
Patterns for Understanding Frameworks

Nuno Flores, Ademar Aguiar
FEUP & INESC Porto, Universidade do Porto
E-mail: nuno.flores@fe.up.pt, ademar.aguiar@fe.up.pt.

Learning and understanding a framework is usually a major obstacle to its effective reuse.
Before being able to use a framework successfully, users often need to surpass a steep
learning curve by spending a lot of effort understanding its underlying architecture and
design principles. This is mainly due to users having to understand not only single isolated
classes, but also complex designs of several classes whose instances collaborate for many
different purposes, and using many different mechanisms. In addition, frameworks are also
full of delocalized plans, and use inheritance and delegation intensively, which makes their
design more difficult to grasp at a first glance. How to obtain the necessary information
from the framework itself and its accompanying documentation is the main problem with
framework understanding. Considering its importance, this paper presents an initial
attempt to capture, in the pattern form, a set of proven solutions to recurrent problems of
understanding frameworks. The fundamental objective of this work is to help non-experts
on being more effective when trying to learn and understand object-oriented frameworks.

The introduction of reuse in a software development process implies splitting the
traditional software life cycle into two interrelated cycles: one focused on developing
reusable assets, and another focused on searching and reusing reusable assets already
developed.

A framework is a reusable design together with an implementation. It consists of a
collection of cooperating classes, both abstract and concrete, which embody an
abstract design for solutions to problems in an application domain [15][16][17].

In the particular case of framework-based application development, the traditional
life cycle can be organized in: a framework development life cycle devoted to build
frameworks, corresponding to the abstraction phase of software reuse; and an
application development life cycle (also known as framework usage) devoted to develop
applications based on frameworks, corresponding to the selection, specialization,
and integration phases of software reuse.

Although the activities of framework development and application development
are often separate and assigned to different teams, the knowledge to be shared
between them is large, as the design of a framework for a domain requires
considerable past experience in designing applications for that domain.

In application development, frameworks act as generative artefacts as they are used
as a foundation for several applications of the framework’s domain. This contrasts
with the traditional way of developing applications, where each application is
developed from scratch. The most distinctive difference between the traditional
and the framework-based development of applications is the need to map the

Authors

Introduction

Patterns for Understanding Frameworks 2

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

structure of the problem to be solved onto the structure of the framework, thereby
forcing the application to reuse the design of the framework. The positive side of
this is that we don’t need to design the application from scratch. But, on the other
hand, before starting application development, we need to understand the
framework design, a task that sometimes can be very difficult and time-consuming,
especially if the framework is large or complex, and is not appropriately
accompanied with good documentation or training material.

Figure 1 - Activities, artefacts and roles of framework-based application development.

Figure 1 shows a simplified view of framework-based application development that
relates the artefacts, activities, and roles most relevant for the topic of the patterns
presented in this paper – framework understanding. Because understanding
frameworks is of major importance for application developers, in the figure, the
activity is assigned exclusively to that role, but in fact it can be also relevant for
framework selectors, original framework developers (especially of large
frameworks), framework maintainers, and developers of other frameworks,
although not with the same degree of importance.

In relation to the other activities depicted, there are pattern languages addressing
their own challenges and problems, of which we refer “Evolving frameworks: A pattern
language for developing object-oriented frameworks” [1], regarding design, implementation
and evolution activities, and also “Patterns for Documenting Frameworks” [2][3][4],
regarding documentation activities.

Therefore, this paper contributes patterns to a pattern language focusing on
problems of understanding frameworks (white-box, black-box or gray-box), which
must be properly managed before being able to use frameworks effectively.

White-box frameworks rely heavily on inheritance and dynamic binding in order to
achieve extensibility. Although white-box reuse is the hardest way to use a
framework, it is by far the most powerful.

Domain Framework

Applications

Documentation

designing and
implementing

applying

refining

documenting

understanding

framework
developer
framework
developer

application
developer

application
developer

artefact activity role role-assignmentartefact activity role role-assignmentartefact activity role role-assignment

evolving

understanding

Patterns for Understanding Frameworks 3

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Black-box frameworks are the easiest to use, because they are structured using
object composition and delegation rather than inheritance. On the other hand,
black-box frameworks are the most difficult to develop, because they require the
definition of the right interfaces and hooks able to anticipate a wide range of
application requirements.

Most real-world frameworks combine black-box and white-box characteristics,
being thus called gray-box frameworks. They allow extensibility both by using
inheritance and dynamic binding, as well as by defining interfaces. Gray-box
frameworks are designed to avoid the disadvantages of black-box frameworks and
white-box frameworks.

Although some of the problems here addressed could also be common to large or
complex software systems, frameworks are specifically designed to be easy to reuse,
thus adding special needs from the point of view of learning and understanding.

The pattern language comprises a set of interdependent patterns aiming to help
users become aware of the problems that they will typically face when starting to
learn and understand frameworks. These patterns are targeted for framework users
especially novices. The patterns were mined from existing literature, lessons
learned, and expertise on using frameworks, based on previous studies and
literature reviews of the authors on the topic [5][6].

The pattern language outlines a path commonly followed when learning and
understanding a framework. As many frameworks can be very difficult to learn and
understand, completely or in detail, these patterns aim to expose the tradeoffs
involved in the process of understanding a framework, and to provide practical
guidelines on how to balance them to find the best learning strategy for each
specific person (learner or framework user) and context.

The problems addressed by the patterns are basically raised by the following
questions:

• What do I need to understand about the framework to accomplish my
task? What kind of knowledge do I need? More concrete or abstract? At
code level, design level, documentation level?

• How can I acquire the knowledge I need? Which learning strategy should I
adopt? Which one is best for my needs?

• Which kinds of tools can I use to gather, organize, explore and preserve
the knowledge I value most?

According to [14], framework reuse can be divided into categories according to the
re-user’s interests, whether a framework selector, an application developer, a
framework maintainer, or a developer of other frameworks. These categories range
from selecting, instantiating, flexing, composing, evolving and mining a framework.
For the scope of the pattern language presented in this paper, only the most
commonly used will be addressed: selecting, instantiating and evolving.

