
 1

Exception Handling Bug Patterns in
Aspect Oriented Programs

 Roberta Coelho1,3 Awais Rashid2 Uira Kulesza3
Arndt von Staa1 Carlos Lucena1 James Noble4

1Informatics Department
Pontifical Catholic University of

Rio de Janeiro
Brazil

{roberta, arndt,
lucena}@inf.puc-rio.br

2 Computing Department,
Lancaster University,

Lancaster, UK and Ecole
des Mines de Nantes,

France
awais@comp.lancs.ac.uk

 3 DIMAp
Federal University of

Rio Grande do Norte
uira@dimap.ufrn.br

4 Victoria University
of Wellington,

New Zealand
kjx@mcs.vuw.ac.nz

Abstract

Aspects often impact the exceptional control flow of a program by
signaling and handling exceptions signaled by other aspects or classes.
The exceptions signaled by aspects may flow through the program
execution in unexpected ways leading to failures such as uncaught
exceptions and exceptions being caught by the wrong handlers. We
identified a set of bug patterns via an empirical study of exception
handling code in AO systems. These patterns are presented here in the
form of a bug patterns catalogue containing bugs where aspects act as
exception handlers, and bugs where aspects act as exception signalers.

Keywords Aspect-oriented programming, exception handling, bug patterns,
dependable systems

1. Introduction

The term bug has often been used in computer science as a synonym for fault,
“a specific construction in the program code that may lead to a failure”. According to
[1] it can also be used as a synonym for code bad smell1, “a piece of code that does
not represent a fault by itself but that contributes to a difficult understanding of the
code, and as a consequence to the introduction of faults”. It has been empirically
observed that, due to the predictability of people’s fallibility, many bugs often fall
into known categories (or patterns) [2] - as people tend to the repeat similar
mistakes. Bug patterns are, therefore, recurring characteristics of program code
that may lead to failures.

Some bug patterns have been proposed so far to support the testing and
debugging of OO programs [3, 4, 5]. As good software design skills involve
knowledge of architectural and design patterns good debugging skills involve
knowledge of bug patterns. Since many bugs follow one of several patterns. once a
developer can recognize these patterns, s/he will be able to diagnose the cause of a
bug and correct it more quickly, as well as learning to avoid them.

1
 The use of this term as a synonym for code bed smell is adopted by the bug patterns community [1], since they

aim at documenting not just the pieces of code that represent a fault by themselves, but also code constructions

(code bed smells) that may lead to spaghetti code and, as a consequence, to the introduction of faults.

 2

Since the last decade, aspect-oriented programming (AOP) [11] has been
increasingly used as a means to modularise crosscutting concerns, such as
persistence, distribution [15], security and monitoring. A number of industrial-
strength aspect-oriented programming frameworks have been deployed (e.g.,
AspectJ [6], JBoss [7] and Spring [8]) and non-trivial applications of AO industrial
applications have been developed such as IBM Websphere [9] and GlassBox [10].

On one hand, the AO constructs open a new realm of design possibilities: on
the other hand, the new AO constructs represent new sources of bugs. There has
been little work on cataloging bug patterns in AO programs. Zhang and Zhao [12]
detailed a list of general bug patterns associated with the main AspectJ constructs.
These bugs, however, focus on the “normal” control flow of programs, and do not
consider potential problems related to the exception handling code in AO programs.

In a previous empirical study [13], we assessed the error proneness of
exceptional control flow in AspectJ programs, and we observed a set of recurring
bugs on the exception handling code. The analysis was based on the manual
inspection of three medium-sized systems from different application domains (both
in Java and AspectJ versions). For two systems, more than one release were
examined. Overall, this corresponds to 10 system releases, 41.1 KLOC of Java
source code of which around 4.1 KLOC are dedicated to exception handling, and 39
KLOC lines of AspectJ source code, of which around 3.2 KLOC are dedicated to
exception handling.

This paper details the recurring bugs discovered during this study. These bugs
are presented as a catalogue of bug patterns structured in two different categories:
(i) bugs on scenarios where aspects act as exception handlers; and (ii) bugs on
scenarios where aspects act as exception signalers. Figure 1 illustrates the bug
patterns discovered in each category.

Unstable Exceptional Interface

Handlerless Signaler Aspect

Late Binding Error Handling Aspect

Unmatched Error Handling Aspect

Residual (or Obsolete) Handler

Aspects as Exception Signalers
Bug Patterns

Aspects as Exception Handlers
Bug Patterns

 Figure 1. Bug Patterns categories.

