
 1

Quality of Test Specification by Application of Patterns
Justyna Zander-Nowicka
MOTION, Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

justyna.zander-nowicka
@fokus.fraunhofer.de

 Pieter J. Mosterman
The MathWorks, Inc.

3 Apple Hill Drive
Natick, MA 01760-2098, USA

pieter.mosterman
@mathworks.com

Ina Schieferdecker
MOTION, Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

ina.schieferdecker
@fokus.fraunhofer.de

ABSTRACT
Embedded system and software testing requires sophisticated
methods, which are nowadays frequently supported by application
of test patterns. This eases the test development process and
contributes to the reusability and maintainability of the test
specification. However, it does not guarantee the proper level of
quality and test coverage in different dimensions of the test
specification.

In this paper the quality of the test is investigated and numerous
metrics are defined. They are based mainly on the applied test
patterns. They give a measure of quality for the test design and
executed test cases with respect to a number of aspects. They also
evidence the value of patterns application. If weighted, they
enable to assess the executed tests.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Assertion checkers, Validation;

D.2.5 [Software Engineering]: Testing and Debugging –
Monitoring, Symbolic execution

General Terms
Design, Verification

Keywords
test quality, test pattern, online test, hybrid embedded software,
software testing, Model-in-the-Loop, simulation, functional test

1. INTRODUCTION
Testing costs are well known to rise sharply, reaching at least
50% of software development time and effort [1, 2]. To reduce
this cost and guarantee software quality, testing should be
performed earlier in the software development cycle. Numerous
efforts have contributed to making test activities more efficient,
effective, and automatic.

So has our previous work [3, 4] where we presented a set of test
patterns enabling the creation of an executable test model for
hybrid embedded software. It has been called Model-in-the-Loop
for Embedded System Test (MiLEST).

In this paper we focus on the quality of those test patterns. By
that, we deal with the problems of quality assessment for test
specification and we calculate the achieved test coverage in terms
of different aspects, which constitute the main novelties of this
paper. Here, at least two dimensions are considered – the quality
of a test design and test execution.

The contribution of this paper relates to the quality of tests that
are defined by applying the test patterns.

− Hence, in Section 2, the MiLEST approach is introduced first.
− Then, we go through the test quality criteria available in the

literature and select some of them for MiLEST (cf. Section
3.1).

− We investigate how the usage of patterns is influencing the
quality of the test.

− We check how good the created test model is, defining the
means to assess it. We handle the quality aspect of different
test activities providing a classification of test quality (TQ)
metrics for them. All that is introduced in Section 3.2.

− Section 4 gives a review of related work. Section 5 provides a
case study to illustrate our methods. The final evaluation and
conclusions complete the paper.

The quality of tests is quantified by application of the TQ metrics.
Taking a test scenario that every time a given threshold is
exceeded, the flag should be changed, we are able to assess how
many and which variants of this scenario give a proper confidence
level that the system under test (SUT) is behaving correct.

Although certain aspects of the test quality cannot be quantified
without a context, the entire set of these aspects, if weighted,
gives a measure of the test coverage w.r.t. different criteria.

We selected the MATLAB®/Simulink®/Stateflow® (ML/SL/SF)
[5] to demonstrate the feasibility of our solution for the test
patterns definition, their application, and their quality assessment.
It provides a simulation engine that allows for the execution of
tests, facilitating their dynamic analysis. This environment
supports hybrid systems development and allows for using the
same language for both system and test design [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
This paper was presented at the SPAQu Workkshop at the 15th
Conference on Pattern Languages of Programs (PLoP).
PLoP'08, October 18-20, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

 2

2. MiLEST
At the early stage of system development, when its new
functionality is introduced, its model serves as a primary
instantiation of its realization. Hence, neither real-world nor
reference signals are available for testing the model. This implies
a need for another solution. In MiLEST we propose a new method
for stimulation and evaluation of the embedded hybrid systems
behavior. It is breaking the requirements down into the
characteristics of particular signal features (SigFs). For that
purpose, a novel understanding of a signal is defined that enables
describing it in an abstract way based on its properties (e.g.,
decrease, constant, maximum).