Pattern language

Patterns for Understanding Frameworks 4

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

To describe the patterns, we have adopted Christopher Alexander's pattern form:
Name-Context-Problem-Solution-Consequences [7]. We’ve also added a Rationale section
and a See also section, where known uses and further reading directions can be
found. Before going to the details of each pattern, we will briefly overview the
pattern language with each pattern’s intent and a map (Figure 2) showing their
relationships.

Understand the
application domain

Understand the
architecture

Details
the architecture

Understand the
design internals

Focus on
the hot-spots

Understand the
source code

Implementation
details

Selecting a
framework

Instantiating a
framework

Evolving a
framework

Drive your
learning

Knowledge
-keeping

preserve your
knowlegde

Captures the
high-level design

Captures context

Captures intermediate
design concepts

How to choose
a framework ?

Usually
precedes

preserve your
knowlegde

preserve your
knowlegde

preserve your
knowlegde

What is the
domain scope?

What are the
main components?

How is it
implemented?

How is the
flexibility supported ?

How to use
the framework?

How to evolve
the framework?

Benefits from
experience of

Figure 2 – Framework understanding patterns and their relationships.

Selecting a framework. This pattern allows deciding whether or not to select a
framework, after evaluating its appropriateness for an intended application
domain.
Instantiating a framework. This pattern shows how to learn about instantiating a
framework in order to implement an application.
Evolving a framework. This pattern shows what steps should be taken to learn how to
evolve a framework.
Drive your learning. This pattern shows how to plan your learning process throughout
the task of understanding a framework.
Knowledge-keeping. This pattern shows how to preserve the acquired knowledge
about a framework.
Understand the application domain. This pattern enables the learner to know what is the
application domain covered by the framework.
Understand the architecture. This pattern shows the learner how to find architectural
knowledge about the framework.
Understand the design internals. This pattern tells the learner how to look for knowledge
about the design internals of the framework.
Understand the source code. This pattern helps to understand how to identify where in
the source code are the important parts that enable the developer to implement the
application.

When referring to a related pattern within this pattern language, its name will
appear in SMALLCAPS. Otherwise, if it’s an “outside” pattern, it will appear in
SMALLCAPS ITALICISED together with the respective reference.

Patterns overview

Patterns for Understanding Frameworks 5

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Selecting a framework

You are someone (manager, project leader, developer) who is responsible for
finding a solution for an application development project in a certain domain.
You are about to select a framework that can help you to solve your problem.

Framework selection consists of deciding whether to reuse or not a framework,
after evaluating its appropriateness for an intended application in a specific domain.

What do you need to learn about a framework in order to select it effectively?

Effort. You don’t want to spend too much time learning what you need to know to
effectively decide if a framework is selectable.

Certainty/Sureness. You need to be sure that the framework you’re about to select
covers, not only your application domain, but also all of your specific needs.

Documentation. The existing documentation may not give the necessary insight into
the applicability of the framework.

Complexity. The more complex a framework is, the harder it is to understand.

Start by quickly understanding the framework under consideration. Look for a
short description of the framework's purpose, the domain covered, and an
explanation of its most important features, preferably illustrated with examples.

In order to ascertain if a specific framework covers your domain requirements, you
need to UNDERSTAND THE APPLICATION DOMAIN in a clear way, i.e., the
domain covered by the framework, and the range of solutions for which the
framework was designed and is applicable.

However, knowing the purpose of the framework is not always enough to ensure
that all the problems may be met by this framework. It can be important to go
deeper to UNDERSTAND THE ARCHITECTURE, UNDERSTAND THE DESIGN
INTERNALS, or UNDERSTAND THE SOURCE CODE, until being sure of the
framework’s appropriateness for the problem at hand.

To be more effective, you may consider to DRIVE YOUR LEARNING according to
your experience and specific requirements.

Cost-effectiveness. You quickly gain insight into the scope of the framework and its
coverage of your specific needs. Going into detail gives you more accurate hints on
how the framework is built and addresses your problems.

Narrow knowledge. Yes, it solves your specific problems, but that doesn’t give you a
whole grasp over what other specific problems it might address. Further
investigation might be needed when new contextual-related problems arise.

When using frameworks, one of the key decisions that need to be made is whether
or not the framework fits the application. Since frameworks can be complex,

Problem

Forces

Solution

Consequences

Rationale

Patterns for Understanding Frameworks 6

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

gaining a deep understanding of the framework to make that decision often
requires the time consuming process of actually using the framework. Capturing
information about the applicable domain of the framework is a way to ease this
decision [38]. Limitations and design trade-offs about the framework can help to
show what the framework can and cannot be used for. There will always be degree
of uncertainty but that can be mitigated by existing documentation or the potential
user will often perform experiments to increase their understanding of the
framework and to evaluate its appropriateness to the new application.

In [18], Andrew Turner and Chao Wang had to evaluate a set of existing AJAX
frameworks and select the most suited for their requirements. Their process relied
on ascertaining that all the frameworks could cover their specific domain and high-
level requirements. They had to dig deeper into the framework internals and even
develop some prototypes to test if the framework could address and solve their
specific issues.

In [19], Sheick et al. proposed and applied a criterion for ascertaining the suitability
of a framework to a specific project. It relied on a set of areas to inspect, starting
with the intended domain and evolving into detailed issues like the presence of
design patterns and lower-level concerns such as error handling and degree of
coupling. They then applied their criteria to characterize an existing framework for
a transaction processing system implementation called jPOS ISO 8583, to see if it
was suitable for selection.

See also

Patterns for Understanding Frameworks 7

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Instantiating a framework

You have been given, or previously selected, a framework to use as a solution for a
specific problem. You are now about to instantiate the framework in order to
implement the intended functionalities and build your application.

Framework instantiation usually consists on deducing, designing and implementing
application-specific extensions to the framework. Despite knowing which
extensions the framework requires, it is hard to understand where to “plug” those
extensions in the framework.

