
Patterns for ADT Optimisation

David J. Pearce and James Noble
Computer Science

Victoria University of Wellington
New Zealand

{djp,kjx}@mcs.vuw.ac.nz

ABSTRACT
Operations on abstract data types can be classified as either queries
or updates — those that either query the current state, or update
it. Modern object-oriented programming languages require class-
es/interfaces to support a predefined set of such operations. This
presents a challenge for software designers, since a fixed interface
can severely restrict the opportunities for optimisation. In this pa-
per, we present two common patterns — Specific Query Optimisa-
tion and Generalised Query Optimisation — for optimising such
operations. The first requires specific knowledge of which opera-
tion to optimise beforehand, whilst the latter provides more leeway
in this regard. These patterns are commonly occurring in software,
and we find numerous instances of them within the Java standard
libraries.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Patterns;
D.1.5 [Programming Techniques]: Objected-Oriented Program-
ming; D.3.3 [Programming Languages]: Language Constructs
and Features—Patterns

General Terms
Languages, Performance, Design

Keywords
Querying, Design Patterns, Java

Introduction
Abstraction — separating the “what” from the “how” — is a cen-
tral theme of computer science [4, 14]. Take for example Abstract
Data Types (ADTs). These have long been studied (see e.g. [10,
6, 3]) and most modern languages come with libraries providing
numerous ADTs and their implementations. Well-known exam-
ples include the Standard Template Library [19], the Java Collec-
tions Library [20] and the Boost Library [2]. Typical ADTs include
Maps, Sets and Sequences, and are backed by implementations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Preliminary versions of these papers were presented in a writ-
ers’ workshop at the 15th Conference on Pattern Languages of Programs
(PLoP). PLoP’08, October 18-20, Nashville, TN, USA. Copyright 2008 is
held by the author(s). ACM 978-1-60558-151-4

such as HashMap, TreeMap, HashSet, etc to name but a few.
These provide a good degree of separation between the “what” and
the “how”. In this paper, we present two patterns for performance
optimisation which arise from separating these two things. Perhaps
unsurprisingly then, several known uses of these patterns can be
found within common ADT libraries.

We take the view, as others have [11], that all operations on data
can be classified as either queries or updates (a.k.a. accessors and
mutators). That is, they either query the current state, or update it.
We ignore the fact that, in reality, some operations are both queries
and updates since this is not considered best practice [1]. Further-
more, queries and updates have a strong resemblance with getters
and setters. We distinguish them because getters and setters are
typically “dumb” — they do not process information, but simply
return or update it directly. On the other hand, queries and updates
may perform more complex processing, such as selecting particu-
lar elements from a list and applying functions to them, or updating
additional state to maintain hidden invariants.

Now, an ADT defines a specific set of query and update opera-
tions. The implementations of an ADT must then provide different
trade-offs for these operations. As an example, consider a Map
ADT. A Map can be viewed as a Set of pairs which has been opti-
mised for a specific query: the get() operation. Thus, the Map in-
terface is similar to that of Set, but includes an additional get()
method. This allows for implementations (e.g. HashMap) which
can perform the query more efficiently than simply enumerating
every pair and selecting a match. In this we see a common pattern;
namely, that an ADT (i.e. Set) has been taken and optimised for a
specific query (i.e. get()), resulting in a new interface (i.e. Map).
We refer to this pattern as Specific Query Optimisation (1) since a
specific query has been optimised, rather than a more general class
of queries. Thus, optimising additional queries requires extending
the ADT again. For example, to optimise a query giving the reverse
of get() (i.e. to find the keys that map to an object), we must ex-
tend the Map interface with another method, such as getKeys().

Oftentimes, it is difficult to know beforehand which queries need
to be optimised. This may be because the range of possible queries
is very large, and/or the ways in which the ADT will be used are
varied. One solution is to provide a general query operation, through
which more complex queries can be built up. The simplest exam-
ple of this is an iterator. Through an iterator, one can examine
all the data held within an ADT, and identify a subset of interest.
For example, by selecting those matching a given criteria. While
this approach is flexible, it does not enable optimisation very eas-
ily. This is because the queries are implemented on the client-side
and, hence, the client is responsible for any such optimisations. In
situations where performance is critical, a common approach is to
provide a single query allowing the client to specify what it is they

want. A classic example is a filter query which accepts a predicate
function as an argument. In this way, the client provides the predi-
cate to select the appropriate subset, but the ADT remains respon-
sible for computing it. Doing this enables a greater range of opti-
misations than the simple iterator approach, and we capture these
in our second pattern called Generalised Query Optimisation (2).