The remainder of this paper is organized as follows. Section 2 presents some
background on exception handling in AO programs. Section 3 describes a simple
AO system that will be used to exemplify the bug patterns. Finally, Section 4 details
each of the bug patterns presented in Figure 1. The bug patterns are structured
using the following form (borrowing some terminology from Allen [3]):

• pattern name;

• summary;

• symptoms;

• cause(s);

• cures and prevention; and

 3

• related patterns (when necessary).

Although we present cures and preventions for the bug patterns, the focus of
this paper is on the bug patterns’ symptoms and causes – which are useful to
support debugging and testing tasks. Due to some limitations of current AspectJ
languages and tool support for reasoning about exceptional flow, some of the
proposed solutions act as a palliative while better language and tool support are
proposed. Therefore, this paper allows developers and testers of aspect-oriented
applications to diagnose bugs on the exception handling code, and also designers of
AOP languages and static analysis tools to consider pushing the boundaries of
existing mechanisms to make AOP more resilient to such bugs. Throughout this
article we assume that the reader is familiar with AOSD terminology and AspectJ
language constructs. Appendix I presents brief explanation about AOSD
terminology.

2. Background

2.1 Exception Handling Mechanism in AO Programs

This section presents the main concepts of exception handling mechanisms, and
relates them to the constructs available in AO languages. An exception handling
mechanism is comprised of four main concepts: exceptions, exception signalers,
exception handlers, and the exception model which defines how signalers and
handlers are bound to each other.

Exception Raising. An exception is raised by an element – a method or method-like
construct e.g., advice - when an abnormal computation state is detected. Whenever
an exception is raised inside an element that cannot handle it, it is signaled to the
element’s caller. The exception signaler is the element that detects the abnormal
state and raises the exception. In Figure 1, the advice a1 detects an abnormal
condition and raises the exception EX. Since this advice intercepts the method mA,
such exception will be included into method mA together with the additional
behavior encapsulated on the advice.

Exception Handling. An exception handler is the code invoked in response to a
raised exception. A handler can be attached to protected regions, e.g. methods,
classes and blocks of code, or specific exceptions [19]. Exception handlers are
responsible for performing the recovery actions necessary to bring the software
system back to a normal state and, whenever this is not possible, to log the
exception and abort the system in an expected safe way. In AO programs, a handler
can be defined in either a method or an advice. Specific types of advice (e.g. around
and after advice [20]) have the ability to handle the exceptions thrown by the
methods they advise.

Handler Binding. In many languages, the search for the handler to deal with a
raised exception occurs along the dynamic invocation chain. This is claimed to
increase the software reusability, since the invoker of an operation can handle it in
a wider context [21]. In AO programs, the handler of one exception can be present:

(i) in one of the methods in the dynamic call chain of the signaler; or

(ii) in an aspect that advises any of the methods in the signaler’s call chain.

Figure 1 depicts one exceptional scenario in which one advice (a1) is responsible for
signaling the EX exception, and other advice (a2) is responsible for handling EX, i.e.

 4

a2 intercepts one of the methods in the dynamic call chain and handles this
exception.

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler EC
Method mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

 Figure 2. Exception-aware method call chain in AO programs.

In this paper we call exception paths the paths in a program call graph that
link signalers and handlers of exceptions. Notice that if there is no handler for some
exception, an exception path will star from the signaler and finish on the program
entrance point. In Figure 1, the exception path of EX is <a1→mA→mB→mC→a2>.
Therefore, each exception path comprises three main moments: the exception
signaling, the exception flow through the elements of a program, and the moment in
which the exception is handled or leaves the bounds of the software system without
being handled (becoming an uncaught exception).

Exception Interfaces. The caller of a method needs to know which exceptions
may be thrown by the called method. In this way, the caller will be able to prepare
for any exceptional conditions that may happen during system execution. For this
reason, some languages provide constructs to associate to a method’s signature, a
list of exceptions that this method may throw. Besides providing information for the
callers of such method, this information can be checked at compile time to verify
whether handlers were defined for each specified exception. This list of exceptions is

defined by Miller and Tripathi [22] as the exception specification or exception
interface of a method. Ideally, the exception interface should provide complete and
precise information for the method user. However, some languages, such as Java
and AspectJ, allow the developer to bypass this mechanism. In such languages,
exceptions can be of two kinds: checked exception – that needs to be declared on
the method’s signature that throws it – and unchecked exception – that does not
need to be declared on the signaler method’s signature2. As a consequence, the
client of a method cannot know which unchecked exceptions may be thrown by it,
unless s/he recursively inspects each method called from it. For convenience, in
this thesis we split this concept of exception interface in two categories:

(i) the explicit (de jure) exception interface that is part of the module (method or
method like construct) signature and explicitly declares the exceptions; and

2 In some situations, to list all the exceptions that may escape from a method in the throws clause may become

unworkable. Some exceptions, for instance, cannot be adequately handled inside the program (e.g., out of

memory exceptions). Forcing the developer to list all of them could lead to unnecessary work during

development and maintenance tasks.