The MiLEST specifications reflect the structure of the system’s
requirements. The test development process and the abstractly
aligned test system enable applying the concepts of SigF
generation and detection mechanisms while building test
specifications systematically. In this context, the test system is
considered as a hierarchically leveled test model (also called test
design).

Since the aim of the test system is not to provide the means for
testing a single signal property but for validating complete SL/SF
SUT models, independent of their complexity, structuring the test
models in a proper way contributes to the scalability and
reusability of the solution. Moreover, traceability of the test
development artifacts is possible and transformation potentials
emerge.

The structure of the test system consists of four different levels
(see Figure 1) that can be built systematically and automatically.
It makes the test system less error-prone leaving the test engineers
plenty of scope for developing the complete test specification.

Test Harness level

Test Requirement level

Test Case level

Feature Generation level

abstraction

refinem
ent

Test Harness level

Test Requirement level

Validation Function level

Feature Detection level

Test Data Generation (TDGen) Test Specification (TSpec)

Figure 1. Hierarchical structure of the test system.

Technically, MiLEST is a SL add-on built on top of the ML
engine. It consists of a SL library including test patterns, callback
and transformation functions, and other ML scripts. The library is
divided into: test specification, test data, and test control.
Additionally, the test quality part includes metrics for assessing
the quality of a given instance of a test model.

In Figure 2, a generic pattern for a test harness is presented. The
test data (i.e., test signals used in the test cases) are generated
within the test data generator shown on the left-hand side. The
test specification, on the right-hand side, is constructed by
analyzing the SUT functionality requirements and deriving the
test objectives from them. It includes the abstract test scenarios,
test evaluation algorithms, test oracle, and an arbitration
mechanism.

In terms of the applied SL notation, the boxes represent the
subsystems; the lines are carrying the signals.

SUT

test reactiveness

InOut
Bus Test

Specification
Verdict

Test
Control

Test Data
Generator

Figure 2. A test harness pattern.

The test specification is built by applying the test patterns
available in the MiLEST library. Afterward, based on the already
constructed parts of the test model, the test data generators are
automatically derived. These are embedded in a dedicated test
data structure. The automatic generation of test signal variants,
their management, and their combination within a test case is also
supported, analogous the synchronization of the obtained test
stimuli. Finally, the SUT model excited with the previously
created test data is executed and the evaluation unit supplies
verdicts on the fly.

The first step in the test development process is to identify the test
objectives based on the SUT requirements. For that purpose a
high level pattern within the test specification unit is applied (see
Figure 3). The number of test requirements can be chosen in the
graphical user interface that updates the design and adjusts the
structural changes of the test model.

Figure 3. A test requirement specification pattern.

Next, validation functions (VFs) [3] are introduced to define the
test scenarios, test evaluation, and test oracle in a systematic way
(cf. Figure 1). VFs serve to evaluate the execution status of a test
by assessing the SUT observations and/or additional
characteristics/parameters of the SUT. A VF is created for any
single requirement according to the conditional rules – IF
preconditions set THEN assertions set.

A single informal requirement may imply multiple VFs. If this is
the case, the arbitration algorithm accumulates the results of the
combined IF-THEN rules and delivers an aggregate verdict.
Predefined verdict values are pass, fail, none, and error. Retrieval
of the local verdicts for a single VF is also possible.

Preconditions and assertions sets primarily include detectors for
SigFs. VFs are defined to be independent of the currently applied
test data. Thereby, they can set the verdict for all possible test
data vectors and activate themselves (i.e., their assertions) only if
the predefined preconditions are fulfilled. For all those elements
patterns are defined. To illustrate, an abstract pattern for a VF
(shown in Figure 4) consists of a preconditions block that
activates the assertions block, where the comparison of actual and
expected signal values occurs. A similar cause-effect analysis
resulting in scenario patterns is discussed in [7].

