
Fundamental Banking Patterns

Lubor Sesera
SOFTEC & FIIT STU

Slovakia

lubor.sesera@softec.sk

ABSTRACT
The paper describes analysis patterns of software systems for
banking. These patterns address complexity of banking products,
effectiveness of computing account balances, and customer-
orientation. The patterns are abstracted from real-world systems.
Together, they form a fundamental pattern language.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design

Keywords
Patterns

INTRODUCTION
Banking is the domain that is fairly known. People have

accounts in banks and do at least several transactions in a month.
However, there is a difference between knowing ‘something’
about banking (from the customer’s point of view) and having
‘deep knowledge’ about a banking software system. From the
point of view of ‘deep knowledge’ it is really surprising that only
a few patterns have been published about this domain so far. Still,
we do not have much more than accounting patterns [5], [8].
Unfortunately, although accounting is the basis of banking,
banking itself is much more than accounting. The concepts of
account and transaction [5] are valid but there are too many
transactions in a bank each day so that one needs to cope with
effectiveness. It influences the conceptual design of system.
Furthermore, accounting is the simple low level mechanism and
banking products and transactions are more complex.

For instance, it is not enough to have just an account name and
its balance. Additional information needs to be represented such
as issued bank cards including their numbers, validity, and
various limits. Bank card transactions do not address just
accounts but bank cards and merchant devices as well. Last but
not least, banking needs to be more ‘customer oriented’ than
accounting. For instance, instead of general account names the
customer wants to see real product names. He is not interested in
displaying counter accounts that are due to double-entry
accounting. He expects just his products (accounts) to be
displayed and in an integrated and attractive form to have a
prompt overview. He is also happy to work in the ‘customer
session’ mode with several transactions and only after he
confirms them they are entered to accounts.

This paper addresses the issue of analysis patterns of software
systems for banking. It starts from the ACCOUNT and
TRANSACTION fundamental accounting patterns of Fowler and
elaborates from the points of view mentioned above that are
important in the banking system: effectiveness, complexity, and
relationship to the customer. Effectiveness leads to patterns such
as DAILY BALANCE, ARCHIVED HISTORICAL BALANCES, ARCHIVED
HISTORICAL TRANSACTIONS, BANK DAYS and HIERARCHICAL
BALANCING. Complexity of accounts and transactions results in
patterns such as ACCOUNT TYPES, ACCOUNT CONTRACT, BUSINESS
CASE, TRANSACTION TYPES and ACCOUNTING RULES. Furthermore, it
includes fundamental patterns for fees and interests: ASSOCIATED
FEE, BOOK RATE and PARAMETRIC RATE. Relationship to the
customer results in patterns such as CUSTOMER PRODUCT,
CUSTOMER SESSION, RATE PACKAGE, FRONT-END SYSTEM, and
INTEGRATED CUSTOMER VIEW. Certain patterns such as ACCOUNT
CONTRACT span more than one point of view and certain patterns
e.g. FRONT-END SYSTEM are categorized a bit artificially in
categories mentioned above.

The patterns mentioned above are fundamental patterns for
banking and they form just a subset of an exhaustive pattern
language. The domain of banking is too complex to be covered
with a few patterns described in one article. For instance, these
patterns do not address all subdomains of banking, e.g. they do
not address securities or trade financing. (Although certain
patterns such as ACCOUNT, TRANSACTION, and ACCOUNTING RULES
can be used for these subdomains of banking.) I believe, however,
that this article might be a good starting point.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. A preliminary version of this paper
was presented in a writers’ workshop at the15th Conference on Pattern
Languages of Programs (PLoP).
PLoP ’08, October 18–20, 2008, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

The patterns described here are analysis patterns [5] for
banking software systems. They are not business patterns [12],
[13] providing business fundamentals. For instance, I do not
discuss why it is important to have special rates for certain
customers. I just say that to implement special rates effectively in

a software system it is beneficial to introduce the concept of RATE
PACKAGE to this system. To give one more example: I do not
discuss how to make fees ‘less painful’ to the customer, e.g. by
transforming the transactional issuing bank card fee to the
periodical monthly fee for the bank card; I just focus how to
represent those fees to fulfill business requirements. On the other
hand, the patterns presented in this paper are not architectural
patterns [2], [6]. I do not address the architecture of the banking
system1 that may be a tiered system of a legacy host (core
banking system), (JEE) integration and application middleware
and a thin client (e.g. based on an Internet browser using AJAX).
Also I do not address other modern buzzwords such as SOA,
BPEL or a multichannel architecture of transactions. These
patterns are not design patterns [7], although in certain places I
mention that a particular issue can be solved by applying a design
pattern, such as COMPOSITE or STRATEGY.

The patterns presented here are not ‘ideal’ patterns but they
come from real world systems. Some of them, e.g. DAILY
BALANCE, AVAILABLE BALANCE ARCHIVED HISTORICAL BALANCES,
ARCHIVED HISTORICAL TRANSACTIONS, and BANK DAYS have been
discovered in wide-spread legacy core banking systems. Other
patterns, such as HIERARCHICAL BALANCING, CUSTOMER SESSION,
BUSINESS CASE, RATE PACKAGE, FRONT-END SYSTEM, and
INTEGRATED CUSTOMER VIEW have been abstracted from some up-
to-date front-end systems. These systems are not wide-spread (but
it might be nice to have them in all banks). Nevertheless,
abstracted solutions come from the real-world systems and fulfill
the prerequisite for patterns. In this article I do not describe ideas
that might be nice but I have not found them in any software
system. It seems to me that several times even I myself had a
better solution for a problem (e.g. to use the STRATEGY pattern for
calculating fees [1] or to generalize transaction types [19]) but I
had not a chance trying to implement them in a system. I am sorry
if some (or even all) patterns described here seem trivial to a
reader. This is the world as it is.

The patterns presented here also do not claim to be abstract
enough to cover domains other than banking. Obviously, certain
patterns such as CUSTOMER PRODUCT, CUSTOMER SESSION,
BUSINESS CASE, RATE PACKAGE and INTEGRATED CUSTOMER VIEW
exceed the boundaries of banking and are usable in other types of
financial systems (and even beyond). However, other types of
financial systems may require additional fundamental patterns not
covered here. For instance, in the insurance domain the concept of
account is less important than the concept of contract and other
fundamental patterns such as PARTIAL CLAIM, PARTIAL
FULFILLMENT and PAYMENT METHODS are used [18]. I understand
the challenge of Fowler to discover ‘highly generic patterns’ that
‘cut across traditional boundaries of systems development and
business engineering’ but in analysis patterns, apart from a few
exceptions, we are not advanced enough to do that. Patterns
restricted to a particular domain may be the first step towards
more ambitious goals. Keller’s patterns [11] are a perfect example
of patterns restricted to just one domain (insurance) and still
valuable.

1 FRONT-END SYSTEM and INTEGRATED CUSTOMER VIEW might be an

exception.

To confirm that an idea is a pattern one should add known
uses. This is not so easy with banking systems, however. Banking
systems are proprietary. First of all, they need to be protected
from competitors. Second, they need to be protected from
software architects to hide that they are not wonders of the
world☺. To avoid investigation, I do not refer to real world
banking systems explicitly. I use symbolic names of those
systems, instead. Their acronyms are as follows:
• CBS 1 – One of the world leading core banking legacy

systems. It is used in Bank 2 and Bank 3.
• CBS 2 – Another core banking system. Before a bank merge it

was used in Bank 4.
• CMS 1 – The card management system implemented in Bank

1.
• CMS 2 – The card management system implemented in Bank

3.
• CRM 1 – The customer relationship management system of

one of the world’s leading banking software company,
customized for Bank 3.

• LPS 1 – The loan process system designed and implemented
for Bank 3.

• TS 1 – The JEE teller system of one of the world’s leading
software company, customized for Bank 2.

• TS 2 – The teller system implemented in Bank 1.
Table 1 provides a summary of the patterns. Every pattern is

summarized using the Problem-Solution template and its main
category: fundamental (F), effectiveness (E), complexity (C) or
relationship to the customer (R).

Figure 1 shows the basic pattern map. For readability, this map
does not show all relationships among patterns. To find all
relationships of a pattern one should follow the Related Patterns
section of the pattern description. In the diagram Czarnecki’s
modeling notation [3], [9] to describe pattern sequences is used:
an open circle on a relationship indicates an optional relationship
while a solid circle represents a recommended relationship. This
is slightly different from [9] where the solid circle represents a
mandatory relationship. However, mandatory relationships are a
bit problematic in this pattern language. There is not a single
system in a bank and whether a relationship is mandatory depends
on the type of software system. For instance, DAILY BALANCE is a
must in a core banking system but it is not needed at all in a card
management system. Or one can argue that the relationship from
ACCOUNT to ACCOUNT CONTRACT should be mandatory as data
should be normalized but account contracts are rarely found in
core banking systems that are in operation for decades! On the
other hand, if a new card management system is developed from
scratch this relationship should be considered mandatory. The
diagram is a compromise addressing a complex banking system
including accounts and assuming a ‘nice’ design of this system
but admitting that it may not include everything.

Table 1. Summary of patterns

Ct. Pattern Problem Solution

- F ACCOUNT

(Fowler)

How do you record the history of
changes to some quantity?

Create an account. Each change is recorded as an
entry against the account. The balance of the account
gives the current value.

- F TRANSACTION

(Fowler)

How do you ensure that nothing gets
lost from an account?

Use transactions to transfer items between accounts.

1 E

DAILY BALANCE How do you handle both the state
(balance) and the state changes
(transactions) on the account in an
effective way?

Make persistent both the balance attribute and
transactions. The balance attribute represents closing
balance of the previous day. Calculate the actual
balance dynamically.

2 E AVAILABLE BALANCE How do you handle both the actual
balance and the available amount of
money?

Separate the available balance from the actual
balance. Calculate the available balance dynamically.