 5

(ii) the complete (de facto) exception interface which captures all the exceptions
signaled by a module, including the implicit ones not specified in the module
signature. For the rest of the thesis, unless it is explicitly mentioned
otherwise, exception interface refers to the complete (de facto) exception
interface.

In the rest of this paper, unless it is explicitly stated, we use the expression
“exception interface” to refer to a complete (de facto) exception interface. Although
both the normal interface (i.e. method signature) and the exception interface of a
method can evolve along software life cycle, the impact of such change on the
system varies significantly. When a method signature varies, it affects the system
locally, i.e. only the method callers are directly affected. On the other hand, the
removal or inclusion of new exceptions in an exception interface may impact the
system as a whole, since the exception handlers can be anywhere in the code. As
depicted in Figure 1, an aspect can add behavior to a method without changing the
normal interface of that method. However, the additional behavior may raise new
kinds of exceptions, hence impacting the exceptional interface of that method.

Exception Handling Contexts. Exception Handling Contexts (or Protected Regions)
are regions in a program where the specific exception types are always treated in
the same way [21]. Each region is associated with one or more handlers - from
which a handler is chosen when exceptions are raised within that context.

2.2 Target Language: AspectJ

We used AspectJ as our target language to exemplify the bug patterns (see Appendix
I). Firstly because the systems analyzed in our empirical study, where the bug
patterns were discovered, were developed in AspectJ. Secondly, because nowadays
it is the most used AO language. A first question to be asked is to what extent these
patterns can be found in systems implemented in other AOP languages. To answer
this question we have investigated other AOP technologies such as: CaesarJ [14],
JBoss AOP [7] and Spring AOP [8]. Basically, they follow the same join point model
as AspectJ, and as a consequence the bug patterns described next can also be
found on systems developed in such languages.

3. Example

This section presents an illustrative example of an information system, called
Health Watcher. Health Watcher is a web-based information system that allows
citizens to register complaints regarding issues in health care institutions. Figure 3
illustrates slices of the AO design of this system structured according the Layer
architectural pattern [16]. According to this pattern, the elements from each layer
should communicate only through well defined layers` interfaces. The purpose of a
layer interface is to define the set of available operations – from the perspective of
interacting client layers - and to coordinate the layer response to each operation.
Several design patterns have been proposed to refine each layer of this architecture.
Some of them are: the Facade pattern, the Persistent Data Collections (PDC) pattern
[17], and Error Handling Aspect pattern [18].

 6

Figure 3. The AO design of Health Watcher.

We can observe from the AO design that some concerns are represented as

aspects in this system, such as: monitoring, transaction management, and some
design policies (e.g., to assure that elements from one layer will not access services
from superior layers). Moreover, the exception handling concerns of crosscutting
concerns were also represented as aspects - as illustrated by the Error Handling
Aspects layer in Figure 3. The Error Handling Aspects [18] intercept the points in the
code where exceptions thrown by the corresponding crosscutting concerns should
be dealt.

4. The Catalogue of Bug Patterns

As mentioned before, our catalogue of bug patterns is classified in two categories: (i)
bugs on scenarios where aspects act as exception signalers, and (ii) bugs on
scenarios where aspects act as exception handlers. This catalogue is a useful source
of information for debugging and testing the exception handling (EH) code of AO
systems. As it shows which kinds of bugs are most likely to happen in the EH code,
it can help developers and testers to avoid and detect tem. The list of bug patterns
can also be used to implement static checkers that can be used to automatically
locate faults or potential faults in the source code.

4.1 Aspects as Signalers

When aspects add new behaviors to points in the code, this new behavior may bring
new exceptions that will flow through the code. During the manual inspections, we
found recurring bugs that can occur when aspects signal exceptions. These bug
patterns are detailed below.