 3

Figure 4. A validation function pattern.

A further step in the test development process is the derivation of
the corresponding structures for test data sets and the
concretization of the signal variants. The entire step related to test
data generation is completely automatic by a merit of the
application of transformations. Similarly as on the test
specification side, the test requirements level for the test data is
generated. This is possible because of information obtained from
the previous phase.

Moreover, concrete SigF generators on predefined signals are
created afterwards. These test signals are generated following a
conditional rule of the form – IF preconditions set THEN
generations set.

Knowing the SigFs appearing in the preconditions of a VF, the
test data can be constructed from them. The preconditions
typically depend on the SUT inputs; however they may also be
related to the SUT outputs at some points in time. Every time a
SigF detector is present for the assertion activation, a
corresponding SigF generator is applied for the test data creation.
Giving an example – for detection of an increase that is located in
a precondition of a VF, a specific signal increasing during a
default time is required.
The patterns for test data generation and concrete SigF generators
are obtained as a result of the automatic transformations. Then,
the test data variants are created. Though here, the necessary
condition is a prior definition of the signal value ranges and
partition points on all the stimuli signals. Equivalence partitioning
and boundary value analysis are used in different combinations to
produce the concrete variants for the stimuli.

3. TEST QUALITY BASED ON THE TEST
PATTERNS
As far as any testing approach is considered, test quality is
essential. It constitutes a measure for the test completeness and
can be assessed on different levels, according to numerous
criteria, applying metrics defined for them. In the upcoming
section a few main categories resulting from the analysis of
several efforts in the related work are distinguished. Then, the TQ
metrics are defined for MiLEST. All of them are specified for the
functional (i.e., black-box test related) test, leaving the structural
(i.e., white-box test related) out of the scope.

3.1 Test Quality Criteria
Primarily, criteria similar as for software development are of
importance. Hence, the consistency and correctness of the test
development process and the resulting tests is considered.

Consistency of a test is defined as the degree of uniformity,
standardization, and freedom from contradiction among the
requirements documents, test design, test implementation, or test
system. An example of the consistency check is evaluating
whether the test pattern applied in the test model includes a
meaningful content.

Correctness of a test is denoted in this paper by the degree to
which a test is free from faults in its specification, design, and
applied algorithms, as well as in returning the test verdicts. This
definition is extended in comparison to test correctness provided
by [8]. There a test specification is correct when it always returns
correct test verdicts and when it has reachable end states.
Correctness of a test can be exemplified in MiLEST when it is
checked whether the assertions set is complete enough to let the
test pass.
In this paper, consistency and correctness of a test are defined
mainly w.r.t. to the test scenarios specified applying MiLEST
patterns. Both of them can be assessed by application of the
corresponding TQ metrics. Progress on the TQ metrics has been
achieved by [9], where static and dynamic metrics are
distinguished. The static metrics reveal the problems of the test
specification before its execution, whereas the dynamic relate to
the situation when the test specification is analyzed during its
execution. An example of a static consistency check is evaluating
if at least one test for each requirement appears in the test
specification, whereas a dynamic check determines whether a
predefined number of test cases has been really executed for
every requirement.

Additionally, the authors of [8] define a TQ model as an
adaptation of ISO/IEC 9126 [10] to the testing domain. There the
characteristics are:

− test reusability and maintainability which are supported in
MiLEST by the test patterns existence;

− test effectivity that describes the capability of the specified
tests to fulfill a given test purpose;

− reliability that reveals the capability of a test specification to
maintain a specific level of work and completion under
different conditions;

− usability that describes the ease to actually instantiate or
execute a test specification;

− efficiency and portability – left out of the scope in this paper.

3.2 Test Quality Metrics
For the purpose of this paper several TQ metrics have been
defined for checking the efficiency and effectiveness of the test.
They are ordered according to the test development phases
supported by the MiLEST method. A more detailed version may
be found in [11].