What do you need to learn about a framework in order to instantiate it quickly?

Documentation. Tutorial documentation can help you to walkthrough the initial
contact with the framework and to acquire knowledge about the framework’s entry
points.

Effort. You don’t want to spend too much time learning what you need to know to
instantiate the framework.

Learner’s experience. If you are already familiarized with the framework, you try to
find similar areas of flexibility. A novice learner will look for demonstrating
examples that might give her a hint of where to start poking the code for hot-spots.

Complexity. Complexity may not mean “difficult to use”, but surely means “difficult
to learn”. Issues like indirection, abstraction and obscurity give the framework its
power but also hinder its ability to be learnt and understood.

Find the areas of customization of the framework by looking at the existing
documentation and resort to instantiation examples to clarify on how to use those
areas.

Look at the documentation to find the CUSTOMIZATION POINTS [4] of predefined
refinement where framework instantiation is supported. In addition, look also into
some GRADED EXAMPLES [3] that explain how to use the framework to
implement more common functionalities. The customization of a framework is
usually possible through sub-classing of framework abstract classes and/or
composition of concrete classes. Understanding how these classes relate and
interoperate is crucial to be able to use them properly.

If you’re dealing with a white-box framework, it is important to further
UNDERSTAND THE ARCHITECTURE and to UNDERSTAND THE DESIGN
INTERNALS. Only then you can start to UNDERSTAND THE SOURCE CODE and
effectively start reusing the framework.

To be more effective, you may consider to DRIVE YOUR LEARNING according to
your experience and specific requirements.

Framework know-how. You gain knowledge on how to instantiate the framework,
progressively increasing your expertise and being able to incrementally build your
application.

Problem

Forces

Solution

Consequences

Patterns for Understanding Frameworks 8

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Blind trust. Using a framework means trusting in code you have never seen. So if the
framework is poorly built or has features that it publicizes but are not implemented
or don’t work well, your solution may suffer with it. It’s not rare to see frameworks
whose internal code is not available for debugging or modification.

Framework instantiation into domain-specific application takes place at points of
predefined refinement called hot-spots [20]. Thus knowing where and how to use
these points leads to an effective framework instantiation. Moreover, [17]the best
way to start learning a framework is by example [21]. Most frameworks come with
a set of examples that you can study, and those that don’t are nearly impossible to
learn. Examples are concrete, thus easier to understand than the framework as a
whole. Frameworks are easier to learn if they have good documentation.

In [10], Froelich et al. resort to a Hooks-model to describe the framework
customization points and use it to instantiate the SEAF (Size Engineering
Application Framework). Their approach is similar to this as is relies on
documentation describing the customization points (hooks) and uses it to know
where to instantiate the framework.

Rationale

See also

Patterns for Understanding Frameworks 9

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Evolving a framework

You are a software engineer who is responsible for the maintenance and evolution
of a framework. Your task may be to evolve the framework to support new
requirements, refactoring its design, or the correction of errors, while preserving its
backward compatibility.

To evolve a framework means understanding where the evolution will take place
within the framework and to which extent do you need to go. You need to know
what elements to evolve and its impact on the framework as a whole.

What do you need to learn to evolve a framework?

Documentation. The documentation is almost always descriptive, which is not good
for framework evolvers, because original framework designers can’t predict how
the framework might be extended in the future through additional flexibility on
existing hot spots, or in additional hot spots. A more prescriptive documentation
would be better.

Maintenance expertise. It is expected that the framework maintainers are both domain
experts and software experts.

Evolution task. Your task may be adding new functionalities or improving existing
ones, correcting errors or refactoring the design. Different information needs arise
according to the task at hand.

Tools. There might be the need to recover lost design information that is important
to the evolution task. Existing reverse engineering tools may prove useful.

Look at the architecture of the framework and understand how it is built and how
it meets its purpose. Gain further insight of its components by looking at the
design internals and areas of flexibility and treat each variability issue separately.

Have a good UNDERSTANDing of THE ARCHITECTURE and its rationale, in order
to avoid the architectural drift problem [22], commonly consequential of poor
framework evolution. UNDERSTANDing THE DESIGN INTERNALS and
UNDERSTANDing THE APPLICATION DOMAIN helps at keeping the evolution
process in perspective. Look at the CUSTOMIZATION POINTS [4] that support the
flexibility offered by the framework and plan you evolution tasks.

To be more effective, you may consider to DRIVE YOUR LEARNING according to
your experience and specific requirements.

Evolution expertise. You gain enough insight to adequately address your evolution
tasks. Be alert to issues regarding delta analysis, architectural drifts, version
proliferation and over-featuring [22].

Ignorant surgery. Evolving parts of the framework means understanding its interaction
with its other parts. Sometimes, focusing too much on the problem at hand may
cause what is called “ignorant surgery” [12]. Inadequate investigation prior to
performing a change task limits the understanding of the existing design of a

Problem

Forces

Solution

Consequences

Patterns for Understanding Frameworks 10

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

system. The evolver performs a change in a single location in the code that is better
understood, but which may lead to unforeseen effects throughout the framework
as its dependencies aren’t properly identified and taken into account.

The need to evolve a framework usually arises during any of the following
situations: (1) new domain concepts need to be incorporated into the framework,
(2) reducing the complexity of the framework through re-design and (3) initial
design issues that were neglected need to be addressed [22]. The evolution process
usually involves the execution of two tasks: restructure (refactoring) and extension. In
order to restructure it properly, the developer must be aware of all the
repercussions and dependencies of the components or customization areas she
intends to extend or alter. Another concern is application compatibility. The
framework must remain compatible with earlier developed applications, whereas a
faulty evolution process may change the way the framework is supposed to be
used, closing otherwise opened customization points. By understanding how the
framework is supposed to be used will enable the developer to maintain its
interface coherent, without too much effort.

In [1], Roberts and Johnson present a pattern language for evolving frameworks
where they show that there is need for the understanding of different levels of
detail concerning the framework components.