In this paper, we are specifically interested in the ways in which a
query operation can be optimised for performance. Each of the pat-
terns trades-off different forces. The primary force being resolved
is performance. These patterns all increase speed — time perfor-
mance — by increasing the space usage of the program. More
specifically, time performance is resolved in situations when the
query/update ratio is high. That is, the number of times a particular
query is made, compared with the number of updates affecting the
query results. Thus, when the query/update ratio is high, the bene-
fits from optimising a query are far greater. A second benefit is that
these patterns (especially Generalised Query Optimisation (2))
also provide flexibility, in that designs become more resilient to fu-
ture performance requirements. However, the patterns introduce
complexity into the program — particularly, into the ADT imple-
mentations themselves — reducing readability and maintainability.
Furthermore, the patterns are difficult to apply, since the expected
query/update ratio is often hard to know concretely and may vary
between program runs and/or clients (for frameworks).

1. SPECIFIC QUERY OPTIMISATION
How do you design an API optimised for a specific query?

Suppose we are implementing a data structure on which there are
several queries that can be performed and, furthermore, we know a
priori which of these queries we wish to optimise. For example, in
a drawing program we might have a canvas containing the shapes
that it draws:

class Canvas {
private List<Shape> shapes;
...
public List<Shape> getShapes() {
return shapes;

} }

Now, when our program receives a mouse click, it searches the list
returned by getShapes() looking for those whose bounding box
contains the click. If there are many shapes in the list, the number
not containing the click will most likely dwarf those that do. Hence,
searching the list returned by getShapes() will needlessly tra-
verse many shapes which do not contain the click. If the search is
performed frequently, this causes a performance bottleneck.

Forces
• You need to increase the time performance of the program.

In particular, a specifically query is executed frequently and
its performance is critical.

• You can afford to trade increased space to reduce execution
time for that query.

• The query in question performs some non-trivial computa-
tion on the underlying data in computing its result.

Therefore
Add a new method optimised for the specific query in question.

Since we have identified a specific query to optimise, it is sen-
sible to add a specific method for that query. Doing so enables its

optimisation, even if this is not implemented immediately. In this
case, a method such as getEnclosingShapes() would be ap-
propriate.

Example
To illustrate, we present an example from [21] which is based on a
real-world application called Robocode [12]. The Robocode game
is written in Java and pits user-created simulated robots against
each other in a 2D arena. The game has a serious side as it has been
used to develop and teach ideas from Artificial Intelligence [7, 8,
13].

A Robocode Battle object maintains a private list of Robots, with
an accessor method that returns all Robots in the battle:

class Battle {
private List<Robot> robots;
...
public List<Robot> getRobots() {
return robots;

} }

During each turn of the game, robots scan their field-of-view within
the battle arena to locate other Robots to attack. The code imple-
menting this iterates the list of robots, selecting those which are
alive and within the robots field-of-view as follows:

class Robot {
public int state = STATE_ACTIVE;
public boolean isDead() {
return state == STATE_DEAD;

}
public void die() { state = STATE_DEAD; }
...
// Scan field-of-view to find robots
private void scan() {
for(Robot r : battle.getRobots()) {

if(r!=null && r!=this &&
!r.isDead() && r.intersects(...)) {
....

} } } }

To optimise programs like Robocode, programmers focus on
methods like scan() that are called repeatedly. A common and
effective approach is to cache intermediate results which, in this
case, are the sub-collection(s) being frequently traversed. For ex-
ample, the programmer might know that, on average, there are a
large number of dead robots. To avoid repetitively and needlessly
iterating many dead robots in scan(), he/she might maintain a
cache — a list of just the “alive” robots — as follows:

class Battle {
// master list of all robots
private List<Robot> robots;
// cached list of alive robots
private List<Robot> aliveRobots;
...
public List<Robot> getRobots() {
return robots;

}
public List<Robot> getAliveRobots() {
return aliveRobots;

} }

Then, each Robot can iterate the list of alive robots, without need-
ing to check whether each is alive or dead:

class Robot {
...
private void scan() {
for(Robot r : battle.getAliveRobots()){

if(r!=null && r!=this &&
r.intersects(...)) { ... }

}}}

Here, aliveRobots is a sub-collection of robots containing
only those where !isDead() holds. Thus, the for-loop in scan()
no longer needlessly iterates over dead robots. After the game has
been running a while, more Robots are typically dead than alive.
This reduces the time taken for the loop at the cost of extra mem-
ory (the cache).