3 E ARCHIVED HISTORICAL
BALANCES

How do you provide historical
balances?

Archive daily balances at specific time points.

4 C ACCOUNT TYPES How do you represent many types of
accounts so that they can be
manipulated in a consistent way?

Generalize various account types to a general account
concept. Make each specific account type an
extension to this general account.

5 C ACCOUNT CONTRACT How do you represent complex
information on various bank products?

Separate an account contract from the account. The
account should contain ‘accounting’ data while the
account contract should contain the descriptive data of
the product.

6 R CUSTOMER PRODUCT How do you make many account types
transparent to the user and handle
composite customer products?

Introduce a customer product that provides a façade to
one or more accounting products.

7 C BUSINESS CASE How do you approach the product life
cycle?

Introduce the concept of a business case aggregating
business process objects. Create a process model of
the business case.

8 C TRANSACTION TYPES How do you represent many types of
transactions so that they can be
manipulated in a consistent way?

Generalize various types of transactions to the general
transaction concept. Make a specific transaction type
with additional data an extension to this general
transaction.

9 C ACCOUNTING RULES How do you map transactions to
general ledger entries?

Define accounting rules. Make the structure of
accounting rules specific on a business subdomain.

10 E ARCHIVED HISTORICAL
TRANSACTIONS

How do you manage historical
transactions effectively?

Introduce an archive for transactions from the final
accounts of the previous year. Make this an extra
effort for the customer to search in the archive.

11 R CUSTOMER SESSION How do you implement several
transactions of the same customer?

Introduce the concept of customer session. Keep
transactions transient within the session until they are
finally approved by the customer.

12 E BANK DAYS How do you balance job calculations
and calendar days?

Introduce the concept of bank days to the system.
Provide a dedicated procedure for the close of the day
as it may not match the close of the calendar day.

13 E HIERARCHICAL
BALANCING

How do you coordinate various types of
balancing?

Define hierarchical balancing with forced balancing
based on layers.

14 C ASSOCIATED FEE How do you clarify fees? Make an explicit reference from the fee to its

originated transaction. Define meta-relationships
between fee types and transaction codes / transaction
types.

15 C BOOK RATE How do you handle constantly
changing interest rates and fee rates?

Separate the fee rates / interest rates from their types.
Allow to define the period of validity for values.

16 C PARAMETRIC RATE How do you approach various
dependences of the book rate?

Represent parameters that have impact on the book
rate. Implement the parametric function to calculate
the actual book rate.

17 R RATE PACKAGE How do you manage different rates for
different customers?

Introduce the concept of rate package to the system.

18 R FRONT-END SYSTEM How do you extend the banking system
quickly enough to support new
customer products and processes?

Develop or buy off-the-shelf a front-end system
extending the particular functionality of the core
banking system.

19 R INTEGRATED
CUSTOMER VIEW

How do you restore the integrated
customer view using the ‘quick win’
strategy?

Provide the portal-like integrated customer view with
the main attributes. Product maintenance remains in
individual systems.

Figure 1 Pattern Map

1. DAILY BALANCE
1.1 Context

A large number of customers have current accounts in a bank.
These customers perform many transactions (hundreds of
thousands or even more) on their accounts each day. The account
includes a balance that is the total of all transactions associated
with the account. Customers expect short response time for
displaying both the balance and account transactions at any time.

A simple conceptual model of this situation using the UML
class diagram and the OCL language is shown in Figure 2.

balance

Account

context a : Account
 inv: a.balance = transaction.amount->sum()

amount

Transaction
*1

transaction

Figure 2 Account Balance

1.2 Problem
How do you handle both the state (balance) and the state

changes (transactions) on the account in an effective way?

1.3 Forces
• The customer wants to see the balance on his account quickly

at any time, but
• This customer also wants to perform and see account

transactions at any time and
• The balance needs to be consistent with the total of all of the

account transactions, but
• As there have been many transactions performed from the time

this account was opened, it is not effective to calculate the
balance again and again, but

• It is risky to make the balance attribute persistent due to
possible inconsistency with the calculated total of account
transactions.

1.4 Solution
Make both the balance attribute and transactions persistent.

The balance attribute represents the closing balance of the
previous day. Calculate the actual balance dynamically as the
total of the closing balance and today’s transactions.

1.5 Example
The solution is illustrated in Figure 3. In the diagram two

invariants are shown. The first invariant describes how the
closing balance is calculated based on the closing
balance of the previous day and transactions dated from the
previous closing time to this closing time. The second
invariant shows how the actual balance is calculated based
on the closing balance and transactions dated from its
closing time. To represent the invariants the OCL language
is extended with two operations: old and sum. The old

operation returns the previous value of an attribute. The sum
operation calculates the total of collection of numbers.

closingBalance
closingTime
/ actualBalance

Account

context a : Account
 def: closingTransactions : Transaction
 = a.transaction -> select (t | (t.postingTime > a->old(closingTime))
 and (t.postingTime < a.closingTime))

 def: new Transactions : Transaction
 = a.transaction -> select (t | t.postingTime > a.closingTime)

 inv closingBalance:
 a.closingBalance = a -> old(closingBalance) +
 closingTransactions.amount -> sum()

 inv actualBalance:
 a.actualBalance = a.closingBalance +
 new Transactions.amount -> sum()

amount
postingTime

Transaction
*1

transaction

Figure 3 Daily Balance

1.6 Variants
A variant of the solution is that the actual balance attribute can

be made persistent. This attribute is recalculated after a new
transaction is posted. This variant solution provides faster
responses to user queries on actual balance but it is more fragile
as transactions may be canceled or rejected later on. The variant is
used with the AVAILABLE BALANCE pattern in which fragile
balances are represented in the form of available balance.

1.7 Consequences
+ Representation is effective as only a limited number of

transactions are taken into consideration when computing the
actual balance.

+ Inconsistency between the balance and the transactions is
reduced.

+ The closing balance can be calculated out of peak times (‘at
night’).

− Inconsistency is not fully eliminated as the derived value (i.e.
closing balance) is persistent.

1.8 Related Patterns
• DAILY BALANCE elaborates the ACCOUNT pattern by splitting the

balance into two balances.
• AVAILABLE BALANCE further elaborates DAILY BALANCE by

adding one more balance.
• To calculate the closing balance or the available balance

TRANSACTIONs are used.
• Balances include ASSOCIATED FEEs.
• ARCHIVED HISTORICAL BALANCE adds a history of daily

balances.
• The BANK DAYS pattern specifies balance days.
• Interests using BOOK RATE or RATE PACKAGE are calculated

based on closing balances.

• The daily balancing can launch ACCOUNTING RULES.
• FRONT-END SYSTEM can and INTEGRATED CUSTOMER VIEW

should display the closing and the actual balances.

1.9 Known Uses
In CBS 1 two account balances are used: the cleared balance

and the ledger balance. The cleared balance corresponds to our
closing balance and the ledger balance corresponds to our actual
balance. Both of these balances are persistent attributes.

Similarly, two account balances are used also in CBS 2.

2. AVAILABLE BALANCE
2.1 Context

The actual balance may not correspond to the amount of
money available to the customer. There may be certain
transactions that are planned to be executed in a short time
(during a day); there are certain holds on the account, a minimal
balance required by a bank or an overdraft allowed, etc.

2.2 Problem
How do you handle both the actual balance and the available

amount of money?

2.3 Forces
• The customer wants to see how much money he owns, but
• He also wants to see, how much money he can use to avoid

penalties or failed transactions.

2.4 Solution
Separate the available balance from the actual balance.

Calculate the available balance dynamically. Show both balances
to the customer.

2.5 Example
In Figure 4 a sample UML class diagram with OCL invariants

is shown. When compared to Figure 3 the Held Item class was
added. Furthermore in the Account class certain new attributes
were included. Finally, the isProjected attribute in the
Transaction class classifies transactions to already executed
and projected in the future. The closing balance invariant
is the same as in Figure 3. The actual balance invariant is
slightly modified so that it does not include projected
transactions. The available balance invariant is new. It is
calculated based on actual balance. From this, minimal
balance, projected transactions and held items need to be
subtracted and overdraft allowed needs to be added.

2.6 Consequences
+ The experienced customer can see both the actual balance and

the available balance on his account.
− The inexperienced customer might be confused when he sees

two or three balances on his accounts (with carefully encrypted
acronym names ☺). However, the consequence may be
reduced with education.

2.7 Related Patterns
• AVAILABLE BALANCE further elaborates daily balance by adding

one more balance.
• The BANK DAYS pattern specifies the balance days.

• The customer should be warned if his planned TRANSACTION
could overdraft the minimum balance.

• CUSTOMER SESSION needs to calculate and display AVAILABLE
BALANCE. It should restrict further transactions when the
available balance is to overdraft the minimum balance.

• FRONT-END SYSTEM can and INTEGRATED CUSTOMER VIEW
should display the available balance.

closingBalance
closingTime
/ actualBalance
/ availableBalance
minimalBalance
overdraft

Account

context a : Account
 def: closingTransactions : Transaction
 = a.transaction ->
 select (t | (t.postingTime > a->old(closingTime))
 and (t.postingTime < a.closingTime))

 def: new Transactions : Transaction
 = a.transaction ->
 select (t | (t.postingTime > a.closingTime))
 and (not (t.isProjected)))

 def: projectedTransactions : Transaction
 = a.transaction -> select (t | t.isProjected)

 inv closingBalance:
 a.closingBalance = a -> old(closingBalance) +
 closingTransactions.amount -> sum()

 inv actualBalance:
 a.actualBalance = a.closingBalance +
 new Transactions.amount -> sum()

 inv availableBalance:
 a.availableBalance = a.actualBalance -
 a.minimalBalance +
 projectedTransactions.amount -> sum() -
 heldItems.amount -> sum()

amount
postingTime
isProjected

Transaction

amount
heldUntil

Held
Items

1 *

transaction

*1

Figure 4 Available Balance

2.8 Known Uses
In CBS 1 three account balances are provided: the cleared

balance, the ledger balance, and the available balance. The
cleared balance and the ledger balance are persistent while the
available balance is calculated dynamically.