In [39], Cortés et al. present a tool to support framework evolution tasks, namely
refactoring and extension. They propose to automate certain kinds of refactoring
tasks and applying extension rules based on Pree’s meta-patterns, which implement
variation points as a combination of template and hook methods.

Rationale

See also

Patterns for Understanding Frameworks 11

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Drive your learning

You are about to learn a framework to reuse it. You have your understanding
goals, but no process of learning to guide you through.

Upon defining your learning goal, you need to start learning. Knowing what to
learn is as important as reaching those goals through an effective learning process.
Adopting a learning strategy is, therefore, essential. But what strategy is more
suitable?

How do you define the most effective process for your learning needs?

Top-down vs. bottom-up. A top-down approach will start at a higher-level progressing
downwards, giving a good overview with little effort but poor details. A bottom-up
approach starts at a low-level progressing upwards, giving good detail with little
effort, but hindering awareness of the global impact of changes.

Learner’s experience. You experience with the framework can affect you learning
strategy, when choosing where to start and how to proceed.

Learning style. You may be a more “global”, “reflective” learner or you may possess a
more “sequential”, “active” learning behaviour [13].

Documentation. Depending on the existing documentation artefacts, the learner will
have to adapt his learning strategy to quicker and better fill in her knowledge gaps.

Select an entry point to start your understanding. Progress to the understanding
level you feel more comfortable with, changing directions whenever needed.

A more experienced learner tends to adopt a more top-down approach, whereas a
novice learner will go for a more bottom-up approach [25][26][27]. Remember you
can start at any abstraction level. A “global”, “reflective” [24] learner will start at a
higher level of abstraction and will “top-down” gradually into the framework,
because she needs the big picture first. A “sequential”, more “active” learner will
start at a lower-level, try things out and “bottom-up” into the framework, gathering
bits and pieces to form her mental model. Then, change directions, that is, swap
strategies, as needed. This is beneficial to reduce cognitive overload and focus on
the goal.

Look at the DOCUMENTATION ROADMAP [2] and choose the documentation
artefacts that may better assist you on your understanding tasks, namely
FRAMEWORK OVERVIEW, GRADED EXAMPLES, CUSTOMIZATION POINTS,
DESIGN INTERNALS and COOKBOOK & RECIPES [2][3][4].

Methodical approach. A methodical investigation proves more effective than a chaotic
one. By defining a course of action the chances of reaching an answer faster,
increase.

Personalized cognitive process. Navigate freely along the abstraction levels until you feel
satisfied with the things you’ve learned. Your mental model will progressively
increase throughout task execution.

Problem

Solution

Consequences

Patterns for Understanding Frameworks 12

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

On the field of Program Comprehension, many researchers have studied how
programmers understand programs through observation and experimentation
[28][29]. This research has resulted in the development of several cognitive theories
to describe the comprehension process. These range from bottom-up [30][31], top-
down [32][33], knowledge-based [34] and systematic [35] converging into an
integrated model that frequently switches between all of these [36]. This integrated
model would serve a wider range of learners as it would give the learner the option
of choosing the most effective learning strategy. All of these cognitive models use
existing knowledge together with the code and documentation to create a mental
representation of the program.

In [40], Schull et al. performs a study of about reading techniques while learning
about a framework and divides them into two categories: hierarchy-based and
example-based. While the former is mostly used by experienced learners, the latter
gains the preference of the most novice learners. Nevertheless, one important
conclusion of the study is that the learning process should not be strict and allow
the learner to freely choose the way she feels more comfortable with, thus
potentially achieving the better results faster.

In [37], an exploratory study was performed on how developers investigate source-
code in order to perform a change task. One of the major results of that study was
that a methodical investigation of the code of a system was more effective than an
opportunistic approach. Nevertheless, this theory does not imply that a purely
systematic approach to program investigation is the most effective. Successful
subjects also exhibited some opportunistic behaviour.

Rationale

See also

Patterns for Understanding Frameworks 13

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Knowledge-keeping

You want to keep what you have learned while understanding the framework. You
want to be able to use that knowledge in the future so that you don’t have to do it
all again. Also you want it to be fit for other framework users.

Learning how to use a framework means finding, browsing, using and generating
understanding knowledge. Reusing the knowledge in future learning tasks is as
useful as reusing design and code. Developers go to great lengths to create and
maintain rich mental models of code that are rarely permanently recorded.
Preserving this knowledge for later use is, therefore, of utter importance.

How to adequately preserve the acquired learning knowledge?

Existing Documentation. Adopting existing documentation artefacts as templates to
harbour new knowledge depends on its availability, easiness of use and quality of
its contents.

Intrinsic knowledge. Much relevant information is kept in the minds of experts that
have used the framework. This knowledge decays with time and never becomes
useful to others but the expert himself. Sharing this knowledge is important, but
might be expensive to experts as it causes interruption and can be time-consuming.

Tools. Documentation generation tools, using recovery and extraction techniques,
might be used to generate several specific kinds of views and formats over the
information about the framework.

Motivation. Producing documentation can be tiresome and boring. The long-term
cost-benefit is often overlooked, thus affecting the motivation to spent time and
resources producing documentation.

Use documentation methodologies and tools to produce documentation artefacts
and store them in an open, shared, collaborative environment where the
information can be accessed and evolved through time.

Choose the documentation artefacts that most adequately can register the
knowledge you’ve acquired, namely FRAMEWORK OVERVIEW, GRADED
EXAMPLES, CUSTOMIZATION POINTS, DESIGN INTERNALS and COOKBOOK &
RECIPES [2][3][4].

Shared knowledge base. The learning knowledge is shared through the community of
learners, from experts to novices, being all able to use and improve it according to
their needs.

Collaborative effort. By opening the knowledge to the community, its quality improves
from the constant revising by a heterogeneous group of learners, grasping all the
benefits this can bring.