When the source collection(s) of a query are updated (by adding
or removing elements), or an element of a source collection is itself
updated, any cached result sets may become invalidated. Tradi-
tionally, encapsulation is used to prevent this situation from aris-
ing, by requiring all updates go via a controlled interface. Thus,
updates to a collection can be intercepted to ensure any cached re-
sult sets are updated appropriately. To illustrate, consider a simple
addRobot() method for adding a new robot to the arena, where
a cache is being maintained explicitly:

class Battle {
private List<Robot> robots, aliveRobots;
...
public List<Robot> getRobots() {
return robots;

}
public List<Robot> getAliveRobots() {
return aliveRobots;

}
public void addRobot(Robot r) {
robots.add(r);
if(!r.isDead()) { aliveRobots.add(r); }

}
public void robotDied(Robot r) {
aliveRobots.remove(r);

}}

Here we see that, when a robot is added via addRobot(), the
aliveRobots list is incrementally updated to ensure it remains
consistent with the robots collection.

There are several issues to consider when implementing this pat-
tern:

• Dependency Tracking. An important issue regarding in-
crementalisation (i.e. incremental updating of cached result
sets) is that updates affecting cache consistency must be in-
tercepted. While encapsulation does help in this regard, it
is not always sufficient. For example, the aliveRobots
cache may become inconsistent if a Robot instance is mu-
tated outside of the Battle class’s knowledge. To allevi-
ate this issue, we provided a robotDied() method which
must be explicitly called when a robot dies. Another solution
would be, where possible, to restrict the Robot interface so
that a Robotmay only die via the Battle.robotDied()
method.

• Query/Update Ratio. An important issue in deciding whether
or not to optimise a specific query is its query/update ratio.
This is because there is typically a cost associated with incre-
mentally maintaining a cached result set: when the number

of updates affecting a result set is high, compared with how
often it is actually used, it becomes uneconomical to cache
that result set. In cases when the expected query/update ratio
is not known, or is known to vary greatly, one can also use
a mechanism based on caching heuristics. For example, by
dynamically monitoring the query/update ratio and using this
data to decide when to begin caching, and when to stop.

Consequences
• Benefits. Program performance can be significantly improved,

often by several orders of magnitude or more. Furthermore,
the resulting system is more flexible. That is, even if the
query under consideration is not time-critical, it may become
so in the future. Thus, by providing an extended interface,
the implementation can be optimised at a later date as needed.

• Liabilities. Explicitly maintaining extra collections has sev-
eral drawbacks. Clearly, caching increases the space require-
ments for the program. Furthermore, it can be difficult to
introduce caches when the interface of the providing object
(i.e. Battle) is fixed (e.g. it’s part of a third-party library,
and/or the source is not available, etc). The optimisation
also reduces readability and maintainability as the source be-
comes more cluttered. Maintaining cached collections is also
rather tedious, since they need to be updated whenever the
underlying collection or the objects in those collections are
updated — whenever a new Robot “spawns” into the game,
or whenever an alive Robot dies. Finally, code to maintain
these optimised collections must be written anew for each
collection. For example, Robocode’s Battle class also
maintains a list of Bullets, employing a loop similar to
scan() for collision detection. One can introduce a sub-
collection to cache live bullets, but only by duplicating much
of the code necessary for the sub-collection of live Robots.

Known Uses
This pattern encompasses a very common optimisation that is par-
ticularly prevalent in the design of object-oriented collection li-
braries. In the Java Collections Library [20], a good example is
java.util.List. This provides a get(int) query for ac-
cessing the ith element in the list. This query is not strictly nec-
essary from a functionality perspective, since the Collection
interface is already sufficient for performing this operation (via
explicit enumeration of elements). Thus, the major purpose of
including this query is to enable optimisation; in particular, the
ArrayList implementation is able to provide constant time ac-
cess to elements via this query.

Another common example found in collection libraries is the
Map interface. By regarding a Map as a Collection of pairs
(as, for example, in the C++ Standard Template Library [19]), it
becomes apparent that, again, the get(Key) query is provided
purely to enable optimisation. This is because, again, this query
can be implemented by explicit enumeration of elements using the
existing Collection interface.