Three account balances are quite common to many banking
systems. I can see them in an on- line banking system of the bank
in which I opened my accounts although I do not have deep
knowledge of its core banking system to give more information.

3. ARCHIVED HISTORICAL
BALANCES

3.1 Context
Apart from the daily balance, the customer would like to see

certain historical balances. For instance, when a retail customer
receives a monthly statement he would like to see both the
opening balance of that month and the closing balance so that he
could easily compare this opening balance to the closing balance
of the previous statement and he can use this opening balance as
the starting point to check the new closing balance. Or a court
requires from the bank to provide the account balance at a specific
date for a legal proceeding.

3.2 Problem
How do you provide historical balances?

3.3 Forces
• The customer wants to see historical balances regularly, but
• Computing the historical balance backward from the daily

balance is time consuming, and
• Storing all daily balances for all accounts is wasteful as most of

the retail customers do not perform transactions each day.

3.4 Solution
Archive2 daily balances at specific time points. This time point

is normally the end of month. Archive such end of month
balances for several years. Compute the required historical
balance backward from the nearest archived balance.

3.5 Variants
Archive all daily historical balances, but make the daily

historical balance persistent only when it is different from the
previous historical balance.

Because this variant method requires more disk space it is
usually applied for short periods, usually for a month or several
months. For long periods the standard solution is used.

3.6 Example
In Figure 5 the Balance class is decoupled from Account to

store historical balances (including the closing balance of the
previous day if it is different from the previous closing balance).

Account

Balance

closingBalance
day

1 *

Figure 5 Historical Balances

3.7 Consequences
+ The solution is a compromise between required database space

and time to compute any historical balance.

2 Here, the term archive means make persistent. It does not mean

that balances need to be archived in a special archived device.
Usually, these balances are archived in the same device and
database as accounts.

+ Making historical balances persistent further reduces the risk of
inconsistency of the balance versus transactions.

− The solution slightly complicates the algorithm for computing
the historical balance as the balance of the required date may
not be stored.

3.8 Related Patterns
• ARCHIVED HISTORICAL BALANCE adds the history to DAILY

BALANCE.
• FRONT-END SYSTEM and INTEGRATED CUSTOMER VIEW can

display historical balances.

3.9 Known Uses
In CBS 1 there is a dedicated table of historical balances. The

daily historical balance is stored only when it is different from the
previous historical balance.

In CBS 2 the closing balance of each month is stored
regardless of whether it is the same or different from the closing
balance of the previous month. Apart from these and the closing
balance of the previous day, other daily balances are not stored.

4. ACCOUNT TYPES
4.1 Context

A bank offers several types of accounts such as current
accounts, saving accounts, term deposit accounts, passbook
accounts, sweep accounts, etc. Furthermore, it keeps internal
general ledger accounts. These types of accounts have many
features in common but they also have their own specific features,
such as maturity dates for term deposit accounts, passbook
numbers for passbook accounts or thresholds for sweep accounts.

4.2 Problem
How do you represent many types of accounts so that they can

be manipulated in a consistent way?

4.3 Forces
• Different types of accounts have their own specifics depending

on their purposes, but
• Implementation of each specific type separately requires a lot

of time and effort again and again and makes the system
opaque, but

• Different types of accounts also have many things in common
and

• Some of the account types are just bank internals and do not
have ‘externally visible’ account numbers and

• The system should constrain types of accounts, but
• The system should also be extensible so that new account types

can be added.

4.4 Solution
Generalize various account types to a general account concept.

Make each specific account type an extension to this general
account.

Note here that the account type represents the computational
concept, i.e. the type having additional features to the general
account. From the point of view of accounting, there can be other
‘account types’. These are usually called account codes. Ideally,
the account type covers several account codes. However, this is
not always the case. Usually, account codes do not need to be

represented with subclasses because from the point of view of
modeling they do not bring additional features to account types.

4.5 Example
Figure 6 outlines the conceptual solution using inheritance (in

relational core banking systems associations need to be used).
Fundamental relationships such as the customer account
ownership are specified on the general level, i.e. with the
Account class. Specialized relationships are defined at the level
of subclasses. For instance, there is a relationship between Sweep
Account and its Current Account to allow automatic
money transfers between these accounts. (In daily balancing when
the closing balance of Current Account is above a limit
defined by the account owner, the amount of money above the
limit is automatically transferred to Sweep Account having
an interest rate similar to a saving account. On the contrary, when
the closing balance is below another limit defined by the
customer, the money is automatically transferred from Sweep
Account to Current Account). Similarly, the customer
may specify Current Account for his Term Deposit
Account to which an interest (and a principal) is automatically
transferred at a maturity day.

The Account Type class represents the UML power type,
i.e. its instances correspond to subclasses of Account. Account
codes are in a separate class from Account Type. For one
Account Type there are usually several instances of Account
Code. For instance, for Term Deposit Account there are
account codes depending on a type of customer (a physical person
or a legal person), a type of currency (the domestic currency or a
foreign currency) and a maturity period (1, 3, 6, 9, 12 or 24
months).

Account
Type

Customer

Current
Account

Account
Code

Account

Passbook
Account

Term Deposit
Account

. . .

Sweep
Account

0..1

1

*

0..1

*1

*

1

*

1

Figure 6 Account Types

4.6 Consequences
+ Different types of accounts have the same fundamental

representation and can be manipulated in a similar way.
+ Specifics of an account type are stored in one place.
+ New account types can be added later on.
− Implementation is less efficient as there is a need to compound

information from two objects.

4.7 Related Patterns
• ACCOUNT TYPES elaborates the ACCOUNT pattern.
• ACCOUNT CONTRACT is a more complex alternative to ACCOUNT

TYPES.
• TRANSACTION TYPES can be associated with specific ACCOUNT

TYPES. However, there is not one to one correspondence
between an account type and a transaction type.

• ACCOUNT TYPES are many times parameters of ACCOUNTING
RULES, BOOK RATES, and PARAMETRIC RATE. More frequently,
account codes are those parameters instead.

• ACCOUNT TYPES can help in HIERARCHICAL BALANCING.
However, account groups for hierarchical balancing are formed
based on internal bank accounts instead of customer accounts.

• ACCOUNT TYPES facilitate displaying of products in FRONT-END
SYSTEM and INTEGRATED CUSTOMER VIEW.

4.8 Known Uses
Although this pattern looks simple it is not easy to find it

implemented in a pure form and still it is ‘nice to have’.
In CBS 1 there is one core table for all types of accounts

including general ledger accounts. There are also extension tables
to store specific attributes. Unfortunately, there is no one to one
correspondence of the extension table and the account type. The
general account is specified by a compound key (customer
number, account code, currency and others). The general account
may or may not have an external (retail) number

5. ACCOUNT CONTRACT
5.1 Context

A bank sells products that are rich in information to be
represented such as loans or bank cards. For instance, for the loan
its type, the loan amount, the current principal, the accrued
interest, the repayment amount and its frequency and other
attributes need to be represented. Furthermore, one or more
collaterals can be associated with the loan. The bank card is
described by its number, the card product, the embossed name,
validity, status, various limits, etc. There can be several bank
cards associated with the same customer account.

5.2 Problem
How do you represent complex information on various bank

products?

5.3 Forces
• The concept of account is the universal concept in banking, but
• Even with ACCOUNT TYPES, accounts would be overwhelmed

with much information for complex products.

5.4 Solution
Separate an account contract from the account. The account

should contain ‘accounting’ data such as the balance, the interest,
the date of maturity, and associated transactions. The account

contract should contain the descriptive data of the product such as
the product type, the product name, associated objects, etc.

5.5 Example
Figure 7 shows the separation of Contract from Account.

Contract has its own contracting party that is usually
the same but can also be different from account owner.
Contract can be a complex entity consisting of Contract
Items. If Object of Contract can be shared among
several Contracts it is separated from Contract Item.

Customer

Account Contract

Contract
Item

Object
of Contract

*

1 account
ow ner

*

1 contracting
party

*0..1

1 *

*

1

Figure 7 Account Contract

A bank card contract is an application (and a simplified
‘version’) of this pattern. Bank Card Contract specifies
various bank card limits. It is associated with Account (the
current account or the credit account). There might be several
Bank Card Contracts associated with the same Account,
e.g. the customer has two debit cards. Card holder may be the
same or he may be different from account owner. For
instance, the customer who is account owner is card
holder of the first debit card, while his wife is card holder
of the second debit card. Several Contract Items, i.e.
Bank Cards can be associated with Bank Card
Contract. For instance, bank cards have a revolving nature
and due to historical transactions it is good to store not only the
valid Bank Card but also historical Bank Cards
(furthermore, validity periods of the current and historical Bank
Cards may overlap by one month). Bank Card has attributes
such card number or valid thru. (The embossed name
attribute is usually the attribute of the Customer class.)

A safe deposit box rental is another simple application of this
pattern. The rental can be paid from Account (or by cash).
Safe Deposit Box is Object of Contract that is used
again and again by the following contracts.

5.6 Consequences
+ The universal concept of account is preserved.
+ The complex products can be represented.
+ The account is not overwhelmed with too many details.
− There is a need to compound information from two sources.

5.7 Related Patterns
• ACCOUNT CONTRACT elaborates the ACCOUNT pattern. It

separates the ‘non-accounting’ data from the account.

Customer

Account

contractNumber
contractDate
ATMlimit
POSlimit
CashBacklimit
MaxLimit
state

Bank Card
Contract

cardNumber
validThru
state

Bank Card

*

1 account
ow ner

*

1 card
holder

* 1

1 *

Figure 8 Bank Card Contract

Customer

Account
Rental

Contract

Safe Deposit Box

*

1 account
ow ner

*

1 contracting
party

0..1 *

*1

Figure 9 Safe Deposit Box Rental Contract

• ACCOUNT CONTRACT is a more complex alternative to ACCOUNT

TYPES.
• CUSTOMER PRODUCT provides FAÇADE [7] to complex account

contracts.
• Contract types are many times parameters of ACCOUNTING

RULES, BOOK RATES, and PARAMETRIC RATE.
• FRONT-END SYSTEM should allow an easy manipulation of

account contracts.
• INTEGRATED CUSTOMER VIEW displays account contracts.