Problem

Forces

Solution

Consequences

Patterns for Understanding Frameworks 14

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Good quality documentation is crucial for the effective reuse of object-oriented
frameworks. Without a clear, complete and precise documentation describing how
to use the framework, how it is designed, and how it works, the framework will be
particularly hard to understand and nearly impossible to use by software engineers
not initially involved in its design.

Documenting a framework is not trivial. Producing framework documentation
needs to address several issues ranging from contents consistency to contents
organization. Using framework documentation also poses a problem where issues
like understandability, searchability, and effectiveness need to be adequately
addressed [5].

Adopting known documentation artefacts [2][3][4] specific to our learning task to
store our understanding knowledge helps to lessen the burden of recording our
findings. If that knowledge is then shared with a community of other fellow users,
that burden can be even less because the responsibility of keeping the information
up-to-date is also shared by the other contributors.

The “community” factor also contributes to the refining and quality increase of the
documentation as factors like diversity, independence, decentralization and
aggregation [46] will mitigate quality issues like accommodating different audiences,
having different views over the information or even the lack of standards.

In [5], a minimalist approach to framework documentation is proposed. It presents
an extensible documentation infrastructure based on the WikiWikiWeb concept
and XML technology. It provides several document templates and a simple
cooperative web-based environment to produce and use minimalist framework
documentation. The proposed approach covers the overall documentation process,
from the creation and integration of contents till the publishing and presentation. It
encompasses a documentation model, a process and a set of supporting tools.

Rationale

See also

Patterns for Understanding Frameworks 15

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Understand the application domain

You have a framework you want to use, but you don’t know its general purpose or
if it covers your application domain.

You need to be sure that the framework answers your functional and domain
requirements. Not only the general purpose of the framework must be clear but
also its reach and the assurance that it covers, if not all, the required problem
domain areas and constraints of the application to develop.

How do you learn what is the purpose of the framework and the domain scope it covers?

Learner’s domain knowledge. The easiness of finding where the domain concepts are
present, and which areas relate to those domains, strongly depend on the learner’s
knowledge about the application domain. Metaphor and technical jargon may be
useful to track down and identify hints on component names that might relate to
domain concepts.

Expert domain knowledge availability. If such an expert is available for consult, it should
nurture and speed up domain knowledge acquisition and promote a domain-driven
analysis of the framework.

Documentation. The documentation should give ideas on how the domain is mapped
onto the framework. It could contain a brief description of the framework and its
main purpose and concepts.

Identify the general purpose of the framework and its application domain by
browsing the existing documentation and capture the main domain concepts, how
they relate and how the framework addresses them.

A FRAMEWORK OVERVIEW [2] is a good way to do so and GRADED EXAMPLES
[3] provide detail on how the main features can be implemented.

Find the framework top components and their metaphor (names and designations)
and UNDERSTAND THE ARCHITECTURE of how they are related to cover the
domain concepts.

Preserve all the information gathered, adopting a KNOWLEDGE-KEEPING strategy.

Broadness. Viewing the framework at this level enables the learner to know the
general purpose of the framework and its overall domain applicability.

Shallowness. Without going into more detail it is sometimes difficult, if not
impossible, to ascertain if a certain functionality or technology is covered by the
framework. As such, one needs to dig deeper and try to UNDERSTAND THE
DESIGN INTERNALS in order to understand how some pieces fit in together,
because the system requirements need detailed specifications of certain
functionalities.

Problem

Forces

Solution

Consequences

Patterns for Understanding Frameworks 16

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

When you know nothing about a framework, usually you try to see what the
framework is for. You look for the title, a paragraph, maybe the name of the
components. These elements are usually on the documentation that accompanies
the framework, whether is a specific document, website or other kind. When trying
to find out its purpose, you look for keywords or something that will shed some
light about the domain concepts of the framework. It is about graphics? It is about
networks? It is general-purpose? What are the concepts it encompasses and how?
Only after you’ve acquired this information you start looking for other details.

In [19], the process of determining a framework’s suitability to a problem domain
starts with the domain analysis activity. This activity has several non-contiguous
steps to reach a domain model, where existing documentation (when this
documentation is not available for the framework itself, they resort to
documentation belonging to exiting application developed using that framework) is
reviewed and domain experts are consulted. Also existing standards for the domain
are studied. The result of the activity is a domain analysis model containing the
requirements of the domain, the domain concepts and the relationships between
concepts.

Rationale

See also

Patterns for Understanding Frameworks 17

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Understand the architecture

You are using a framework and you want to know if its architecture is compatible
with your application needs. You want to understand how the framework elements
are structured and how they relate.

Using or evolving a framework impacts the framework as a whole. The awareness
of the full implications of any change to the framework requires a sound notion of
the framework’s architecture and how its elements, which map the domain
concepts, relate with one another. You need to understand its architecture.

How do you learn about the framework’s architecture, its components and internal relationships?

Framework maturity. A matured framework is likely to be better structured, being easier
to identify its main architectural elements.

Documentation. If there is existing documentation that explains the overall
architecture, it can be a great understanding aid.

Tools. These can complement the lack of overview documentation, by reverse-
engineering the architectural information.

Look into the documentation or any existing reverse-engineered design
information and search for instances of architectural patterns [11]. Usually present
in a more mature framework, these can indicate its main architectural style.

Browse through the DESIGN INTERNALS [4] to identify the main architectural
concepts and its relationships. If you need more detail, look for architectural
primitives [8]. These can give an incremental view of the overall architecture by
identifying interfacing ports between framework components and later, by
aggregation, lead to defining a known architectural pattern or structure.

Preserve all the information gathered, adopting a KNOWLEDGE-KEEPING strategy.

High-level awareness. There is an awareness of all the framework internal components
and how they relate. You can piece together all the framework’s parts to see if it
fits your application needs.

Shallowness. Despite being comprehensive, there is no grasp of how the components
that relate to each other, interoperate, or how they function internally. You need to
further UNDERSTAND THE DESIGN INTERNALS, to be able to know more about
their behaviour.