A similar situation arises in libraries for manipulating graphs,
such as the Boost Graph Library [18] and JGraphT [9]. Such li-
braries provide some kind of Graph interface, typically backed by
AdjacencyList and AdjacencyMatrix implementations. As
with Map, the Graph interface is essentially a Collection of
pairs with additional queries for enabling optimisation. A good
example of such is the edges(Node) query which returns those
edges adjacent to the given node; again, this information can be

determined by explicit enumeration of the elements using the ex-
isting Collection interface. Thus, the edges(Node) query is
provided purely for the purposes of optimisation.

The Relationship Aspect Library [15, 16], provides another in-
teresting example. This library is designed for representing the re-
lationships between objects in an object-oriented program. Since
the web of relationships is essentially a graph, the Relationship
interfaces provided by this library are, in fact, similar to those found
in common graph libraries. As such, the Relationship inter-
face provides from(Object)/to(Object) queries to enable
efficient navigation of the object graph.

Finally, numerous real-world applications such as Robocode [12]
embody this pattern as it is a fundamental optimisation technique.

2. GENERALISED QUERY OPTIMISATION
How do you design an interface optimised for an unknown set of
queries?

Suppose we are implementing a data structure on which there is
a very large (possibly infinite) range of queries that can be per-
formed, and we don’t know specifically which ones to optimise.
This may arise, for example, if the set of queries requiring opti-
misation varies between program runs, or between clients (if we
are implementing a library or framework).

Forces
• You need to increase the time performance of the program.

More specifically, there is a large range of queries which, in
certain contexts, may execute frequently and require critical
performance.

• You can afford to trade increased space to reduce execution
time for those queries.

• The queries in question perform some non-trivial computa-
tion on the underlying data in computing their results.

Therefore
Provide a single method that supports the set of possible queries.

Since we are unsure what query should be optimised, it makes
sense to leave our options open. That is, we shall design an in-
terface for which optimised implementations can be provided at a
later date. This contrasts starkly with the iterator pattern which, in-
stead, chooses to give clients access to the data as one lump so they
can process it themselves.

Example
Consider the following code which iterates the elements of a col-
lection, narrowing this down to those of interest:

Collection<String> col = ...;
for(String s : col) {

if(s.equals(‘‘Dave’’)) { ... }
}

In some ways, this code reflects the fact that the user cannot
directly query the collection for the information required; instead,
a clumsy iterator must be used by the client to manually extra it.
The issue is that it is impossible for a collection implementation
to optimise code such as this, since the Collection interface
provides no appropriate method. To optimise such code, we need
to include a method supporting a wide-range of queries. The design
of our collections API might look like this:

interface Fun<T> { boolean select(T x); }
interface MyCollection<T> {

...
MyCollection<T> filter(Fun<T> f);

}

Here, the filter function is provided to capture the set of queries
we wish to optimise. This accepts a unary function that selects
the required elements of the collection. Thus, our client code now
looks like this:

MyCollection<String> col = ...;

Fun<String> f = new Fun<String> {
public boolean select(String x) {

return x.equals(‘‘Dave’’);
} };

for(String s : col.filter(f)) { ... }

The advantage of this design is that we can now provide optimised
implementations of the filter method. Such an implementation
might look like this:

class CachingCollection<T> implements
MyCollection<T> {

private HashMap<Fun<T>,
MyCollection<T>> cache = ...;

private MyCollection<T> base = ...;
...
public MyCollection<T> filter(Fun<T> f) {

MyCollection<T> result = cache.get(f);
if(result == null) {
result = base.filter(f);
cache.put(f,result);

}
return result;

} }

Here, we see that a cache is maintained for the results of a specific
query. Thus, when the filter function is called again with the
same Fun, the results can be quickly recalled. As with Specific
Query Optimisation (1), our implementation should incremen-
tally update its cached result sets, which we refer to as incremen-
talisation. This is done by intercepting all operations which may
mutate the underlying collection. For example, the add method
could be incrementalised as follows:

class CachingCollection<T> implements
MyCollection<T> {

...
public boolean add(T item) {
if(base.add(item)) {

for(Map.Entry<Fun<T>,MyCollection<T>> e
: cache.entrySet()) {

if(e.getKey().select(item)) {
e.getValue().add(item);

} }
return true;

}
return false;

} }

Here, the code iterates the caches available for the different Fun
objects, and adds the item to those which match.