3.2.1 Test data related quality metrics
Signal range consistency is used to measure the consistency of a
signal range with the constraints put on this range within the
preconditions or assertions at the VF level. It applies to SUT
inputs and outputs. The consistency for inputs is implicitly
checked when the variants of the test signals are generated. In
other words, the test data generator detects the inconsistencies in
the signal ranges. The metric is used for positive testing.
Variants coverage for a SigF is used to measure the partitions
coverage of a single SigF occurring in a test design. It is assessed
based on the signal boundaries, equivalence partitions, and SigF
type. The maximum number of variants for a selected SigF is
equal to the sum of all possible meaningful variants. The metric
can be calculated before the test execution by:

 4

SigF selected afor variantspossible all of #
design test ain applied SigF selected afor variantsof #

 SigF afor coverage Variants

 =

=

Note that the sign # means “number of”.
Variants coverage during test execution is used to measure
whether all the variants specified in the test design are actually
applied during the test execution. It returns the percentage of
variants that have been exercised by a test. Additionally, it checks
the correctness of the sequencing algorithm for the test data
applied by the test system.

design test ain specified variantsof #
execution test during applied variantsof #

execution test during coverage Variants

=

=

Variants related preconditions coverage checks whether the
preconditions have been active as many times as many different
combinations of test signal variants stimulated the test. It is
calculated during the test execution.

set onspreconditi selected a of sactivation of #
execution test during applied beingset data given test ain present nscombinatio variant of #

 coverage onspreconditi related Variants

 =

=

SUT output variants coverage is used to measure the range
coverage of signals at the SUT output after the test execution. It is
assessed based on the signal boundaries and equivalence partition
points using similar methods as for the generation of test stimuli
variants. The metric can be calculated by:

output selected afor variantspossible all of #
execution after test recognizedoutput selected afor variantsresulting theof #

 coverage rangeoutput SUT

=

=

3.2.2 Test specification related quality metrics
Test requirements coverage compares the number of test
requirements covered by specified test cases to the number of test
requirements contained in a corresponding requirements
document calculated by:

tsrequiremen test of # overall
design test ain covered tsrequiremen test of #

coverage tsrequiremenTest =

VFs activation coverage is used to measure the coverage of the
VFs activations during the test execution. This metric is related to
the test requirements coverage, but one level deeper in the
MiLEST hierarchy. It is calculated as follows:

design test ain present VFs all of #
execution test during activated VFs of #

 coverage activation VFs

=

=

3.2.3 Test control related quality metric
Test cases coverage is used to measure the coverage of the actual
activations of test cases. The sequence of test cases to be activated
is specified in the test control unit. The metric is calculated by the
formula:

design control test ain present cases test all of #
cases test activated theof #

 coverage casesTest =

3.3 Realization
A few of the mentioned TQ metrics have been realized in the
MiLEST. These are implemented either as SL subsystems or as
ML functions. For instance, implementation of the VFs activation
coverage is based on computing the number of local verdicts for
which the value has been different from none or error in relation
to the number of all VFs. The situation is illustrated in Figure 5.

Figure 5. VFs activation coverage realization – exemplified for

two VFs.

4. RELATED WORK
As [2] claims, metrics for structural test should be used in
combination with those for functional test. For instance, the
Model Coverage Tool in Simulink Verification and Validation
[12] measures the system model coverage by collecting white-box
information about model objects that have been executed.
For Time Partitioning Testing approach, in [13] – cost/effort
needed for constructing a test data set, relative number of found
errors in relation to the number of test cases needed to find them
– are named as examples. These are the metrics that relate to the
post-execution phase, not directly to the test patterns. Still,
measuring the cost of pattern application is a very important
factor determining the gains and benefits of the proposed
methodology. In our case we obtain promising results as
numerous steps within the test development are automated.
Apart from the measurements realized with the help of TQ
metrics, consistency of the test specification may be checked
statically by application of the test modeling guidelines using e.g.,
graph transformations [15] or Object Constraint Language [16].
Generally, the proposed pattern concept matches the definition
given in [17]. The application domain is restricted to test
engineering, though.