A framework is an architectural abstraction. An architectural abstraction identifies
and names composition of elements with a certain structure and functionality. This
facilitates communication about designs. A framework provides a set of
abstractions that are useful when discussing and describing a domain [41]. When a
white-box framework is used, it is necessary to understand the concepts and
architectural style of the framework in order to develop applications that conform
to the framework. Many errors can be avoided and the application can be
constructed more efficiently if the framework user understands its strategies and

Problem

Forces

Solution

Consequences

Rationale

Patterns for Understanding Frameworks 18

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

styles. In a matured framework, during design stage, a suitable architectural style
was adopted and usually these are known domain-specific architectural patterns.

In [42], Shaw and Garlan, first introduce the notion of software architectural styles
as a family of systems in terms of a pattern or structural organization. More
specifically, it determines the vocabulary of components and connectors that can
be used in instances of that style, together with a set of constraints on how they
can be combined.

In [11], Buschmann et al. presents a pattern catalogue of architectural styles based
on the work of Shaw and Garlan and introduces a software design classification
system consisting of architectural patterns, design patterns and idioms, covering
different perspectives and different abstraction levels.

In [8], Zdun and Avgeriou propose to remedy the problem of modelling
architectural patterns through identifying and representing a number of
“architectural primitives” that can act as the participants in the solution that
patterns convey. According to the authors, these “primitives” are the fundamental
modelling elements in representing a pattern and also they are the smallest units
that make sense at the architectural level of abstraction (e.g., specialized
components, connectors, ports, interfaces). Their approach relies on the
assumption that architectural patterns contain a number of architectural primitives
that are recurring participants in several other patterns.

See also

Patterns for Understanding Frameworks 19

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Understand the design internals

You want to use the framework to solve a specific problem. You need to know
how the framework can be used to implement a specific solution to that problem.

To effectively use a framework, its flexibility and reuse points reside mostly at an
intermediate design level. Due to its complexity, it is not clear where those points
are and how they are used to implement the solution. Therefore, understanding the
design internals is essential to find those flexibility points.

How do you understand the design internals of a framework?

Design complexity. A framework design is, by nature, complex. Most of its complexity
can be found at this level of design.

Inheritance vs. composition. Design variations for the same problem may prove to be a
hinder because they obfuscate the identification of existing solutions as they seem
dissimilar.

Documentation. Depending on the existing documentation, one may find bits and
pieces of information about how design solutions were implemented to solve
specific domain problems.

Tools. Reverse engineering and software visualization tools that aid in identifying
known design structures and patterns may save time and give a different view over
the whole or part of the framework’s design.

Go through the DESIGN INTERNALS [4] documentation, or browse the existing
classes, and identify the concept classes and their interactions.

Look for instances of known design patterns. Design patterns [9] are often used as
building blocks for frameworks, because they introduce the flexibility it needs. The
more mature a framework is, the more design patterns will it encompass. Design
patterns aggregate these “hot spots” or CUSTOMIZATION POINTS [4]: areas of
flexibility we can “hook” [10] into and take full advantage of the framework’s
reusability.

Preserve all the information gathered, adopting a KNOWLEDGE-KEEPING strategy.

Framework internal mechanisms. You gain knowledge about how the framework
provides the flexibility for adapting its semi-implementation to develop an
application. You acquired most of the information to adapt the framework to your
needs.

Still at a Design level. Understanding is kept at a design level. Adapting means
implementing, and implementing means coding. You need therefore to
UNDERSTAND THE SOURCE CODE.

Frameworks are designed and implemented to fully exploit the use of dynamically
bound methods. Template and hook methods [43][9] are two kinds of methods

Problem

Forces

Solution

Consequences

Rationale

Patterns for Understanding Frameworks 20

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

extensively used in the implementation of frameworks, to provide it with its
flexibility and adaptability.

Generally, template methods are used to implement the frozen spots of a
framework, and hook methods are used to implement the hot spots. The frozen
spots are aspects that are invariant along several applications in a domain, possibly
representing abstract behavior, generic flow of control, or common object
relationships. The hot spots of a framework are aspects of a domain that vary
among applications and thus must be kept flexible and customizable.

The difficulty of good framework design resides exactly on the identification of the
appropriate hot spots that provide the best level of flexibility required by
framework users. More hot spots offers more flexibility, but results in a framework
more difficult to design and use, so somewhere in between resides a balanced
design.

In [43] are identified several ways of composing template and hook classes, and
presented under the form of a set of patterns, globally called meta-patterns. Meta-
patterns categorize and describe the essential constructs of a framework, on a
meta-level. Design patterns provide proven solutions to recurrent design problems
and are extremely useful to design object-oriented frameworks. The motivation for
using meta-patterns is to provide a means to categorize and describe design
patterns on a meta-level, and to support framework construction. Therefore,
design patterns become the building blocks of frameworks.

Design patterns can be used as inspiration when looking for flexible hot-spots
within a framework. A framework that contains design patterns can be understood
in term of these; therefore when adapting a framework, users can perceive the
specific adaptation steps (sub-classing or configuring framework classes) as
adaptations of small wholes – the involved design patterns – instead of making
new atoms (classes). Users see their adaptations in a perspective larger than that of
a single class [41].

In [44], Bruch et al. propose the use of data mining techniques to extract reuse
patterns from existing framework instantiations. Based on these patterns,
suggestions about other relevant parts of the framework are presented to novice
users in a context-dependent manner.

In [45], Fairbanks et al. present a pattern language based on the notion of design
fragment. A design fragment is a pattern that encodes a conventional solution to
how a programmer interacts with a framework to accomplish a certain goal. It
provides the programmer with a “smart flashlight” to help him/her understand the
framework, illuminating only those parts of the framework he/she needs to
understand for the task at hand. Design fragments give programmers immediate
benefit through tool-based conformance and long-term benefit through expression
of design intent.

See also

Patterns for Understanding Frameworks 21

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

Pattern Understand the source code

You want to code your solution using the framework.