5.8 Known Uses
In CBS 1 the dedicated loan record is separated from the

account and it contains loan specific data as outlined above.
Accounts are assigned to loans based on accounting rules. In the
bank in which I was engaged usually two accounts were opened
for the loan: one representing the principal and another one for
interests.

In our CMS 1 we designed the card contract concept that stores
the card product, card limits, and other attributes. There can be
more than one contract associated with the account. Individual
bank cards described by its number and validity are represented as
individual records and assigned to the card contract. These bank
cards include both valid and historical cards. (In the overlapping

period two bank cards, both the older one and the new one, are
valid.)

6. CUSTOMER PRODUCT
6.1 Context

There are too many account (contract) types and subtypes. For
instance, in Bank 3, there are more than a dozen subtypes of
current accounts (account codes) depending on the customer
category; whether the customer is a private person, a company, a
government institution, etc.; and if he is a private person, whether
he is a resident or non-resident, a bank employee, a student, a
retiree, etc.

Furthermore, the bank offers packages for customers, e.g.
sweep accounts, current accounts with one or two bank cards, etc.

6.2 Problem
How do you make many account types transparent to the user

and handle composite customer products?

6.3 Forces
• Due to accounting many account subtypes are needed, but
• Too many account types and subtypes makes the system

difficult to understand and
• The bank offers packages that aggregate several account types

and subtypes.

6.4 Solution
Introduce a customer product that provides FAÇADE [7] to one

or more accounting products. The customer product can aggregate
several accounting products. Make the customer product to
represent the business and marketing view, while the account type
represents the information point of view and the account subtype
(account code) represents the accounting point of view.

Note that it would be possible to apply the COMPOSITE design
pattern [7] for customer products so that packages can be
recursively composed of other packages. Unfortunately, we have
not seen this pattern used for bank products (due to efficiency).

6.5 Example
Figure 10 shows the sample class diagram for defining

customer products. (It is just a sample diagram as product
packages are too complex to be represented with just a few
classes.) In the diagram the ‘traditional’ approach is used: every
customer product has both a header (instance of Customer
Product) and a detail (instance of Product Item).
Product Item can be based on another Product Item of
the same Customer Product. Product Item references
‘technical’ Account Type (or even Account Code) and/or
Object Type.

Figure 11 shows CUSTOMER PRODUCT on the instance level.
Some examples for using the schema in Figure 10 for real-

world product packages:
• Package 1: current account + ATM card. The package is

defined as instance of Customer Product. It is the
composition of two instances of Product Items. The first
instance of Product Item is associated with the current
account instance of Account Type. The second instance of
Product Item is based on the first instance of Product
Item (the ATM card is issued to the specific current account).

This second instance of Product Item is associated with
the ATM card type instance of Object Type.

• Package 2: current account + sweep account + ATM card +
credit card. The package is instance of Customer Product
and the composition of four Product Items. The first
instance is associated with the current account instance of
Account Type. The second instance is based on the first
instance and associated with the sweep instance of Account
Type. The third instance is again based on the first instance
but it is associated with the ATM card instance of Object
Type. The fourth instance is not based on any other previous
instances. It is associated with the credit account instance of
Account Type and the credit card instance of Object
Type.

Customer
Product

Product
Item

Account
Type

Object
Type

**

0..1

1..*
* *

* *basedOn

Figure 10 Customer Product (meta-level)

Customer
Product

Contract on
Product

Contract
Item

Account

Object
of Contract

0..1

1..*

* *basedOn

* 0..1

**

*

1 instanceOf

Figure 11 Contract on Product

6.6 Consequences
+ Account types and account codes for accounting are preserved.
+ Customers have a manageable number of products to choose

from.
+ The marketing department is happy because packages are

supported and customers buy more products in total.
+ Customers can buy less expensive composite products (and

they do not realize they sometimes also buy what they do not
need ☺).

− It requires some effort to implement customer products.

6.7 Related Patterns
• CUSTOMER PRODUCT provides FACADE [7] to complex account

contracts.
• Customer products are many times parameters of ACCOUNTING

RULES, BOOK RATES, and PARAMETRIC RATE.
• BUSINESS CASE elaborates a complex CUSTOMER PRODUCT

having a non-trivial life cycle.
• FRONT-END SYSTEM is usually developed to handle customer

products.
• INTEGRATED CUSTOMER VIEW displays customer products.

6.8 Known Uses
In CMS 1 we implemented four views of the bank card: the

view of the card company (similar to the customer’s view),
authorization view (contains more card types), the card
management system view (all the details) and the central registry
of customers view (only restricted number of types needed).
Relationships among the views were defined using meta-level
entities. The concept of card packages was implemented in the
system.

In CBS 1 bank cards may be assigned to accounts.
Nevertheless, this core banking system does not fully support the
concept of packages.

7. BUSINESS CASE
7.1 Context

Certain bank products have a fairly complex life cycle. For
instance the loan application process of a complex loan product
starts with a meeting with customer who is given one or more
(non-binding) offers. If an offer is accepted, the customer brings
the required documents and applies for the loan. The application
is formally verified and the customer is rated. Then a credit
officer prepares a proposal. Afterward, the risk management
department may assess the proposal. Then a committee decides
the proposal. Finally, contract documents are prepared and signed
and the loan can be disbursed. This is not the end of the process,
however. After disbursement, the customer is regularly (e.g. once
a year) monitored; his accounting documents are checked, the
customer is rated and loan parameters may be changed. In the life
cycle described above the subsequent process can change an
attribute value set by the predecessor such as the loan amount, the
interest rate, or the collateral value.

7.2 Problem
How do you approach the product life cycle?

7.3 Forces
• Life cycle information is temporal and only the contract data

counts, but
• Until the contract is signed and the product opened in the core

banking system credit it is important to keep as much
information as possible, but

• This may result in a complex net of objects.

7.4 Solution
Introduce the concept of a business case that aggregates objects

representing information on business processes associated with a
product. These business process objects should have an origin in
business documents. Create a process model of the business case.

7.5 Variants
Business process objects can have their own life cycles. This

variant is used when the life cycle of business case is too
complex. The solution has two alternatives. In a ‘hierarchical’
alternative, an object life cycle extends an activity of the business
case life cycle. In a ‘distributed’ alternative, there is not a central
business case process model and transitions are between activities
of life cycles of individual objects. The ‘hierarchical’ alternative
gives a better view for the user but it is more difficult to
implement.

7.6 Example
Figure 12 shows fundamental business process objects of the

loan approval process aggregated to the Business Case class.
Associations are optional as the corresponding subprocesses may
be skipped or the loan process may stop at any moment. Certain
aggregations have one to many multiplicity. There may be several
options of (non-binding) Offers given to the customer. There
may be several Contracts of different types associated with
Business Case (e.g. a loan contract, collateral contracts
with various parties, etc.). Finally, there can be several
Disbursements of the loan.

Figure 13 outlines the process model of the business case using
the UML Activity diagram. The diagram elaborates activities
described in the context part of this pattern up to the disbursement
(excluding monitoring and loan updates). For simplicity, objects
that are outputs of activities are not drawn and names of activities
correspond to names of the business case objects. Apart from two
exceptions, backward transitions are omitted as well. The model
includes many decision points on the next steps of the loan
process.

Business
Case

Offer

Application

Proposal
for Decision

Risk
Assessment

Contract

Disbursement

1

*

1

0..1

1

0..1

1

0..1

1

*

1

*

Figure 12 Loan Business Case

7.7 Consequences
+ Life cycle snapshots of complex products are available.
+ Objects are aggregated to the business case.
− Business process objects bring complexity to implementation.

7.8 Related Patterns
• BUSINESS CASE elaborates a complex CUSTOMER PRODUCT

having a non-trivial life cycle.
• BUSINESS CASE can calculate fees using BOOK RATE or

PARAMETRIC RATE.
• To handle BUSINESS CASE a sophisticated FRONT-END SYSTEM

needs to be developed.
• The state of BUSINESS CASE can be displayed in INTEGRATED

CUSTOMER VIEW.

7.9 Known Uses
In LP 1 we have designed the system to support the loan

application process. The system contains both workflows and life
cycle objects. For every loan application subprocess there is a
dedicated user screen and the life cycle object behind. Objects are
aggregated to the loan business case. Subsequent process entities
may be created from the preceding entities with the copy of
meaningful values. Documents can be attached to entities (word /
pdf documents, scanned documents that are stored in the central
repository, etc.). The process model is associated with the
business case (although for readability it is drawn in several
diagrams).

8. TRANSACTION TYPES
8.1 Context

There are many types of account transactions such as a cash
withdrawal, an ATM withdrawal, a bank transfer, a foreign
currency exchange, a loan repayment, a safe deposit box rental
payment, and a purchase of travelers’ checks. These types of
transactions have many features in common, but they also have
their own specific features, such as a cash box number for the
cash withdrawal, an ATM number and a card number for the
ATM withdrawal, a counter account for the bank transfer, the
amount of foreign currency for the currency exchange, a loan
contract number for the loan repayment, a safe deposit box
number for the safe deposit box rental payment, check numbers
for the purchase of travelers’ checks, etc.

8.2 Problem
How do you represent many types of transactions so that they

can be manipulated in a consistent way?

8.3 Forces
• Different types of transactions have their own specifics

depending on their purposes, but
• Implementation of each specific type separately requires a lot

of time and effort again and again, but
• Different types of transactions also have many things in

common and
• The system should constrain types of transactions, but
• The system should also be extensible so that new transaction

types can be added.