5. A CASE STUDY
This section demonstrates the application of the presented
concepts for a selected case study. A simplified component –
Pedal Interpretation (PI) of an Adaptive Cruise Controller
developed by Daimler AG [2] is used. This subsystem can be
employed as pre-processing component for various vehicle
control systems. It interprets the current, normalized positions of
acceleration and brake pedal (phi_Acc, phi_Brake) by using the
actual vehicle speed (v) as desired torques for driving and brake
(T_des_Drive, T_des_Brake) [2]. An example of a functional
requirement is given in Table 1, while the SUT interfaces are
presented in Table 2.

 5

Table 1. Functional requirement for PI [2].

Normalized accelerator pedal position should be interpreted as
desired driving torque – T_des_Drive [Nm]. The desired driving
torque is scaled in the non-negative range in such a way that the
higher the velocity is given, the lower driving torque is
obtained.

Table 2. SUT inputs of PI.
SUT Input Velocity Acceleration pedal Brake pedal

Value Range <-10, 70> <0, 100> <0, 100>

Unit m/s % %

5.1 The Test System
Let us analyze the requirement, which is realized by the pattern
from Figure 3, for illustration purpose. It is interpreted as a set of
IF-THEN rules. The VFs for them are designed as shown in
Figure 6. As an example, the first VF is obtained from the
following rule: IF v is constant AND phi_Acc increases AND
T_des_Drive is non-negative THEN T_des_Drive increases. For
further details please refer to [3, 4, 11].

Figure 6. VFs set for the requirement.

Then, the test data patterns are retrieved automatically from the
test specification design. The test data generator (TDG) creates
the representative test stimuli variants. The number of test data
sets matches the number of VFs appearing in Figure 6.
Considering the first VF and the first test data set from Figure 6,
the following applies: If the velocity is constant and an increase in
the acceleration pedal position is detected then the assertion is
activated. Thus, a constant signal for velocity is generated; its

value is constrained by the velocity limits <-10, 70>. The partition
point is 0. The TDG produces five variants from this
specification. These belong to the set: {-10, 5, 0, 35, 70}.
Furthermore, it is checked whether the driving torque is non-
negative. It is the condition allowing the generation of the proper
stimuli for the final test execution. For the acceleration pedal
position limited by the range <0, 100> an increase feature is
utilized. The details can be found in [4]. Evaluating this particular
test scenario the following applies: If the driving torque increases
as expected, a pass verdict is delivered, otherwise a fail verdict
appears.

5.2 Test Quality Assessment
The simplest metric – variants coverage for a SigF – achieves
100% coverage if all possible variants of a given SigF, based on
the selected criteria, are generated in the test design and applied
during the test execution.
The range of a given signal must be consistent with the
constraints given in the VFs’ preconditions (i.e., such that the
constrained values do not exceed the allowed range). Signal range
consistency coverage checks this requirement in our approach.
Indeed, both of the metrics give the maximum coverage for our
case study, the same as VFs activation coverage. Test cases
coverage, however, reveals that only 80% of the designed test
cases have been executed. This is because of the constraint put in
the test control that if all the VFs are activated at least once (i.e.,
VFs activation coverage achieves 100%), the tests run should
stop. In consequence, similarly, variants coverage during test
execution, variants related preconditions coverage, and SUT
output variants coverage give 87%, 67%, and 59% coverage,
respectively. When we eliminate the mentioned constraint and we
execute the tests, maximum coverage values are achieved.
The experiment reveals the need to prioritize the applied metrics
and weight their values relating them to each other. By that, the
testing costs can be estimated.