IEmployeeRepository

TransactionManager
<<aspect>>

Persistence Layer

<<crosscuts>>
Performance Monitoring

Transaction Management

Crosscutting Concerns:

M

T

Exception Handling (partially)H

S

FacadeComplaint Employee

Business Layer

EmployeeRecordComplaintRecord

ServletEmployee
GUI Layer

ServletComplaint

Monitoring Library

ServletRequestMonitor
<<aspect>>

TraceAspect
<<aspect>>

<<crosscuts>>

Error Handling Aspects

ErrorIsolation
<<aspect>> TransExceptionHandling

<<aspect>>

M

M

H H

IComplaintRepository

ComplaintRepositoryRDB EmployeeRepositoryRDB

Design Policies

LayerArchtecturePolicies
<<aspect>>

<<crosscuts>>

M

<<crosscuts>>

T

 7

Unstable Exceptional Interface

The Unstable Exceptional Interface bug pattern affects the list of
exceptions that can be thrown by a method, and can be the cause of
uncaught exceptions and unintended handler actions in AO systems.

Symptoms No handler was defined to catch an exception thrown by a method,

as a consequence such exceptions: (i) will become uncaught – the
exception thrown by the application method is not caught inside the
system, that it may lead to a software crash; or (ii) will be mistakenly
caught by an existing handler (a scenario also known as unintended
handler action).

Causes In general, a method may signal a set of exceptions as a
consequence of: (i) boundary values of method's parameters (e.g., if
we pass -1 to a method that only works for positive numbers); and
(ii) its internal behavior. Usually, such exceptions (that compose the
exceptional interface of a method) do not depend on which client
directly (or indirectly) invoked the method. In AO systems, however,
aspects may modify any method’s well-established behavior, and
may create a situation where the exceptions that a method throws
may depend on which clients are calling it.

These scenarios usually happen when an aspect advice is associated
with pointcut designators specifically used for scoping purposes (e.g.,
within, withincode, cflow, cflowbelow). As a consequence, the same
method will have different behaviors depending upon how it is called
(even if the arguments passed to the method are always the same).

When the list of exceptions that can be thrown by a method varies
according to the scope that it is executed, we may say that this
method is the owner of an Unstable Exception Interface.

As this bug pattern contributes to a difficult understanding of the
exceptional behavior of a method, and as a consequence to the
introduction of faults (e.g., usually exceptions that are only thrown
in very specific exceptional scenarios) they remain uncaught or are
caught by unintended handlers. Figure 4 presents a schematic view
of this bug pattern.

 8

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice X
Advice x

Method h

...

E2

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice X
Advice x

Method h

...

E2

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice X
Advice x

Method h

...

E2

Legend :

method call Exception propagation

Legend :

crosscuts scope

 Figure 4. Schematic view of the Unstable Exception Interface.

In this figure, the Advice x adds a new functionality to method mA
only when such method is called from method mC (i.e., the pointcut
expression contains a dynamic scope delimiter) – this scope is
represented in gray in Figure 4. Therefore, this additional
functionality, and the new exception E2 that comes with it, will not
be part of method mA when it is called from another method such as
method h. As a consequence, when the method mA is called from
method mC, it may throw E2 exception – and a handler should be
defined for it. On the other hand, if it is called from method h, it will
not throw the exception E2 (even if the method arguments are the
same as the one passed on the previous scope) since advice x does
not affect the method mA in this scope.

Code Example

The code snippet bellow illustrates a scenario where this bug
pattern can be detected:

 1. aspect LayerArchitecturePolicies {

 2.

 3. pointcut designPolicy (Facade fcd): this(fcd)
 4. && call(void Facade+.*())
 5. && !within(HttpServlet+.*);

 6.
 7. before(Facade fcd) : designPolicy(fcd) {
 8. String info = fcd.getCurrentContext();
 9. throw new DesignViolationException("…"+info);
 10. }
 11. }

In this example, the pointcut expression defined in the
LayerArchitecturePolicies aspect intercepts the execution of

any method defined on the Facade class, but only when it is not
executed within a Servlet. As a consequence, the advice associated to

 9

it only affect and throw a DesignViolationException if it is called

from a method that is not defined on a Servlet.

In our illustrative example, another aspect (i.e.,

TransExceptionHandling) is calling a method defined on Facade

class in order to prepare the error message to be presented to the
user. The developer did not know that such method call would
violate a design policy (and that, as a consequence, an exception
would be thrown). Thus, he/she did not define a handler to the
exception thrown in this context and such exception became
uncaught.

 1. aspect TransExceptionHandling {

 2. …

 3. void prepareErrorMessage(Exception ex){
 4. System.out.println(“Error on “ +
 5. Facade.getInstace().getApplicationName()”+
 6. ex.getMessage());
 7. }
 8.
 9. }

Cures and

Prevention

Detecting this bug pattern involves: (1) finding every advice that
uses a scope-specific pointcut designator; (2) recursively inspecting
such advice (i.e., inspecting every method called from it and every
other advice that advises it, with or without tool support); (3) if the
advice may throw an exception, inspect the methods in the program
call graph that directly or indirectly calls the advised method
(advised method) to verify if exception handlers were defined to
handle the exception.