8.4 Solution
Generalize various types of transactions to the general

transaction concept. This transaction has the relationship to the
primary account and common attributes such as the transaction
amount, the credit/debit indicator, the date of transaction, a
narrative. Make a specific transaction type with additional data an
extension to this general transaction.

Acquisition

Offer

Application

Proposal
for Decision

Risk
Assessment

Decision

Contract

Disbursement

offer
accepted

offer
accepted

offer
neeeds

to change

offer
neeeds

to change

offer
not

accepted

offer
not

accepted

offer
expected

offer
expected

offer
not

needed

offer
not

needed

 risk assessment
needed

 risk assessment
needed

application
rejected

application
rejected

not
signed

not
signed

disbursed
in total

disbursed
in total

another
disbursement

another
disbursement

signedsigned

approvedapproved

not
approved

not
approved

rew ork
suggested

rew ork
suggested

can go
to decision

can go
to decision

risk
assessment
not needed

risk
assessment
not needed

Figure 13 Loan Process Model

Note that similarly to ACCOUNT TYPES transaction types and
transaction codes are distinguished. (Transaction types are from
the point of view of modeling and computation while account
codes are from the point of view of accounting. Ideally,
transaction codes are subtypes of transaction codes. However, this
is not always the case.)

Academically, the concept of transaction types can be
elaborated further. In [19] I proposed to view bank transactions as
transformations in three-dimensional space: the location of the
money (e.g. the account, the cash box) x the form of the money
(e.g. the cash, the electronic money, the travelers’ checks) x the
exchange rate (cash/electronic x buy/sell). Based on this, the
meta-level is designed defining transaction types with their
constraints. Nevertheless, this proposal was too late to be
implemented and it is not a pattern so far .

8.5 Example
Figure 14 shows the similar approach to ACCOUNT TYPES

(Figure 6). Fundamental relationships such as the relationship to
Account are associated with the superclass, i.e. with
Transaction. Specific relationships, such as the relationship
to the bank card are represented on the subclass level.
Transaction Type represents the UML power type.
Transaction Codes are separated from Transaction
Types.

Account

Transaction
Type

Bank

Transaction

Direct Debit
Mandate

Transaction
Code

Domestic Bank
Transfer

Cash Box

Bank Card

Direct
Debit

Rental
Contract

Withdrawal

Card
Transaction

Safe Deposit Box
Rental Payment

. . .

*1

0..1 *

*

1

*

1

*1

*1

*1

*1

Figure 14 Transaction Types

8.6 Consequences
+ Different types of transactions have the same fundamental

representation and can be manipulated in a similar way.
+ Specifics of a transaction type are stored in one place.
+ New transaction types can be added later on.
− Implementation is less efficient as there is a need to compound

information from two objects.

8.7 Related Patterns
• TRANSACTION TYPES elaborates the TRANSACTION pattern.
• TRANSACTION TYPES can be associated with specific ACCOUNT

TYPES. However, there is not one to one correspondence
between an account type and a transaction type.

• TRANSACTION TYPES or transaction codes are the main
parameters for ACCOUNTING RULES.

• TRANSACTION TYPES or transaction codes define fee types in
ASSOCIATED FEE.

• TRANSACTION TYPES or transaction codes can be parameters for
BOOK RATE and PARAMETRIC RATE.

8.8 Known Uses
In CBS 1 transactions are stored in one table. They are

distinguished by the account code attribute. Additional is stored
in the narrative attribute.

In TS 2 we defined several extension tables to transactions to
store information on multicurrency transactions, travelers’ checks,
commemorative coins, etc.

9. ACCOUNTING RULES
9.1 Context

Transactions are input for the double-entry accounting. This
accounting depends not only on the transaction code but other
parameters as well. For instance, the accounting of an ATM
withdrawal transaction depends on the card network (Visa,
MasterCard, etc.), whether it is domestic or foreign, and in the
case of domestic withdrawal whether the ATM is owned by this
bank or not. If the ATM is owned by the bank it has its own
account in the bank general ledger, etc.

9.2 Problem
How do you map transactions to general ledger entries?

9.3 Forces
• Mapping of transactions to general ledger entries depends on

transaction types, but
• This mapping depends on other specific parameters and
• Accounting rules in the bank may be the subject of change.

9.4 Solution
Define declarative accounting rules to map transactions to

accounting. Make the structure of the accounting rules specific to
a business subdomain since these rules depend on various specific
business parameters (e.g. the structure of accounting rules for card
transactions is different from the structure of accounting rules for
factoring).

9.5 Example
Figure 15 shows the model for accounting rules for card

transactions. The accounting rule depends on (the ‘left side’ of the
rule):

• Card Network, e.g. a mirror of ‘nostro’ account for Visa is
different from a mirror of ‘nostro’ account for MasterCard.

• Customer Affiliation, e.g. the ATM withdrawal of the bank
customer is the entry to a different account from the ATM
withdrawal of a customer of another bank.

• Transaction Type, e.g. the counter account of the withdrawal
from ATM of that bank is the ATM account.

• Source of Transaction, e.g. internal ATM withdrawal (i.e.
using ATM owned by the bank) is treated differently from the
withdrawal done by this customer abroad using an ATM of
another bank.
The ‘right side’ of the rule represents meta-entries (Card

accounting rule entry) to accounts. This can be either a
specific account (e.g. a mirror of Visa ‘nostro’ account) or
accounts that are found dynamically based on attributes of card
transactions (e.g. the customer account, the account of specific
ATM, etc.).

Card

Network

Customer
Affiliation

Transaction
Type

Source
of Transaction

Card
Accounting

Rule

isCustomerAccount
isATMAccount
isCredit

CardAccounting
RuleEntry

Account
* 0..1

*

1

*1

*1

*

1

*

1

Figure 15 Accounting Rules of Card Transactions

9.6 Consequences
+ Mapping of transactions to general ledger accounts is mostly

declarative (not buried in the programming code) and therefore
is readable to business experts.

+ Declarative mapping is flexible to ‘standard’ changes of
accounting rules in the bank.

− The mapping rules are simple so that they are not resistant to
fundamental change in the accounting rules.

9.7 Related Patterns
• The daily balancing (see DAILY BALANCE) can launch

ACCOUNTING RULES.
• ACCOUNT TYPES and TRANSACTION TYPES are many times

parameters of ACCOUNTING RULES. More frequently, account
codes and transaction codes are those parameters instead.

• FRONT-END SYSTEM can allow defining ACCOUNTING RULES.

9.8 Known Uses
In Bank 3 the existing system for processing card transactions

uses a simple proprietary language to map transactions to general

ledger entries, based on a set of rules. The left side of the rule
refers to the transaction type, the transaction category (on-us,
domestic, foreign), and the card type. The right side of the rule
specifies accounts (symbolic names) in CBS 1 and parameters of
their entries.

10. ARCHIVED HISTORICAL
TRANSACTIONS

10.1 Context
Customers do a huge number of transactions. Despite the fact

that transactions are indexed it continually slows down the
system.

10.2 Problem
How do you manage historical transactions effectively??

10.3 Forces
• There are a huge number of transactions every year and this

slows down the system, but
• The bank needs to store transactions for many years due to

government regulations, but
• Customers mostly check transactions for the previous month or

two, but
• Sometimes they need to search for the transactions further

back.

10.4 Solution
Introduce an archive for transactions from the final accounts of

the previous year. Archive transaction of the previous year only
after several months of the current year has passed. Normally,
allow customers to search for transactions in the non archived
transactions. Provide a tool to search for transactions in the
archive as well, but make this extra effort for the customer so that
he uses this option rarely.

10.5 Variants
1. If possible (not slowing down the system) transactions may

be archived after more than a year or two.
2. If the transaction archive is too big it can be split to several

archives; each one for a specific year.

10.6 Example
Figure 16 shows two entities for transaction. The

Transaction entity represents non-archived transactions while
the Archived Transaction entity represents archived
transactions. Both entities are associated with the same Account
entity.

Account

Archived
Transaction

Transaction

1 *

1 *

Figure 16 Archived Transactions

10.7 Consequences
+ Most of the search operations are effective as they look up in a

reduced number of transactions.
+ It is possible to search for historical transactions, too.

− An extra tool is needed to search for historical transactions.

10.8 Related Patterns
• ARCHIVED HISTORICAL TRANSACTIONS extend the TRANSACTION

pattern.
• Archiving transactions in ARCHIVED HISTORICAL TRANSACTIONS

implies archiving ASSOCIATED FEEs.
• FRONT-END SYSTEM and INTEGRATED CUSTOMER VIEW can

display historical transactions.

10.9 Known Uses
In Bank 3 the standard CBS 1 mechanism was recoded by

developers. Transactions are stored in files on a yearly basis. The
files have the same names with the suffix of the year.

11. CUSTOMER SESSION
11.1 Context

When the customer comes to the bank he often makes more
than one transaction. For instance, he can pay a bill, make several
bank transfers, make cash withdrawals from two accounts. After
he performs several transactions he may realize he has not enough
money on the account and he would like to decrease the amount
of one of the previous transactions. Furthermore, he appreciates
getting one receipt.

11.2 Problem
How do you implement several transactions of the same

customer?

11.3 Forces
• Every transaction is individual and needs to be treated this

way, but
• Transactions may have something in common, e.g. they

decrease the same account and
• The customer would like to get one receipt.

11.4 Solution
Introduce the concept of customer session. Keep transactions

transient within the session until they are finally approved by the
customer. Calculate the subtotals after every transaction to
provide the ‘big picture’ for customer.

The concept of customer session differentiates ‘banking
transactions’ from ‘software transactions’. Here, there is one
‘software transaction’ composed of one or several ‘banking
transactions’. To avoid confusion the term ‘transaction’ refers to
the ‘banking transaction’ all over the paper.