6. SUMMARY
The maximum test coverage is an ideal case and it is usually not
even attempted to be achieved (in contrast to the maximized one).
The value depends mostly on the project costs and efforts spent
on testing. Since the case study is relatively simple it serves for
illustration purposes only. Nevertheless, it shows how the metrics
relate to each other and how they can be weighted.
Moreover, the existence of test patterns gives a possibility to
define the quantifiable TQ metrics related to these patterns (e.g.,
VFs activation coverage). The application of metrics, in turn,
allows for evaluation of the quality of the test design and test
execution as it has been illustrated for the case study. The lacking
parts of test specifications are indicated.
MiLEST itself provides a set of patterns that support the
systematic test design and enable the reuse of a number of
structures for modeling the test. Additionally, some of the steps
are automatic, which reduces the time of the test development.

7. REFERENCES
[1] Broy M., Jonsson B., Katoen J.-P., Leucker M., Pretschner

A. (Eds.), Model-Based Testing of Reactive Systems, no.
3472 in LNCS, Springer-Verlag, 2005.

 6

[2] Conrad M.: Modell-basierter Test eingebetteter Software im
Automobil: Auswahl und Beschreibung von Testszenarien.
PhD, TU Berlin, Wiesbaden (Germany), 2004 (in German).

[3] Zander-Nowicka J., Schieferdecker I., Marrero Pérez A.:
Automotive Validation Functions for On-line Test
Evaluation of Hybrid Real-time Systems”, In IEEE 41st
AutoTestCon, pp. 799-805, ISBN 1-4244-0052-X, 2006.

[4] Zander-Nowicka, J., Xiong, X., Schieferdecker, I.:
Systematic Test Data Generation for Embedded Software. In
Proceedings of SERP 2008, pp.164-170. CSREA Press,
2008.

[5] The MathWorks™, MATLAB®/Simulink®/Stateflow®,
www.mathworks.com/products/matlab/.

[6] Schäuffele J., Zurawka T.: Automotive Software
Engineering, ISBN: 3528110406. Vieweg, 2006.

[7] Tsai W.-T., Yu L., Zhu F., Paul R.: Rapid embedded system
testing using verification patterns, In IEEE Software,
Volume 22, Issue 4, pp. 68-75, 2005.

[8] Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H.,
Grabowski, J.: Applying the ISO 9126 quality model to test
specifications – exemplified for TTCN-3 test specifications.
In Proceedings SE 2007, pp. 231-244. GI-LNI, 2007.

[9] Vega, D., Schieferdecker, I.: Towards quality of TTCN-3
tests. In Proceedings of SAM 2006.

[10] ISO/IEC Standard No. 9126: Software engineering – Product
quality; Parts 1–4. Geneva, Switzerland, 2001-2004.

[11] Zander-Nowicka, J.: Model-based Testing of Real-Time
Embedded Systems in the Automotive Domain, PhD thesis,
TU Berlin, submitted in 2008.

[12] The MathWorks™, Simulink® Verification and
Validation™.

[13] Lehmann E.: Time Partition Testing, Systematischer Test des
kontinuierlichen Verhaltens von eingebetteten Systemen,
PhD, TU Berlin, 2003 (in German).

[14] Grimm, K.: Systematisches Testen von Software. Eine neue
Methode und eine effektive Teststrategie. PhD thesis, TU
Berlin, ISBN: 3-486-23547-8. 1995 (in German).

[15] Amelunxen, C., Legros, E., Schürr, A., Stürmer, I.: Checking
and Enforcement of Modeling Guidelines with Graph
Transformations. In Proceedings of AGTIVE 2007, pp. 361-
375. 2007.

[16] Object Constraint Language, version 2.0, May 2006,
http://www.omg.org/docs/formal/06-05-01.pdf [08/26/08].

[17] Coplien, J.: Software Design Patterns: Common Questions
and Answers, The Patterns Handbook:Techniques,
Strategies, and Applications. Rising, L. (Ed.), 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