There are several important issues to consider when implementing
this pattern:

• Dependency Tracking. A key issue is being certain that
all operations affecting the results of a particular query are
intercepted. Starting with the base collection, encapsula-
tion can be used to ensure operations for adding/removing
elements are intercepted (as above). However, if the unary
functions supplied to filter rely on state contained in el-
ements held by the collection, then changes to these objects
could clearly put the cache in an inconsistent state. Dealing
with this problem is not as easy: one option is to simply re-
quire that elements held in the collection do not change state
— this is essentially the contract already required by many of
Java’s Collection classes (e.g. HashSet); another op-
tion is to require that unary functions do not access mutable
state of elements held in the collection; yet another option is
provide a method on MyCollection for indicating that a
particular Object held in the collection has changed state.

• Query/Update Ratio. Knowing when to optimise an indi-
vidual query is key to successful application of this pattern.
This issue becomes more challenging here, since the individ-
ual queries (i.e. instances of Fun) are unknown a head of
time. Memory consumption becomes important, since the
number of queries is unbounded; this contrasts with Spe-
cific Query Optimisation (1), where memory (and other re-
source) utilisation can be easily bounded. To alleviate this
issue, a cache-replacement strategy can be employed to evict
cached results which, for example, are not used frequently.
Furthermore, in cases where the expected query/update ratio
varies widely between individual queries, additional mecha-
nism may be required to identify those which should be op-
timised (static or dynamic profiling can typically be used for
this).

Consequences
• Benefits. Program performance can be significantly improved,

often by several orders of magnitude. The resulting system
is also more flexible, as optimised implementations can be
provided at a later date. This effect is more pronounced here,
compared with Specific Query Optimisation (1), since the
range of queries is far greater; one could even imagine imple-
mentations which categorise the range of query parameters
and optimise them differently.

• Liabilities. This pattern trades time for space, increasing the
space required by the program. This optimisation clearly re-
duces readability and maintainability for the sake of perfor-
mance. In fact, it may also increase the chance of program
error, especially when strict rules must be enforced to en-
sure proper dependency tracking. Furthermore, the benefits
are only realised in situations where the query/update ratio
is actually favourable. However, whether or not this is the
case depends upon the programs’ usage patterns, which can
be difficult to determine ahead of time.

Known Uses
This pattern occurs less frequently in practice than Specific Query
Optimisation (1). This is primarily because the pattern introduces
additional complexity and many problems are not sufficiently per-
formance critical to warrant its use. Typically it is found buried in

the core algorithm(s) of an application that have key performance
requirements.

One such example from the javax.swing.tree package is
the class AbstractLayoutCache and its subclasses, Fixed-
HeightLayoutCache and VariableHeightLayoutCache,
which are part of the Java standard library. These classes provide
parts of the implementation for an expandable tree view, as used in
many GUIs. The key interface is:

abstract class AbstractLayoutCache {
...
// Returns a rectangle giving the bounds needed to draw path.
public abstract Rectangle
getBounds(TreePath path,Rectangle placeIn);

// Instructs the layout cache that the bounds for path are invalid,
// and need to be updated.
public abstract
void invalidatePathBounds();

}

The getBounds() method returns the bounding box for a par-
ticular subtree, and this depends upon whether the subtree is ex-
panded, or partially expanded. The TreePath identifies the path
to the component in question. Thus, calling getBounds() on the
top-level TreePath returns the bounds of the whole tree (which
swing needs in calculating layout information). The subclasses of
AbstractLayoutCache, are FixedHeightLayoutCache
and VariableHeightLayoutCache. The former does not
need to calculate its bounding box as it uses a fixed bounding box,
whilst the latter does. For performance reasons, the implementa-
tion of the latter uses an internal cache to store the bounding boxes
of different TreePaths, thus implementing Generalised Query
Optimisation (2) pattern. The interface addresses cache coherency
issues in two ways: firstly, TreePath is immutable; secondly, the
invalidatePathBounds() method is provided to signal that
the bounds for a particular TreePath are now invalidated.