To actually use a framework you have to code. Therefore, understanding the
source code is mandatory. But a framework is not a common piece of code: it has
no clear entry point and there isn’t a “main” method from where to start
understanding the flow of control. Its “hot-spots” are scattered across the code
and the way to use them may not be straightforward.

What to look for to understand the source-code and plug-in your solution?

Hollywood principle. Your code will have to be inserted at a specific location that the
framework will eventually call and execute. It might not be straightforward how
and where that calling will take place.

Language familiarity. If you are not familiarized with the programming language in
which the framework is built, you’re going to take more time to understand the
code.

Task-orientation. To be cost-effective, learners tend to focus on the task at hand, and
to find the quickest way to solve their immediate problem.

Code Annotations. Code annotations and inline documentation can give helpful insight
on a certain code fragment was implemented or served a purpose.

Documentation. Usually, the framework comes with examples on how to quick start
or how to quickly address initial problems. These can be extremely helpful as they
show how to begin and force you to try to understand how the system works.

Browse the documentation for examples on how to address the task at hand.
Identify the code main entry points for your specific task.

Usually, the framework comes with a COOKBOOK & RECIPES [3] on how to solve
common problems the framework addresses. These show you how to begin coding
and enable you to understand how the overall system works.

If no documentation is present, try to look for beacons and idioms that might hint
to the entry point(s) of the framework (Control classes and “main” methods) and
track down the flow of control. Idioms are coding patterns that are used to solve
recurrent problems (You use a loop to iterate over an array, etc.). Beacons are
fragments of code that may resemble algorithm techniques or coding strategies to
known problems. Classifying and chunking code into these concepts might prove
useful to increase code granularity search.

Identify your insertion points as you go along and preserve all the information
gathered, by adopting a KNOWLEDGE-KEEPING strategy.

Missing the whole picture. At such a low-level, the learner has local expertise but might
overlook more global side-effects of code insertion or modification. A broader

Problem

Forces

Solution

Consequences

Patterns for Understanding Frameworks 22

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

notion of what is happening might be necessary, so you might need to
UNDERSTAND THE DESIGN INTERNALS to gain further awareness.

Prior to performing a software modification task, developers must inevitably
investigate the code of the target system in order to find and understand the code
related to the change. With frameworks, the theory is the same. If we assume that
the way a developer investigates a program influences the success of the
modification task, then ensuring that developers in charge of modifying software
systems investigate code of the system effectively can yield important benefits such
as decreasing the cost of performing software changes and increasing the quality of
the change.

Developers should follow a general plan when investigating a program, should
perform focused searches in the context of this plan, and should keep some form
of record of their findings.

Documentation here is crucial. Not only should there be some sort of guide for
browsing the code, but also examples on how to address the most common
problems. Going through these examples would be a valuable assisted first “dive”
into the framework code and would help emerge the control-flow mechanism of
the framework and the way it is supposed to be used.

In [25], Sillito et al. performed a study where they observe developers trying to
understand a system in order to perform a change task. They harvested and
identified 44 different kinds of questions developer ask during that process and
divided them into four categories based on the characteristics of the source code
graph capturing the information needed for answering a given question: those
aimed at finding the initial focus points, those aimed at building on those points,
those aimed at understanding the sub-graph, and those over such sub-graphs.

In [37], Robillard et al. conducted another study where observed successful and
unsuccessful developers while performing a software evolution task and came up
with a theory of program investigation effectiveness in the form of a series of
observations and associated hypotheses. Overall, they found that successful
developers exhibited a highly methodical approach to program investigation, where
they identified the high-level structures and planned the changes to be made,
without forcefully spending more time than a more opportunistic approach.

Rationale

See also

Patterns for Understanding Frameworks 23

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

[1] Roberts, D. and Johnson, R. E. (1997). Evolving frameworks: A pattern language for developing
object-oriented frameworks. In Pattern Languages of Program Design 3. Addison Wesley.

[2] Aguiar, A., and David, G. (2005). Patterns for Documenting Frameworks – Part I. In Proceedings of
VikingPLoP’2005, Helsinki, Finland.

[3] Aguiar, A., and David, G. (2006). Patterns for Documenting Frameworks – Part II. In Proceedings of
EuroPLoP’2006, Irsee, Germany.

[4] Aguiar, A., and David, G. (2006). Patterns for Documenting Frameworks – Part III. In Proceedings
of PLoP’2007, Portland, Oregon, USA.

[5] Aguiar, A. (2003). A minimalist approach to framework documentation. PhD thesis, Faculdade de
Engenharia da Universidade do Porto.

[6] Flores, N. (2006). From Program Comprehension to Framework Understanding: a roadmap.
Available at http://www.fe.up.pt/~nflores

[7] Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language. Oxford University Press.
[8] Zdun, U. and Avgeriou, P., (2005) “Modeling Architectural Patterns Using Architectural Primitives”,

OOPSLA
[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).“Design Patterns — Elements of reusable

object-oriented software”. Addison-Wesley.
[10] Froehlich, G., Hoover, H., Lui, L. and Sorenson, P. (1997) “Hooking into Object-Oriented

Application Frameworks”, Proceedings of the 19th International Conference on Software
Engineering, pp.491- 501.

[11] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M..(1996) “Pattern oriented
software architecture - a system of patterns”. John Wiley and Sons.

[12] Robillard, M., Coelho, W., and Murphy, G., (2004) “How Effective Developers Investigate Source
Code: An Exploratory Study”, IEEE Transactions on Software Engineering, vol..30, no. 12,
December 2004

[13] Felder, R.., and Spurlin, J. (2005) “Applications, Reliability, and Validity of the Index of Learning
Styles”. International Journal of Engineering Education, v. 21, n. 1, pp. 103-112.

[14] Butler, G. (1997). A reuse case perspective on documenting frameworks.
http://www.cs.concordia.ca/faculty/gregb.

[15] Johnson, R. E. and Foote, B. (1988). “Designing reusable classes”. Journal of Object-Oriented
Programming, 1(2):22–35.