The most common way to prevent this bug is for the developer to
create a handler to catch each exception that is thrown in each
situation where the exception will be thrown – such handlers should
be included in every method that calls the intercepted method.
Ideally, a default handler could catch any exception that was not
caught by other handlers: unfortunately, this is not possible in the
current version of AspectJ.

Alternatively, the developer may be able to replace (dynamic) advice
that throws the exception with a (static) declare error statement
that will generate an error at compile time. For example, aspects
that represent design policies should use declare error:

 pointcut designPolicy () :
 execution(void Facade+.*())
 && !within(HttpServlet+.*);

 declare error : designPolicy():
 “Design Violation Exception: calling Facade”;
 }

 10

Handlerless Signaler Aspect

The Handlerless Signaler Aspect bug pattern occurs when an aspect
advice signals an exception and no handler is defined to handle it.

Symptoms An exception that is thrown in the system becomes (i) uncaught – the

exception thrown by the application method is not caught inside the
system, as a consequence it may lead to a software crash; or (ii) is
mistakenly caught by an existing handler (a scenario also known as
unintended handler action).

Causes This bug occurs when an aspect advice or intertype declaration signals
an unchecked exception, and no handler is defined to catch it. Even a
very simple and naïve aspect (e.g., logging) may call a library that
throws an undocumented unchecked exception that impacts the
execution flow of the application.

Code
Example

The code snippet below was extracted from Health Watcher system,
and it shows an aspect that monitors the status of each HTTP request.
This aspect calls an OO library (at logError()) that signals an

unchecked exception when the log file is too large. As a consequence,

when this exception is signaled it remains uncaught, and causes a
software crash.

 aspect ServletRequestMonitor {

 //Intercepts every servlet request operation

 public pointcut servletRequestExec():

 within(HttpServlet+) &&

 (execution(* HttpServlet.do*(..)) ||

 execution(* HttpServlet.service(..)))…;

 after() returning: servletRequestExec()

 { …

 Response resp =responseFactory.getLastResponse();

 if (resp != null) {

 resp.complete();

 } else {

 logError("Monitoring problem:
 mismatched monitor calls");

 }

 }

 …

 }

 11

Cures and

Prevention

In languages such as Java that support unchecked exceptions, to
know which exception may be signaled from a method a developer
must recursively inspect every method called by it. Therefore,
preventing this bug pattern involves: inspecting the code (manually, or
using an exception flow analysis tool [13]) and checking if an exception
handler was defined to handle the exceptions thrown by an advice.
There are two possible ways of handling an exception thrown by an
aspect: (i) app-specific error handling; or (ii) error isolation.

According to the app-specific error handling strategy, we can create an
Error Handling Aspect that intercepts specifics points in the code
where the exception thrown by the aspect should be handled.

According to the error isolation strategy an Error Handling Aspect is
created to intercept the every aspect that may signal an exception, or a
catch clause is included within every advice that signals the exception.
Such aspects or catch clauses will capture and log the exception for
off-line analysis so that the main application never sees the exception.
One example of error isolation is the GlassBox monitoring aspect
library [10]. The developers of GlassBox implemented an error isolation
solution to prevent exceptions flowing from the monitoring code to
affect the monitored application.

The code snippet bellow illustrates a handler aspect that implements
the error isolation strategy.

1. public aspect ErrorIsolation {
2. ...
3. public pointcut scope() :
4. within(<SignalerAspect>)
 && !within(*..*AroundAdvices);
5.
6. void around():adviceexecution() &&
7. scope()){
8. try {
9. proceed();
10. } catch (<Exception> e) {
11. log(e);
12. }
13. }
14.}

 The adviceexecution pointcut (line 6) matches join points where an

advice is executing. This aspect handles every instance of <Exception>
that may flow from the execution of any advice defined on the
<SignalerAspect>. This strategy works well for isolating the
exceptions that come from before and after advice only. The execution
of an around advice may also contain the execution of the advised

method (proceed). Since there is no way to intercept the execution of

around advice, excluding the execution of proceed, if we used the same
strategy for dealing with exceptions thrown from around advice
execution, the exceptions thrown by the client application (calling

proceed) would be swallowed or erroneously handled inside the aspect
– breaking the exception handling policy of the client application. This
solution relies on a naming pattern to exclude the exceptions that
come from around advice to be swallowed: write static inner aspects

 12

whose name matches *AroundAdvices which will include the around
advices. Relying on name patterns is a fragile solution, but is a
palliative to deal with such situation while AO languages and tools are
improved.