Many instances of this pattern are found in the Java Collection
interface. A good example is the ContainsAll method:

interface Collection<T> {
...
// Returns true if the collection contains all of the elements
// in the specified collection
boolean containsAll(Collection<?> c);

}

The containsAll() method is very general, supporting com-
parisons against all implementations of Collection. Further-
more, this method is not strictly necessary — it can be easily imple-
mented using the explicit enumeration facility of the Collection
interface. Presumably, in this instance, containsAll() was
provided for convenience. Nevertheless, it could be used for var-
ious performance optimisations. For example, since the common
implementation of containsAll() has linear time-complexity
in the size of the parameter, we might like to reduce this. One ap-
proach is to exploit the sortedness of collections such as TreeMap;
that is, if we know the maximum element of this collection, and
that the parameter collection is in sorted order, we can often stop
the containsAll() comparison early. Another approach is to
cache those collections which have already been tested, thus giving
constant-time performance on repeat queries. One problem with
this latter approach is, of course, tracking dependency changes.
The problem is particularly acute here, since the specification of
containsAll()makes no restrictions which might help us. Nev-

ertheless, such an optimisation can be applied in certain situations;
in particular, when the parameter collection is known to be im-
mutable.

Other related examples include collection APIs, such as those of
Smalltalk [5] and Python [17]. These provide a filter(Fun)
method, similar to that discussed above. However, these collection
implementations do not perform query optimisation, despite the in-
terface enabling this possibility.

Acknowledgements
Special thanks to our PLoP’08 shepherd, Hironori Nashizaki, whose
comments and insignts on earlier drafts of this paper were invalu-
able. Thanks also to the attendees of our writers workshop at PLoP’08
who commented, critiqued and generally helped improve our pa-
per. In no particular order, they were: Steven Hill, Nobukaza Yosh-
ioka, Takao Okubo, Hironori Nashizaki, Eduardo Fernandez, Brian
Foote, Amir Raveh, Yuji Kobayashi and Robert Hanmer.

3. REFERENCES
[1] J. Bloch. Effective Java: Programming Language Guide. The

Java Series. Addison-Wesley, 2001.
[2] Boost C++ libraries, http://www.boost.org.
[3] W. R. Cook. Object-oriented programming versus abstract

data types. In Proceedings of the Workshop on Foundations
of Object-Oriented Languages, pages 151–178.
Springer-Verlag, 1991.

[4] E. W. Dijkstra. The humble programmer. Communications of
the ACM, 15(10):859–866, 1972.

[5] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983.

[6] J. Guttag. Abstract data types and the development of data
structures. Communications of the ACM, 20(6):396–404,
1977.

[7] K. Hartness. Robocode: using games to teach artificial
intelligence. Journal of Computing Sciences in Small
Colleges, 19(4):287–291, 2004.

[8] J.-H. Hong and S.-B. Cho. Evolution of emergent behaviors
for shooting game characters in robocode. In Proceedings of
the 2004 IEEE Congress on Evolutionary Computation,
pages 634–638. IEEE Press, 2004.

[9] Jgrapht, http://jgrapht.sourceforge.net/.
[10] B. Liskov and S. Zilles. Programming with abstract data

types. In Proceedings of the ACM Symposium on Very high
level languages, pages 50–59. ACM Press, 1974.

[11] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and
Y. E. Liu. Incrementalization across object abstraction. In
Proceedings of the ACM conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), pages 473–486. ACM Press, 2005.

[12] M. Nelson. Robocode, http://robocode.sourceforge.net, 2007.
[13] J. O’Kelly and J. P. Gibson. Robocode & problem-based

learning: a non-prescriptive approach to teaching
programming. In Proceedings of the SIGCSE conference on
Innovation and technology in computer science education,
pages 217–221, New York, NY, USA, 2006. ACM.

[14] D. L. Parnas. A technique for software module specification
with examples. Communications of the ACM,
15(5):330–336, 1972.

[15] D. J. Pearce and J. Noble. Relationship aspect patterns. In
Proceedings of European Conference on Pattern Languages

of Programs (EuroPLOP), pages 531–546. ACM Press,
2006.

[16] D. J. Pearce and J. Noble. Relationship aspects. In
Proceedings of the ACM conference on Aspect-Oriented
Software Development (AOSD), pages 75–86. ACM Press,
2006.

[17] Python. http://www.python.org.
[18] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph

Library: User Guide and Reference Manual.
Addison-Wesley, 2002.

[19] A. A. Stepanov and M. Lee. The standard template library.
Technical Report X3J16/94-0095, WG21/N0482, ISO
Programming Language C++ Project, May 1994.

[20] Sun Microsystems Inc. The Java Collection Framework,
1995–1999. http://java.sun.com/j2se/1.5-
/docs/guide/collections/.

[21] D. Willis, D. J. Pearce, and J. Noble. Caching and
incrementalisation for the Java Query Language. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications, pages
1–17, 2008.