[16] Deutsch, L. P. (1989). “Design reuse and frameworks in the smalltalk-80 system”. In Software
reusability: vol. 2, applications and experience, pages 57–71. ACM Press.

[17] Fayad, M. E. and Schmidt, D. C. (1997b). “Object-oriented application frameworks.”
Communications of the ACM, 40(10):32–38.

[18] Turner, A. and Wang, C. (2007). “AJAX: Selecting the Framework that Fits”. Dr. Dobb's Journal,
May 01, 2007. http://www.ddj.com/web-development/199203087

[19] Ahamed, S. I., Pezewski, A., and Pezewski, A. (2004). “Towards Framework Selection Criteria and
Suitability for an Application Framework.” In Proceedings of the international Conference on
information Technology: Coding and Computing (Itcc'04).

[20] Pree, W”. “Design Patterns for Object-Oriented Software Development” (1995). Addison-Wesley /
ACN Press 1995

[21] Fayad, M. E., Schmidt D. C., Johnson, R. E. “Building Application Frameworks” (1999). John Wiley
& Sons, Inc. 1999

[22] Codenie W., Hondt K., Steyaert P., Vercammen A. “From Custom Applications to Domain-Specific
Frameworks.” (1997) Communications of the ACM, 40(10): 71-77. 1997

[23] Butler G., Xu L. “Cascaded Refactoring for Framework Evolution” (2001). Proceedings of 2001
Symposium on Software Reusability. ACM Press. P. 51-57. 2001

References

Patterns for Understanding Frameworks 24

Copyright © 2008, Nuno Flores ,Ademar Aguiar. All rights reserved. Permission granted to copy for all purposes of PLoP’2008

[24] Felder, R.M. and Silverman, L.K. "Learning and Teaching Styles in Engineering Education" (1988),
Engr. Education, 78(7), 674-681, 1988

[25] Sillito, J., Murphy, G. C., and De Volder, K. (2006). “Questions programmers ask during software
evolution tasks”. In Proceedings of the 14th ACM SIGSOFT international Symposium on Foundations of
Software Engineering (Portland, Oregon, USA, November 05 - 11, 2006)

[26] Kirk, D., Roper, M., and Wood, M. (2005). “Identifying and Addressing Problems in Framework
Reuse”. In Proceedings of the 13th international Workshop on Program Comprehension (May 15 - 16, 2005).

[27] Shull, F., Lanubile, F., and Basili, V. R., "Investigating Reading Techniques for Framework Learning"
(1998), Technical Report CS-TR-3896, UMCP Dept. of Computer Science, 1998

[28] Storey, M-A, “Theories, Methods and Tools in Program Comprehension: Past, Present and Future.”
(2005) Proceedings of the 13th IEEE International Workshop on Program Comprehension (IWPC).
St. Louis, MO, pp. 181-191, IEEE Computer Society Press 2005.

[29] Storey, M-A, Fracchia, F. and Muller, H.. “Cognitive design elements to support the construction of a
mental model during software visualization”. (1997) Proceedings of the 5th International Workshop
on Program Comprehension (IWPC’97), Dearborn, Michigan, pp. 17-28, May, 1997

[30] Pennington, N., “Stimulus structures and mental representations in expert comprehension of
computer programs” (1987), Cognitive Psychology, pp. 295-341, vol 19, 1987.

[31] Shneiderman, B. and Mayer, R., “Syntactic/semantic interactions in programmer behavior: A model
and experimental results” (1979). International Journal of Computer and Information Science, pp.
219-238, 8(3), 1979

[32] Brooks, R., “Towards a theory of the comprehension of computer programs” (1983), International
Journal of Man-Machine Studies, pp. 543-554, vol.18, 1983.

[33] Soloway, E. and Erlich, K. “Empirical studies of programming knowledge” (1984), IEEE
Transactions on Software Engineering, pp. 595-609, SE-10(5), September 1984.

[34] Letovsky, s. “Cognitive processes in program comprehension” (1986), Empirical Studies of
Programmers, pp.58-79, 1986

[35] Littman, D.C., Pinto, J., Letovsky, S. and Soloway, E., “Mental models and software maintenance”
(1986), Empirical Studies of Programmers, pp. 80-98, 1986

[36] Maryhauser and Vans. “Program comprehension during software maintenance” (1995), IEEE
Computer pp. 44-55, August 1995.

[37] Robillard et al. “How Effective Developers Investigate Source Code: An Exploratory Study” (2004).
IEEE Transactions on Software Engineering, Vol. 30, Nº12, December 2004.

[38] Froehlich, G., Hoover, H.J., Liu, L., Sorenson, P.G. “Choosing an Object-Oriented Domain
Framework” (2000), ACM Computing Surveys, vol.32(1), 2000.

[39] Cortés, M., Fontoura, M., Lucena, C. “Framework Evolution Tool” (2006). Journal of Object
Technology, vol.5, no.8, November-December 2006, pp.101-124.

[40] Schull, F., Lanubile, F., Basil, V. “Investigating Reading Techniques for Object-Oriented Framework
Learning”, IEEE TSE, vol.26, nº.11, 2000

[41] Jacobson, E.E., Nowack, P. “Frameworks and Patterns: Architectural Abstractions” (1999). In
Building Application Frameworks, Chapter 2, pp.29-54, John Wiley & Sons, 1999

[42] Shaw, M., Garlan, D., “Software Architecture – Perspectives on an Emerging Discipline”, Prentice
Hall, 1996

[43] Pree, W. (1995). Design Patterns for Object-Oriented Software Development. Addison-Wesley /
ACM Press.

[44] Bruch, M., Schäfer, T. and Mezini, M., “FrUiT: IDE Support for Framework Understanding” (2006)
OOPSLA Eclipse Techonology Exchange, 2006

[45] Fairbanks, G., Garlan D. and Scherlis, W. “Design Fragments Make Using Frameworks Easier”
(2006), OOPSLA 2006.

[46] Surowiecki J. “The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How
Collective Wisdom Shapes Business, Economies, Societies and Nations” (2004), Little Brown 2004