Related
Patterns

The Error Handling Aspect pattern [18] can be used as one of the
ways of solving this bug pattern. As a consequence, the bug patterns
Late Binding Error Handling Aspect and Unmatched Error Handling
Aspect, related to the use of Error Handling Aspect, may be included
when solving the bug pattern presented here.

4.2 Aspects as Handlers

Aspects can be used to modularise the exception handling concern. In such
scenarios the catch clauses defined on the base code can be moved to aspects called
Error Handling Aspects [18], which are implemented using around and after
throwing advice. The bug patterns presented next are related to the use of the Error
Handling Aspect pattern.

Late Binding Error Handling Aspect

The Late Binding Aspect Handler bug pattern happens when an aspect
is created to handle an exception, but the aspect intercepts a point in
the program execution where the exception to be caught was already
caught by a handler in the method call chain that connects the
exception signaler to the aspect handler.

Symptoms When (i) an aspect is defined to handle one exception, (ii) it intercepts

the correct point in the base code where the exception should be
caught, (iii) but the exception does not reach the handler.

 13

Causes Although the pointcut expression defined on the Error Handling Aspect
is correctly specified, the handler may intercept a point in the program
code in which the exception was caught beforehand by a “catch clause”
on the base code as illustrated in Figure 5 - this catch clause could be
defined to handle an exception of the same type of the exception to be
caught or any of its supertypes.

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :

crosscutsmethod call protected region Exception propagation

Legend :

 Figure 5. Schematic view of the Late Binding Handler.

In this figure, the Advice a1 adds new functionality to Method mA.
This additional functionality throws a new exception EX, which flows
backwards through the advised method call chain. Another advice was
defined to handle the exception (advice a2), which intercepts a point on
the base code where the exception EX should be handled (Method mC).
However, the exception EX was caught by the catch clause inside
Method mB and as a consequence the exception will not reach the
point in the code where it should be handled by advice a2.

We can observe that this problem can also happen in OO
development: an exception may be prematurely caught by an existing
handler in the base code. But the problem is aggravated in AO systems
because base code is supposed to be oblivious of the aspects.

Code
Example

In the HealthWatcher example the transaction management concern is

implemented as an aspect which thows a TransactionException if

something goes wrong:

aspect TransactionManager {

 public pointcut dataBaseOperations():

 execution(public * *RepositoryRDB(..)))…;

 void around() : dataBaseOperations()

 { ...

 //manage transactions

 if (status==0) {

 throw new TransactionException(cause);

 14

 }

 ...

 }

 …

 }

A specific aspect, called TransExceptionHandling, was defined to

handle this exception (see Figure 4),

aspect TransExceptionHandling{

 public pointcut servletRequestExec():

 within(HttpServlet+) &&

 (execution(* HttpServlet.do*(..)) ||

 execution(* HttpServlet.service(..)))…;

 void around():servletRequestExec()

 {

 try{

 proceed();

 }catch(TransactionException exc){

 //handle exception

 ...

 }

 }

However, the exception thrown by TransactionManager did not

reached the Error Handling Aspect that intercepted the GUI layer. The
exception was caught beforehand by a “catch all clause” defined on the
Facade class defined on the business layer - as illustrated in Figure
14. This means that exceptions from the Transaction concern are
being handled by (and so are visible within) the application program.

 public class Facade {

 ...

 public Complaint searchComplaint(String id)

 {

 try{

 ComplaintRepositoryRDB.getInstance().search(id);

 }catch(Exception exc){

 //handle exception

 ...

 }

 }

Cures and
Prevention

To prevent this bug pattern: (i) avoid “catch all clauses” during
development, (ii) replace them (when possible) by specific catch
clauses, (iii) create two (or more) exception hierarchies: one for
exceptions signaled by the main program, and the other(s) for
exceptions signaled by aspects.

Definitely curing this bug pattern in the context of evolving systems is
still a challenge to current AO development technologies.

 15

Related
Patterns

This bug pattern can be found in scenarios where the Error Handling
Aspect Pattern [18] is used.

Unmatched Error Handling Aspect

The Unmatched Error Handling Aspect bug pattern happens when an
aspect is created to handle an exception but it intercepts the wrong
point in the program execution.