11.5 Example
Figure 17 shows the simplified sample of customer session.

The Customer Session instance is created for Customer
(standing in front of the counter3 or on the phone). This
Customer may not be the Account owner but he needs to be
the entitled person to all Accounts within the session.
Customer Session includes several Transactions being
prepared and finally executed.

3 In general, there can be several Customers ‘in front of the

counter‘ and in Customer Session, e.g. several entitled
persons of Account. We omit it here for simplicity.

Customer

Customer
Session

CreditsTotal
DebitsTotal
CashTotal

TransactionAccount
0..1 *

1 *

0..1

*

Figure 17 Customer Session

11.6 Consequences
+ Transactions are brought to accounts individually.
+ The customer is happy to have a better control on his

transactions.
+ The concept of customer session may be utilized further, e.g.

for the purpose of statistics.
− It requires some effort to implement the concept and the

communication with the transaction engine of the core banking
system.

11.7 Related Patterns
• CUSTOMER SESSION provides ACCOUNTs that can be

manipulated.
• Within CUSTOMER SESSION its TRANSACTIONs and their

ASSOCIATED FEEs are created and manipulated.
• CUSTOMER SESSION needs to calculate and display AVAILABLE

BALANCE. It should restrict further transactions when the
available balance is to overdraft the minimum balance.

• CUSTOMER SESSION can be provided by FRONT-END SYSTEM.

11.8 Known Uses
The TS 1 tool includes the mechanism of customer session,

including a browser of transactions and subtotals. Unfortunately,
transactions are not kept transient, but every transaction is sent to
host immediately after it is entered. In the project in Bank 2
substantial effort was put into extending the mechanism so all
transactions can be sent to the core banking system as a unit after
the final transaction.

12. BANK DAYS
12.1 Context

Normally, banks are closed on weekends and public holidays.
Traditionally, daily balances are not calculated on these days.
Even on working days, (most) bank branches close their service in
the afternoon or in the evening. When customers arrive home the
number of electronic transactions decreases rapidly. Batch jobs in
the bank can be launched.

12.2 Problem
How do you balance job calculations and calendar days?

12.3 Forces
• Daily balances are calculated on working days only and

• Batch jobs in the bank may be launched some time after most
branches are closed, but

• Due to 24x7 internet banking when daily balances reflect
calendar days, they should be postponed after midnight, but

• Postponing is a waste of time.

12.4 Solution
Introduce the concept of bank days to the system. Provide a

dedicated procedure for the close of the day. It may not match the
close of the calendar day.

12.5 Example
Bank days are represented as instances of a specific entity.

12.6 Consequences
+ Batch jobs are not restricted by calendar hours.
+ Customers are not affected too much as most of their

transactions are done before the close of the bank day.
− Some night owls may be surprised to see their before midnight

transactions with the date of the following day. (This has an
impact e.g. on exchange rates, etc.)

12.7 Related Patterns
• The BANK DAYS pattern specifies days of DAILY BALANCE,

AVAILABLE BALANCE and ARCHIVED HISTORICAL BALANCES.
• FRONT-END SYSTEM and INTEGRATED CUSTOMER VIEW can

display the time span of BANK DAYS.

12.8 Known Uses
In CBS1 there is a specific database table for bank days. Bank

days can be specified specific to countries and location.
In TS 1 there are dedicated procedures for closing the day.

13. HIERARCHICAL BALANCING
13.1 Context

There are various types of balancing: balancing the cash box,
balancing the branch, balancing customer accounts, etc. Every
balancing should be executed at a proper time. For instance, the
cash box balancing should be performed when a cashier finishes
his duty period and hands back the cash box to the vault (or to
another cashier); branch balancing should be executed shortly
after the branch is closed, and customer accounts are balanced at
the bank close of day. Some balancing depends on other
balancing, e.g. the branch balancing should be executed only after
all cash boxes of the branch are balanced, the general ledger
balancing should be launched only after all branches are balanced.
However, some branches may be opened overnight.

13.2 Problem
How do you coordinate various types of balancing?

13.3 Forces
• Due to security, every balancing should be executed shortly

after there are no more associated transactions expected that
day4, but

• Some balancing depends on other balancing, but

4 There are some other circumstances for certain balancing, e.g. a
shift of the person responsible, a suspicion of error, etc.

• There is no guarantee that balancing of accounts which is
required for other balancing is finished on time.

13.4 Solution
Define hierarchical balancing: balancing of the certain group of

accounts is dependent on completed balancing of other groups of
accounts. The hierarchy of groups may have several layers. Use
forced balancing based on these layers: if the balancing of the
lower level group has not been started and completed to the time
set, the higher level balancing procedure can launch the lower
level balancing procedure.5 The higher level balancing procedure
should send messages to people responsible at a specified time
that lower level balancing is required.

13.5 Consequences
+ Every balancing can be launched at the proper time.
+ If the lower level balancing was not started when required it is

started automatically by the upper level procedure.
− In forced balancing, balancing of certain accounts (e.g. cash

boxes) may be artificial and accounts need to be rebalanced
later.

13.6 Related Patterns
• HIERARCHICAL BALANCING elaborates the method how DAILY

BALANCE is calculated.
• The BANK DAYS pattern specifies days for HIERARCHICAL

BALANCING.
• FRONT-END SYSTEM can display accounts that should be

rebalanced due to forced balancing.

13.7 Known Uses
In TS 1 there is a virtual hierarchy of close of days. The branch

close of the day requires a finish of the close of the day of all
tellers. The bank close of the day requires finish of the close of
the day of all branches. If they are not finished they use a forced
close of the day on unfinished tellers or branches.

14. ASSOCIATED FEE
14.1 Context

A transaction can have one or several fees. For instance, the
cash deposit transaction can have fees such as the standard fee for
a transaction (‘accounting entry fee’), the exchange rate fee in the
case of multicurrency transaction, the fee when the number of
coins exceeds the limit, etc. Many times fees are not accounted
on-line but using the batch processing in the end of statement
period (monthly). Often, ordinary customers and even junior
tellers have problems understanding the correspondence between
transactions and fees in the account statement.

14.2 Problem
How do you clarify fees so that they can be understood by

bank employees and customers?

14.3 Forces
• Fees are separated from transactions for computational and

accounting reason, but

5 When ‘forced balancing’ was executed a manual check is
required later on (e.g. a cash box is manually rebalanced) to
avoid inconsistencies.

• Most of the fees are outcomes of transactions.
• The transaction type may have several fees in general, but
• Only some of them may apply for the particular transaction

instance.

14.4 Solution
Make an explicit reference from the fee to its associated

transaction and show it in the account statement. Define meta-
relationships between fee types and transaction types / transaction
codes so that it is clear which fees can be applied for which types
of transaction.

14.5 Variants
Also ‘periodic fees’, i.e. fees associated with the product and

not associated with any transaction (e.g. monthly account fee) can
be changed to transaction fees. These fees can be associated with
a job ‘transaction’ that calculated them.

14.6 Example
In Figure 18 both the meta-level and the operational level are

outlined. The meta-level restricts Fee Types that can be
applied for transactions of the Transaction Code type. The
operational level stores Fees that were actually applied for the
specific Transaction. For every Fee there is an explicit
reference to its Transaction. Fees applied in the
operational level should ‘obey’ restrictions defined in the meta-
level.

Transaction
Code

Transaction

Fee
Type

Fee
*1

*

1

*

1

* *

Figure 18 Associated Fee

14.7 Consequences
+ Fees are kept separate from transactions.
+ Fees are associated with their associated transactions and are

easier to understand.
+ The fee instance level can be inspected against (and controlled

by) the fee meta-level.

14.8 Related Patterns
• Fees are associated with TRANSACTIONS.
• TRANSACTION TYPES or transaction codes define fee types in

ASSOCIATED FEE.
• ASSOCIATED FEEs are included in DAILY BALANCE and

AVAILABLE BALANCE.
• ASSOCIATED FEEs are displayed and manipulated within

CUSTOMER SESSION.
• Archiving transactions in ARCHIVED HISTORICAL TRANSACTIONS

implies archiving ASSOCIATED FEEs.

14.9 Known Uses
In CMS 1 we designed the fee instance table associated with

the transaction instance table. The fee instance contains also a

reference to the fee type record. On the meta-level there is a
mapping table between fee types and transaction types.

15. BOOK RATE
15.1 Context

Periodically, interest rates and fee rates change due to the
market.

15.2 Problem
How do you handle constantly changing interest rates and fee

rates?

15.3 Forces
• In ASSOCIATED FEE the type was separated from the fee so the

amount can be changed easily, but
• Sometimes there is a need to recalculate the fee in the past and
• It may be risky to change amounts on the close of the last day

of the validity of old fee rates, but
• Introducing new fee types leads to fee type explosion.

15.4 Solution
Separate the fee rates / interest rates6 from their types. The rate

may be dependent on the product and other parameters such as an
access channel. Define the period of validity for values so that
both historic rates can be kept and future rates prepared.

We showed [1] how fees can be calculated using the STRATEGY
[7] design pattern. Unfortunately, this was not implemented and it
is not a banking pattern so far.

15.5 Example
Figure 19 outlines the separation of Fee Rate from Fee

Type. Fee Rate instances form the timing queue with possible
‘holes’ but no overlaps. Fee Rate may depend on Product
Item. (For instance, in bank cards Fee Rate may depend on
the type of card: the ATM withdrawal fee for the ATM card is
different from the credit card fee.) Fee Rate may also depend
on other parameters. In the diagram, the dependency on
Channel is shown. (For instance, Fee Rate for a bank
transfer transaction is different when the transaction is executed
manually by a branch teller than when the transaction is
performed by the customer using on-line banking.) The
Calculation Method class represents an enumeration of
possible methods for calculating fee: the absolute value, the
percentage of value, the percentage with the minimum and the
maximum absolute value, the layered value (such as for Western
Union money transfer), etc.

15.6 Consequences
+ Historical rates are kept.
+ There is no need to change fee codes after the bank publishes

new rates.
− The book rate introduces one more level of indirection.
− Periods of validity complicate retrieval of values (SQL

statements).

