.

Another typical concern is maintaining legacy interfaces.
If the system must interoperate with third-party compo-
nents, once the model definition evolves, the interface can
become invalid. In this case, it may be necessary to provide
a layer of data transformation, thus maintaining legacy in-
terfaces over previous versions of the system. This approach
may increase the complexity of the underlying architecture.

4.3 Problem
How do we support the evolution of a system while main-

taining its integrity?

4.4 Forces
Due to the use of the History of Operations and Sys-

tem Memento, the Migration pattern is subject to the
same forces. Some additional forces specific to this pattern
are presented below:

Automation. We want to automate the evolution instead
of relying on monolithic, custom made scripts.

Integrity. Applying a migration should result in a consis-
tent state of the system.

Control. We want to restrict the kind of evolutions allowed
upon the system.

Interoperability. We may need to maintain interoperabil-
ity with third-party systems not aware of the model
evolution.

4.5 Solution
Use the History of Operations to support the Versioning of

Things. Achieving a target Version is the result of applying
the sequence of Operations defined between two Versions.

As described in the History of Operations and Sys-
tem Memento patterns, first start by decoupling the State

of a Thing from its identity (see the Identity pattern [12]).
Also, every Operation over a Thing should be structured as
a Command [14]. Instead of operating over Things, opera-
tions should occur over (or generate new) States. Consid-
ering there is a one-to-one relationship between the History

and Version classes (see History of Operations and Sys-
tem Memento patterns), the later can fulfill both roles (see
Figure 8).

An Operation can be specialized into either Concrete Op-

erations, or Macros that establish a sequenced group of
other Operations, through the use of the Composite pat-
tern [14].

The ability of an Operation to spawn other Operations,
allows changes on the knowledge-level to be reflected upon
the operational-level, whose purpose is to maintain the con-
sistency of the system. For example, a Move Attribute to
Superclass at the knowledge-level may generate several Op-
erations at the operational-level, since data may also need
to be moved.

Version State Thing
1..*

has-previous

0..*
1..*1..*

Operation results-in-new

1..*

1

{ordered}

Migration

source target

may-spawn-other

0..*

1 1

Figure 8: Class diagram of the Migration pattern. A Migration between any two Versions consists on applying,
in the correct order, all the histories of Operations that were executed between those versions. A Version may
not refer more than one State from the same Thing.

The Migration acts as an interpreter, or patch engine,
which, given a Version and a set of Operations, achieves a
target Version.

4.6 Example Resolved
One of the most complex examples this pattern support

is the ability to evolve what is normally called the schema
(in this case, the word model is more appropriate) and to
immediately affect data at lower levels.

Let us consider the aforementioned example. The intro-
duction of new laws will require the creation of new fields in
existing entities (e.g. number of dependent children). Oth-
ers, previously belonging to a particular sub-class, will now
be moved into the super-class (e.g. number of days overseas
per year).

Consider this evolution will occur from version V1 to ver-
sion V2. Two M1 (knowledge-level) operations are issued:
(a) Create Attribute and (b) Move Attribute to Superclass.
While the former doesn’t need to spawn any M0 Operations,
the later should be defined as a Macro, mixing sequential M0

and M1 operations (e.g. Create Attribute at M1, Duplicate
Data to Attribute at M0, Delete Attribute at M1 and Dis-
pose Data at M0). Each Operation will act upon a specific
given State of a set of Things to generate new States. This
sequence of commands, interweaving different level opera-
tions, may be stored in the new Version (V2).

In summary, a migration between any two versions consist
on applying, in the correct order, all the histories of opera-
tions that were executed between those versions.

4.7 Resulting Context
The resulting context of applying this pattern is the com-

bined resulting contexts of the History of Operations
and System Memento patterns. The following benefits
are particular to this pattern:

• We are now able to automatically evolve between
any two versions of the system, provided that we issue
a semantically correct sequence of operations.

• Consistency of the system is dependent on the consis-
tency of the operations. This functional decomposition
may help achieving higher confidence in the model in-
tegrity after a migration procedure.

This pattern has the following liabilities:

• If the system does not provide enough operations to
perform complex tasks, it can be difficult (or even im-
possible) to express the intended semantics of the evo-
lution.

• The migration mechanism, along with all the addi-
tional information that it requires, adds complexity
to the system.

4.8 Implementation Notes
Refactorings as Evolution Primitives. In object-

oriented programming, behavior-preserving source-to-source
transformations are known as refactorings [11]. The concept
of refactoring applied to models [6, 17, 15] has already been
pointed out as a way to cope with system evolution. This no-
tion may be applied when designing Operations, such that
they represent a set of refactorings specifically designed for
evolving Things. Each refactoring should assure system in-
tegrity upon its completion.

4.9 Related Patterns
All related patterns to History of Operations and Sys-

tem Memento apply.

4.10 Known Uses
Several Object-oriented Database Management Systems and

Data Warehouses [22, 25, 4], as well as the Prevayler frame-
work [21], the COPE tool [15], and the AMOR system [1],
are known uses of this pattern.

The Ruby on Rails (RoR) framework uses a variation [23,
24] of Migration, but expresses operations within relational
models, since it’s based upon the Active Record Pattern
[12].

5. ACKNOWLEDGMENTS
We would like to thank our shepherd, Jorge Ortega Ar-

jona, whose experience was invaluable; every participant
of the Design and Architecture Writers’ Workshop: Ade-
mar Aguiar, Adriana Chis, Alexander Ernst, Atsuto Kubo,
Joseph Yoder, Nuno Flores, Peter Sommerlad, Peter Swin-
burne, Ralph Johnson, Rebecca Wirfs-Brock and Srinivas
Rao — it was a great honor for us to be part of this work-
shop; and to our family, friends and colleagues, particularly
Hugo Silva, for their support during this research. We would
also like to thank the Portuguese Foundation for Science and
Technology and to ParadigmaXis, S.A., for sponsoring this
research through the doctorate scholarship grant SFRH /
BDE / 33298 / 2008.