Symptoms An Error Handling Aspect is defined to handle an exception but does

not handle it. As a consequence the exception will either become (i)
uncaught – the exception thrown by the application method is not
caught inside the system, as a consequence it may lead to a software
crash; or (ii) will be mistakenly caught by an existing handler (a
scenario also known as unintended handler action).

Causes
This kind of bug occurs when an Error Handling Aspect does not
handle the exception that it is intended to handle, due to a mistake
on the pointcut expression. Consequently, the exception will become
uncaught or will be mistakenly caught by an existing handler
(unintended handler action). The fragility of the pointcut language,
and the number of different and very specific join points to be
intercepted by the handler aspects lead to such bug.

Code
Example

The code snippet below illustrates this problem. The
TransactionManager needs to intercept a specific point in the code
where an exception should be caught, but since this join point was
very specific the developer made a mistake while defining it.

aspect TransactionManager{

 // the pointcut was
 pointcut readImageAsByteArray(String imageFile):
 (call(public void Class.getResourceAsStream(String))
 &&(args(imageFile)));

 // the pointcut should be
 pointcut readImageAsByteArray(String imageFile):
 (call(public java.io.InputStream Class.
 getResourceAsStream(String))&&(args(imageFile)));

 ...
 }

Cures and
Prevention

The only way to solve this problem is to correct the mistake in the
pointcut expression. This is not a long term solution, since the
required pointcut can change in any maintenance task. Currently,
AspectJ does not allow a long term solution to this problem.

 16

Related
Pattern

• This bug pattern can be found when applying the Error Handling
Aspect Pattern [18].

• Although both this bug pattern and the Late Binding Error Handling
Aspect bug pattern describe cases where aspects fail to handle
exceptions, the reasons for failure are different. In the Late Binding
Error Handling Aspect bug pattern the pointcut expression intercepts
the correct join point but the exception is mistakenly handled
previously; in this bug pattern the pointcut expression is wrong.

Residual Handler

The Residual Handler bug pattern (also known as Obsolete Handler
bug pattern) happens when a handler defined for a specific exception is
no longer required, either because another handler was defined for the
exception (in an aspect or in the base code), or because the operation
that threw the exception was removed during a maintenance task.

Symptoms There is an inactive catch clause on the base code or inside an aspect.

Causes
The handler associated with an exception on the base code becomes
obsolete, because the exception handled by it is not signaled
anymore. This obsolete handler is a source of problems during
software maintenance if the program is changed to throw an
exception that this handler will catch. Then, the obsolete handler
may mistakenly catch exceptions and handle them incorrectly.

 17

Code
Example

The code snippet below was extracted from the HealthWatcher

example. The TransExceptionHandling aspect handles an

IOException thrown at specific points in the base code and wraps it

on an instance of TransactionException. This instance is then re-
thrown.

 aspect TransExceptionHandling {

 public pointcut fileOperations():

 execution(public * File+.read(..));

void around(): fileOperations(){

 try {
 proceed();
 } catch (IOException e) {
 throw new TransactionException(e);
 }

 …

 }

Unfortunately, older exception handlers that handled IOExceptions in

the base were not updated. The code snippet below illustrates one
residual handler that remained in the base code. This residual handler

(lines 8-11) will prevent advice in the TransExceptionHandling

aspect from handling this exception.

 1. private void updateEmployee(Employee) {
 2.
 3. try {
 4. ...
 5. tStamp = (TimeStamp)input.readTimeStamp();
 6. ...
 7. }
 8. catch (IOException e) {
 9. printErrorMessage("Error:" + e);
 10. }
 11. }

Cures and
Prevention

Every time an aspect is defined to handle an exception, the catch
clauses previously associated with that exception should be inspected
and removed when possible (i.e., if they are not responsible for
handling any other exceptions). Specific tool support (exception flow
analyzers [13]) should help during this task.

Related
Patterns

• This bug pattern can be found on the base code after applying the
Error Handling Aspect Pattern [18].

Acknowledgements

 18

We would like to thank our shepherd Fernando Castor Filho for his insightful
suggestions that helped us a lot to improve this catalogue of patterns. We also
would like to thank the PC member Paulo Borba who kept track of our discussions
and also contributed to the ideas presented here.

References

[1] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer M. Schwalb. An Evaluation
of Two Bug Pattern Tools for Java, 2008 International Conference on Software
Testing, Verification, and Validation, 2008, pp. 248-257.

[2] P. Louridas. Static Code Analysis. IEEE Software 23(4), p.58-61, 2006.

[3] E. Allen. Bug Patterns In Java. APress, 2002.

[4] Y. Nir, E. Farchi, and S. Ur. Concurrent bug patterns and how to test them. In
International. Parallel and Distributed Processing Symposium, IPDPS 2003.