6 We use the general term of the book rate for both the book of

interest rates and the book of fee rates.

Transaction
Code

Fee
Type

Product
Item

Transaction

Calculation
Method

Channel

rate
minimumRate
maximumRate
bottomLevel
topLevel
from
until

Fee
Rate

Fee

*

0..1*

*

*1

*1

*

0..1

*

0..1

*

1

*1

Figure 19 Fee Rate

15.7 Related Patterns
• BOOK RATE extends the fee type in ASSOCIATED FEE.
• BOOK RATEs include interest rates. They are used in calculating

interests based on DAILY BALANCE.
• BUSINESS CASE can calculate fees using BOOK RATE.
• TRANSACTION TYPES or transaction codes can be parameters for

BOOK RATE.
• BOOK RATE can be a part of RATE PACKAGE.
• PARAMETRIC RATE adds a specific method how to calculate a

fee when declarative representation of BOOK RATE is too
complicated.

15.8 Known Uses
In CMS 1 we designed and implemented the fee type amount

table containing fee rates including historical rates. This table
refers to the fee type table and the fee instance refers to the fee
type amount. Fee type amount depends on the product.

16. PARAMETRIC RATE
16.1 Context

The book rate may not just depend on the type and the product
but other parameters as well. For instance, the interest rate may
depend on the amount of money the customer has in his account
or the fee rate may depend on various optional services of the
product.

16.2 Problem
How do you approach various dependencies of the book rate?

16.3 Forces
• The book rate may depend on various conditions and
• It would be useful to represent these conditions declaratively,

but

• These conditions may be of very different nature.

16.4 Solution
Represent parameters that have impact on the book rate.

Implement PARAMETRIC FUNCTION [5] to calculate the actual book
rate.

16.5 Consequences
+ Parameters for calculating book rates are represented

declaratively and can be changed.
− Sophisticated constrains are buried in the programming code.

16.6 Related Patterns
• PARAMETRIC RATE is a specific case of PARAMETRIC FUNCTION

[5].
• PARAMETRIC RATE adds a specific method how to calculate a

fee when declarative representation of BOOK RATE is too
complicated.

• ACCOUNT TYPES, ACCOUNT CONTRACT types, CUSTOMER
PRODUCTs and TRANSACTION TYPES are many times parameters
of PARAMETRIC RATE.

• BUSINESS CASE can calculate fees using PARAMETRIC RATE.

16.7 Known Uses
In CMS 1 the calculated fee depends not only on the type of

fee and the product but also some optional services, e.g. the
urgency of issuing. We designed the relationship table between
the fee type amount and card service tables and implemented the
parametric function to calculate the fee.

17. RATE PACKAGE
17.1 Context

Customers are formed in various categories: standard private
customers, affluent private customers, VIP customers, companies,
etc. Important customers may be given higher interest rates and
lower fee rates. Usually, lower rates are set not only for periodic
fees but for transaction fees as well. They may be set differently
for different transaction types.

17.2 Problem
How do you handle different rates for different customers?

17.3 Forces
• Rates should be as universal as possible, but
• Special rates may be offered to important customers, but
• Handling rates individually for customers is not transparent and

it is time consuming.

17.4 Solution
Introduce the concept of rate package to the system. The rate

package includes rates for the set of products (account types)
and/or transaction types. Assign the customer the package for his
category or CUSTOMER PRODUCT by default. The account officer
may change the package for another package for the special
customer.

17.5 Example
The concept of the rate package is outlined in Figure 20 and

Figure 21. Figure 20 shows the meta-level (i.e. classes for
defining the fee package) while Figure 21 is devoted to the
operational level. It needs to be emphasized that the diagram is a

sample diagram rather than the complete solution. (Fee packages
are too complex to be represented using just a few classes.)
Fee Package is composed of several Fee Package

Items. Each Fee Package Item represents either Fee
Rate for Product Item or Fee Rate for the specific
Transaction Code. These Fee Rates can be:
1. Equal to null (not specified). For instance, the fee for issuing

the ATM card is included in the fee for package or the
package includes the fee for the specified number of ATM
withdrawal transactions.

2. Reduced. For instance, the fee for the second ATM card
(ATM card for a spouse) is reduced or fees for on-line
banking transactions are reduced.

3. Standard. For instance, bank transfers performed on the
branch have standard fee rates. (Alternatively, this may not
be specified in the fee package and the ‘fee engine’ should
apply the general standard fee for all Fee Types not
covered by the fee package.)

The association between Customer Product and Fee
Package restricts fee packages that are permitted for this
product.

In the meta-level other restrictions may be specified that are
not shown here, for instance, dependency of Fee Packages to
the category of customer, and others.

In the operational level (Figure 21) when creating Contract
on Product also Fee Package from permitted Fee
Packages for Customer Product needs to be selected.

Customer
Product

Fee
Package

Product
Item

Fee
Package

Item

Transaction
Code

Fee
Type

Fee
Rate

Channel

* 1

feeFor
* 0..1

*

1

0..1

0..1

0..1

0..1 feeFor

*

*

1

*

1

*

Figure 20 Fee Package (meta-level)

Contract on

Product

Customer
Product

Fee
Package

**

1

*

1

*

Figure 21 Contract Using Fee Package

17.6 Consequences
+ The customer can be assigned the set of rates depending on his

importance.
+ The number of rate packages is restricted, which makes the

mechanism transparent and easy to maintain.
− Rate packages add complexity to the system.

17.7 Related Patterns
• RATE PACKAGE aggregates several BOOK RATEs.
• BOOK RATEs usually include interest rates that are calculated

based on DAILY BALANCE.
• An instance of RATE PACKAGE can be assigned to ACCOUNT

CONTRACT, CUSTOMER PRODUCT or BUSINESS CASE. However,
this is a rare case as RATE PACKAGE is usually assigned to a
customer.

17.8 Known Uses
The extension to CMS 1 implemented by a third party includes

fee packages. The fee package includes fee rates for periodic
account fees and certain transaction types.

18. FRONT-END SYSTEM
18.1 Context

In the past, banking systems were designed to be off-the-shelf
systems with the aim of supporting the complete portfolio of bank
products. Due to the market, customer products have become
more and more complex and there is a continuous need to add
more functionality to banking systems. Furthermore, these
systems were implemented using old technology, e.g. COBOL,
RPG, etc. and it is not easy to extend them quickly enough.

18.2 Problem
How do you extend the banking system quickly enough to

support new customer products and processes?

18.3 Forces
• There is an operating banking system providing much

functionality, but
• This system requires permanent extensions due to the market,

but
• It is not easy to extend the system quickly enough as it is

implemented using old technology and
• With extension of many submodules the system is becoming

too big, but
• The system is not easy to supersede with a new technology

system as it contains too many sophisticated extensions
developed for specific needs of the bank.

18.4 Solution
Keep the system as the core banking system that supports

fundamental functionality. Develop or buy off-the-shelf a modern
technology system that extends the particular functionality of the
core banking system. Install this system as the front-end system of
the core banking system. This front-end system stores most of
data in its repository and sends only a limited subset of its data to
the core banking system.

18.5 Example
The core banking system contains a loan submodule. In this

submodule basic attributes of a loan contract such as a loan type,
a loan amount, an interest type, a maturity date, and a fee are
represented. The loan submodule is integrated with the general
ledger submodule using ACCOUNTING RULES. In the general ledger
interests of loan accounts are calculated. From the general ledger
values such as a current principal, a principal already paid, an
interest already paid, an outstanding principal and an outstanding
interest can be obtained.

The loan submodule, however, does not support the loan
approval process having activities such as preparing offers for the
customer, preparing a proposal for decision, a risk assessment, a
decision, preparing contract documentation, preparing a
disbursement and others (see also the BUSINESS CASE pattern). To
support these activities a sophisticated front-end system can be
developed using a workflow engine. This front-end system is
integrated with the core banking system. When the loan approval
process ends and the loan is approved the front-end system can
automatically create the loan record, the loan account and fees in
the core banking system.

The front-end system can also support post approval processes
such as a loan monitoring and a work-out. Here, the integration
with the core banking system also includes reading data from the
loan submodule and the general ledger.

18.6 Consequences
+ Useful functionality of the core banking system is preserved.
+ There is no need to reimplement the sophisticated functionality

into a new core banking system.
+ Front-end system brings new functionality.
+ Front-end system can be extended quite easily as it is relatively

small and implemented in the new technology.
− The strategy usually leads to several front-end systems (each

system for a particular subdomain) that are of different
architectures and implemented in different technologies.

18.7 Related Patterns
Related patterns to FRONT-END SYSTEM depend on the type of

front-end system. Here we assume that the front-end system is
a teller system. In such a way most of other patterns described in
this article can be used.
• FRONT-END SYSTEM allows manipulating with ACCOUNTS and

TRANSACTIONS.
• FRONT-END SYSTEM should display DAILY BALANCE, AVAILABLE

BALANCE, HISTORICAL BALANCES and HISTORICAL
TRANSACTIONS.

• ACCOUNT TYPES facilitate displaying of products in FRONT-END
SYSTEM.

• FRONT-END SYSTEM should allow an easy manipulation of
ACCOUNT CONTRACTS and CUSTOMER PRODUCTS.

• A sophisticated FRONT-END SYSTEM needs to be developed to
handle BUSINESS CASE.

• FRONT-END SYSTEM can provide CUSTOMER SESSION.
• FRONT-END SYSTEM can display the time span of BANK DAYS.
• FRONT-END SYSTEM can display accounts that should be

rebalanced due to forced balancing in HIERARCHICAL
BALANCING.

• INTEGRATED CUSTOMER VIEW is a sophisticated FRONT-END
SYSTEM to several source systems.