6. REFERENCES
[1] K. Altmanninger, G. Kappel, and A. Kusel.

Amor–towards adaptable model versioning.
info.fundp.ac.be.

[2] F. Anderson. A collection of history patterns.
Collected papers from the PLoP’98 and EuroPLoP’98
Conference, 1998.

[3] M. Arnoldi, K. Beck, M. Bieri, and M. Lange. Time
travel: A pattern language for values that change. Jan
2005.

[4] B. Bebel, J. Eder, C. Koncilia, T. Morzy, and
R. Wrembel. Creation and management of versions in
multiversion data warehouse. portal.acm.org.

[5] A. Carlson, S. Estepp, and M. Fowler. Temporal
patterns. Pattern Languages of Program Design,
page 19, Aug 1998.

[6] A. Correa and C. Werner. Applying refactoring
techniques to uml/ocl models. UML, Jan 2004.

[7] M. Fowler. Analysis patterns: Audit log.
http://www.martinfowler.com/ap2/auditLog.html,
Accessed on the 1st of May, 2008.

[8] M. Fowler. Analysis patterns: Effectivity.
http://www.martinfowler.com/ap2/effectivity.html,
Accessed on the 1st of May, 2008.

[9] M. Fowler. Analysis patterns: Temporal object.
http://www.martinfowler.com/ap2/temporalObject.html,
Accessed on the 1st of May, 2008.

[10] M. Fowler. Analysis patterns: Temporal property.
http://www.martinfowler.com/ap2/temporalProperty.html,
Accessed on the 1st of May, 2008.

[11] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,
1999.

[12] M. Fowler and D. Rice. Patterns of enterprise
application architecture. page 533, Jan 2003.

[13] R. France and B. Rumpe. Model-driven development
of complex software: A research roadmap. pages
37–54. IEEE Computer Society, 2007.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley Professional, 1995.

[15] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
COPE: a language for the coupled evolution of
metamodels and models. In MCCM’08 Proceedings,
2008.

[16] R. Johnson and B. Woolf. Type object.
Addison-Wesley Software Pattern Series, Jan 1997.

[17] P. Muller, F. Fleurey, D. Vojtisek, Z. Drey, and
D. Pollet. On executable meta-languages applied to
model transformations. Model Transformations In
Practice Workshop, Jan 2005.

[18] OMG. Ocl specification 2.0.
http://www.omg.org/spec/OCL/2.0/, Accessed on the
12th of December, 2008.

[19] OMG. OMG’s metaobject facility (MOF) home page.
http://www.omg.org/mof/, Accessed on the 1st of
May, 2008.

[20] OMG. Uml infrastructure 2.1.2.
http://www.omg.org/spec/UML/2.1.2/, Accessed on
the 12th of December, 2008.

[21] Open Source. Prevayler — the open source prevalence
layer. http://www.prevayler.org, Accessed on the 12th
of December, 2008.

[22] A. Rashid and N. Leidenfrost. Supporting flexible
object database evolution with aspects. Generative
Programming And Component Engineering, Jan 2004.

[23] Ruby on Rails Community. Understanding migrations
in ruby on rails.
http://wiki.rubyonrails.org/rails/pages/
understandingmigrations, Accessed on the 14th of
May, 2008.

[24] Ruby on Rails Community. Using migrations in ruby
on rails.
http://wiki.rubyonrails.org/rails/pages/UsingMigrations,
Accessed on the 14th of May, 2008.

[25] H. Wei and R. Elmasri. Schema versioning and
database conversion techniques for bi-temporal
databases. Annals of Mathematics and Artificial
Intelligence, Jan 2000.

[26] L. Welicki, J. W. Yoder, and R. Wirfs-Brock. A
pattern language for adaptive object models: Part I –
rendering patterns. In PLoP 2007, Monticello, Illinois,
2007.

[27] L. Welicki, J. W. Yoder, R. Wirfs-Brock, and R. E.
Johnson. Towards a pattern language for adaptive
object models. pages 787–788, Montreal, Quebec,
Canada, 2007. ACM.

[28] J. W. Yoder, F. Balaguer, and R. Johnson.
Architecture and design of adaptive object-models.
ACM SIG-PLAN Notices, 36:50–60, Dec. 2001.

	1 Introduction
	1.1 Levels of Abstraction
	1.2 Data and Metadata Patterns
	1.3 Target Audience

	2 History of Operations Pattern
	2.1 Context
	2.2 Example
	2.3 Problem
	2.4 Forces
	2.5 Solution
	2.6 Example Resolved
	2.7 Resulting Context
	2.8 Implementation Notes
	2.9 Related Patterns
	2.10 Known Uses

	3 System Memento Pattern
	3.1 Context
	3.2 Example
	3.3 Problem
	3.4 Forces
	3.5 Solution
	3.6 Example Resolved
	3.7 Resulting Context
	3.8 Implementation Notes
	3.9 Related Patterns
	3.10 Known Uses

	4 Migration Pattern
	4.1 Context
	4.2 Example
	4.3 Problem
	4.4 Forces
	4.5 Solution
	4.6 Example Resolved
	4.7 Resulting Context
	4.8 Implementation Notes
	4.9 Related Patterns
	4.10 Known Uses

	5 Acknowledgments
	6 References