[5] FindBugs™ - Find Bugs in Java Programs. On site:
http://findbugs.sourceforge.net/bugDescriptions.html

[6] http://www.eclipse.org/aspectj

[7] http://www.jboss.org/jbossaop/

[8] http://www.springframework.org/

[9] A. Colyer, A. Clement, “Large-Scale AOSD for Middleware”, Proc. AOSD Conf.,
2004, ACM, pp. 56-65.

[10] Glassbox Inspector. https://glassbox-inspector.dev.java.net/

[11] G. Kiczales; J. Lamping; A. Mendhekar; C. Maeda; C. Lopes; J. Loingtier; J.
Irwin. Aspect-Oriented Programming. In: Proceedings of the European Conference of
Object-Oriented Programming (ECOOP’97), Springer-Verlag, 1997, p.220-242.

[12] S. Zhang; J. Zhao. On Identifying Bug Patterns in Aspect-Oriented Programs.
In: Proceedings of the Computer Software and Applications Conference (COMPSAC
2007), 2007, p.431–438.

[13] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A. von Staa,
C. Lucena, Assessing the Impact of Aspects on Exception Flows: An Exploratory
Study, ECOOP 2008.

[14] M. Mezini; K. Ostermann. Conquering Aspects with Caesar. In: Proceedings of
the Proceedings of the 2nd International Conference on Aspect-oriented Software
Development, Boston, Massachusetts, ACM Press, 2003, p.90-99

[15] S. Soares; P. Borba; E. Laureano: Distribution and Persistence as Aspects. In:
Software: Practice and Experience, Wiley, vol. 36 (7), (2006) 711-759.

[16] F. Buschmann; R. Meunier; H. Rohnert; P. Sommerlad; M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, 1996.

[17] T. Massoni; V. Alves; S. Soares; P. Borba. PDC: Persistent Data Collections
pattern. In: Proceedings of the In First Latin American Conference on Pattern
Languages of Programming — SugarLoafPLoP, University of Sao Paulo Magazine -
ICMC, 2001, p.311–326.

[18] F. Filho, A. Garcia, C. Rubira, The Error Handling Aspect Pattern,
SugarLoafPlop 2007.

 19

[19] A. Garcia; C. Rubira. A Comparative Study of Exception Handling Mechanisms
for Building Dependable Object-Oriented Software. Journal of Systems and
Software, 59 (6), 2001, p.197-222

 [20] A. Colyer, et al. Eclipse AspectJ: Aspect-Oriented Programming with AspectJ
and the Eclipse AspectJ Development Tools. Addison-Wesley, 2004.

[21] J. Goodenough. Exception Handling: Issues and a Proposed Notation.
Communications of the ACM, 18(12), p.683–696, 1975.

[22] R. Miller; A. Tripathi. Issues with Exception Handling in Object-Oriented
Systems. . In: Proceedings of the European Conference on Object Oriented
Programming (ECOOP’97), Springer, 1997, p.85–103.

Appendix I – Aspect Terminology

Aspects. Aspects are modular units that aim to support improved separation of
crosscutting concerns [11]. An aspect can affect, or crosscut, one or more classes
and/or objects in different ways. An aspect can change the static structure (static
crosscutting) or the dynamics (dynamic crosscutting) of classes and objects. An
aspect is composed of internal attributes and methods, pointcuts, advices, and
inter-type declarations.

Join Points and Pointcuts. Join points are the elements that specify how classes
and aspects are related. Join points are well-defined points in the dynamic
execution of a system. Examples of join points are method calls, method executions,
exception throwing and field sets and reads. Pointcuts have name and are
collections of join points.

Advices. Advice is a special method-like construct attached to pointcuts. Advices
are dynamic crosscutting features since they affect the dynamic behavior of classes
or objects. There are different kinds of advices: (i) before advices - run whenever a
join point is reached and before the actual computation proceeds; (ii) after advices -
run after the computation “under the join point” finishes; (iii) around advices run
whenever a join point is reached, and has explicit control whether the computation
under the join point is allowed to run at all.

Inter-Type Declarations. Inter-type declarations either specify new members
(attributes or methods) to the classes to which the aspect is attached, or change the
inheritance relationship between classes. Inter-type declarations are static
crosscutting features since they affect the static structure of components.

Weaving. Aspects are composed with classes by a process called weaving. Weaver is
the mechanism responsible for composing the classes and aspects. Weaving can be
performed either as a pre-processing step at compile-time or as a dynamic step at
runtime.