18.8 Known Uses
This is a wide spread architecture that can be found in banks

nowadays.
Bank 3 uses CBS 1 to support general ledger, customer

accounts, loans and other basic functionality. Apart from this,
about half dozen of major front-end systems are used: a teller
system, an on-line banking system, a home banking system, a
card management system, a private banking system and others.
We ourselves implemented the CMS 2 card management system
as CBS 1 provides only a very limited functionality for bank
cards.

Currently, we are implementing the LPS 1 loan workflow
system.

We implemented the TS 2 teller system for bank 1.

19. INTEGRATED CUSTOMER VIEW
19.1 Context

Several front-end systems are used in a bank. These systems
extend the functionality of the core banking system. They are
essential to support complex processes in the bank. Unfortunately,
these front-end systems were developed by different vendors and
are not integrated. When a customer comes to a branch, the
account officer does not have a global picture of this customer
quickly enough and needs to search for customer products in
several systems. This limits cross-selling opportunities.

19.2 Problem
How do you restore the integrated customer view using the

‘quick win’ strategy?

19.3 Forces
• The account officer needs one modern bank system to work

with customers and their products, but
• There are several front-end systems and
• The complete integration of all these systems (using SOA, etc.)

is too costly and in the distant future.

19.4 Solution
Provide the CRM-like (portal-like) integrated view of the

customer. The account officer can see the main attributes of all
customer products in one or several screens. On demand detail
information on the product chosen can be provided or the user is
redirected to the system responsible. Product maintenance
remains in the individual systems.

This is just the ‘light’ version of integration but from the
business point of view it is the revolutionary step. Further levels
of integration, although desirable, require much more effort and
less ‘visible’ effects.

The integrated customer view can be augmented further with
the other CRM features, e.g. recording interactions with

customers, the Q&A repository, search criteria for marketing
campaigns, etc.

19.5 Consequences
+ The account officer quickly has the global picture of the

customer.
+ The solution is not too expensive.
− It is not a complete integration of systems. Detailed

information and the opening of new products or changing
existing ones needs to be done specifically in the individual
systems.

19.6 Related Patterns
• INTEGRATED CUSTOMER VIEW is a sophisticated FRONT-END

SYSTEM to several source systems.
• INTEGRATED CUSTOMER VIEW is the INFORMATION PORTAL [10]

type of integration.
• INTEGRATED CUSTOMER VIEW should display DAILY BALANCE,

AVAILABLE BALANCE, HISTORICAL BALANCES and HISTORICAL
TRANSACTIONS.

• ACCOUNT TYPES, ACCOUNT CONTRACTS and CUSTOMER
PRODUCTS facilitate displaying of products in INTEGRATED
CUSTOMER VIEW.

• The state of BUSINESS CASE can be displayed in INTEGRATED
CUSTOMER VIEW.

• The system for INTEGRATED CUSTOMER VIEW can provide
CUSTOMER SESSION.

• The system for INTEGRATED CUSTOMER VIEW can display the
time span of BANK DAYS.

19.7 Known Uses
There are a lot of CRM tools and CRM systems implemented.
In the CRM 1 project we used a CRM tool with powerful

integration facilities to host systems. The tool also provides
certain features for cross–selling, recording interaction with
customers and marketing campaigns. We implemented the
integrated customer view providing view on data from ten
systems and the management of customer data.

20. ACKNOWLEDGMENTS
I would like to thank my shepherd Uwe Zdun and members of

the working group at PLoP 2008 moderated by Linda Rising for
suggestions that makes this paper much more precise. I am also
thankful to the shepherds and reviewers of my previous papers
especially Andy Longshaw, Allan Kelly, Ed Fernandez, and Kyle
Brown. Andy was my shepherd at EuroPLoP 2005 and taught me
how to write domain patterns so that they are understandable to
people outside the domain. Allan helped me to be more precise.
Ed was my first shepherd and introduced me to the world of
patterns. Kyle encouraged me at PloP’2000 to write pattern
languages instead of small patterns.

21. REFERENCES
[1] Blstak, P., L. Sesera. Model Driven Software Development

Using Patterns. DATAKON 2005 (in Slovak).
[2] Buschmann, F. et al. Pattern-oriented Software Architecture

– A System of Patterns. J. Willey and Sons, 1996.
[3] Czarnecki, K. and U. W. Eisenecker. Generative

Programming. Addison-Wesley, 2000.
[4] Fernandez, E., Y. and Y. Liu. The Account Analysis Pattern.

EuroPLoP 2002.
[5] Fowler, M. Analysis Patterns: Reusable Object Models,

Reading, MA: Addison-Wesley, 1997.
[6] Fowler, M. Patterns of Enterprise Application Architecture.

Reading, MA: Addison-Wesley, 2003.
[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software,
Reading, MA: Addison-Wesley, 1995.

[8] Hay, D. Data Model Patterns. Conventions of Thought.
Dorset House, 1996.

[9] Henney, K. Context Encapsulation. Three Stories, a
Language, and Some Sequences. EuroPLoP 2005.

[10] Hohpe, G., B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley, 2004.

[11] Keller, W. Some Patterns for Insurance Systems. PLoP’98.
[12] Kelly, A. Business Strategy Design Patterns. EuroPLoP

2004.
[13] Kelly, A. A Few More Business Patterns. EuroPLoP 2005.
[14] Sesera, L. A Recurring Fulfillment Analysis Pattern. PLoP

2000.
[15] Sesera, L. Analysis Patterns. (Invited talk.) In:

SOFSEM’2000. Lecture Notes in Computer Science series,
Vol. 1963, Springer Verlag, 2000.

[16] Sesera, L., A. Micovsky and J. Cerven, J. Data Modeling in
Examples. Grada, 2001 (in Czech).

[17] Sesera, L. Hierarchical Patterns: A Way to Organize
(Analysis) Patterns. CITSA 2004. Orlando, FL, 2004.

[18] Sesera, L. Obligation-Fulfillment: A Pattern Language for
Certain Financial Information Systems. EuroPLoP’05.

[19] Sesera, L. Extendible Banking Model. DATAKON 2007 (in
Slovak).

	1. DAILY BALANCE
	1.1 Context
	1.2 Problem
	1.3 Forces
	1.4 Solution
	1.5 Example
	1.6 Variants
	1.8 Related Patterns
	1.9 Known Uses

	2. AVAILABLE BALANCE
	2.1 Context
	2.2 Problem
	2.3 Forces
	2.4 Solution
	2.5 Example
	2.7 Related Patterns
	2.8 Known Uses

	3. ARCHIVED HISTORICAL BALANCES
	3.1 Context
	3.2 Problem
	3.3 Forces
	3.4 Solution
	3.5 Variants
	3.6 Example
	3.8 Related Patterns
	3.9 Known Uses

	4. ACCOUNT TYPES
	4.1 Context
	4.2 Problem
	4.3 Forces
	4.4 Solution
	4.5 Example
	4.7 Related Patterns
	4.8 Known Uses

	5. ACCOUNT CONTRACT
	5.1 Context
	5.2 Problem
	5.3 Forces
	5.4 Solution
	5.5 Example
	5.7 Related Patterns
	5.8 Known Uses

	6. CUSTOMER PRODUCT
	6.1 Context
	6.2 Problem
	6.3 Forces
	6.4 Solution
	6.5 Example
	6.7 Related Patterns
	6.8 Known Uses

	7. BUSINESS CASE
	7.1 Context
	7.2 Problem
	7.3 Forces
	7.4 Solution
	7.5 Variants
	7.6 Example
	7.8 Related Patterns
	7.9 Known Uses

	8. TRANSACTION TYPES
	8.1 Context
	8.2 Problem
	8.3 Forces
	8.4 Solution
	8.5 Example
	8.7 Related Patterns
	8.8 Known Uses

	9. ACCOUNTING RULES
	9.1 Context
	9.2 Problem
	9.3 Forces
	9.4 Solution
	9.5 Example
	9.7 Related Patterns
	9.8 Known Uses

	10. ARCHIVED HISTORICAL TRANSACTIONS
	10.1 Context
	10.2 Problem
	10.3 Forces
	10.4 Solution
	10.5 Variants
	10.6 Example
	10.8 Related Patterns
	10.9 Known Uses

	11. CUSTOMER SESSION
	11.1 Context
	11.2 Problem
	11.3 Forces
	11.4 Solution
	11.5 Example
	11.7 Related Patterns
	11.8 Known Uses

	12. BANK DAYS
	12.1 Context
	12.2 Problem
	12.3 Forces
	12.4 Solution
	12.5 Example
	12.7 Related Patterns
	12.8 Known Uses

	13. HIERARCHICAL BALANCING
	13.1 Context
	13.2 Problem
	13.3 Forces
	13.4 Solution
	13.6 Related Patterns
	13.7 Known Uses

	14. ASSOCIATED FEE
	14.1 Context
	14.2 Problem
	14.3 Forces
	14.4 Solution
	14.5 Variants
	14.6 Example
	14.8 Related Patterns
	14.9 Known Uses

	15. BOOK RATE
	15.1 Context
	15.2 Problem
	15.3 Forces
	15.4 Solution
	15.5 Example
	15.6 Consequences
	15.7 Related Patterns
	15.8 Known Uses

	16. PARAMETRIC RATE
	16.1 Context
	16.2 Problem
	16.3 Forces
	16.4 Solution
	16.6 Related Patterns
	16.7 Known Uses

	17. RATE PACKAGE
	17.1 Context
	17.2 Problem
	17.3 Forces
	17.4 Solution
	17.5 Example
	17.7 Related Patterns
	17.8 Known Uses

	18. FRONT-END SYSTEM
	18.1 Context
	18.2 Problem
	18.3 Forces
	18.4 Solution
	18.5 Example
	18.6 Consequences
	18.7 Related Patterns
	18.8 Known Uses

	19. INTEGRATED CUSTOMER VIEW
	19.1 Context
	19.2 Problem
	19.3 Forces
	19.4 Solution
	19.6 Related Patterns
	19.7 Known Uses

	20. ACKNOWLEDGMENTS
	21. REFERENCES

