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Abstract

Operations on data can be classified as eitherqueriesor updates. Modern object-oriented program-
ming languages require classes/interfaces to support a predefined set of queries. This presents a challenge
for software designers, since a fixed interface can severelyrestrict the opportunities for optimisation. In
this paper, we present two common patterns for optimising queries. The first requires specific knowl-
edge of which query to optimise beforehand, whilst the latter provides more leeway in this regard. These
patterns are commonly occurring in software, and we find numerous instances of them within the Java
standard libraries.

Introduction

Abstraction — separating the “what” from the “how” — is a central theme of computer science [3, 13].
Take for example, abstract data types. These have long been studied (see e.g. [9, 5, 2]) and most mod-
ern languages come with libraries providing numerous ADTs and their implementations. Well-known
examples include the Standard Template Library [18], the Java Collections Library [19] and the Boost
Library [1]. Typical ADTs includeMaps,Sets andSequences, and are backed by implementations such
asHashMap, TreeMap, HashSet, etc to name but a few. These provide a good degree of separation
between the “what” and the “how”. In this paper, we present two common patterns for optimisation which
arise from separating these two things. Perhaps unsurprisingly then, several known uses of these patterns
can be found within common ADT libraries.

We take the view, as others have [10], that all operations on data can be classified as eitherqueriesor
updates. According to this viewpoint, Abstract Data Types provide afixed set of queries (the interface)
optimised for some specific purpose. As an example, considera Map ADT. A Map can be viewed as a
Set of pairs which has been optimised for a specific query: theget() operation. Thus, theMap interface
is similar to that ofSet, but includes an additionalget() method. This allows for implementations
(e.g. HashMap) which can perform the query more efficiently than simply enumerating every pair and
selecting a match. In this we see a common pattern; namely, that an interface (i.e.Set) has been taken and
optimised for a specific query (i.e.get()), resulting in a new interface (i.e.Map). We refer to this pattern
asRestricted Query Optimisation (1). Here, restricted indicates that a specific query has been optimised,
rather than a more general class of queries. Thus, optimising additional queries requires changing the
interface again. For example, to optimise a query giving thereverse ofget() (i.e. to find the keys that
map to an object), we must extend the interface with another method, such asreverseGet().

Forces

Each of the patterns trades-off different forces. The primary force being resolved isperformance. These
patterns all increase speed —time performance— by increasing thespace usageof the program. More
specifically, time performance is resolved in situations when thequery/update ratiois high, since the ben-
efits from optimising a query in this case are far greater. A second benefit is that these patterns (especially
Generalised Query Optimisation (2)) also provideflexibility, in that designs become more resilient to
future performance requirements. However, the patterns introducecomplexityinto the program — particu-
larly, into the ADT implementations themselves — reducingreadabilityandmaintainability. Furthermore,
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the patterns are difficult toapply, since the expectedquery/update ratiois often hard to know concretely
and may vary between program runs and/or clients (for frameworks).
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1 Restricted Query Optimisation

How do you design an interface optimised for a specific query?

Suppose we are implementing a data structure on which there areseveral queries that can be performed
and, furthermore,we know a priori which of these queries we wish to optimise. For example, in a drawing
program we might have a canvas containing the shapes that it draws:

class Canvas {
private List<Shape> shapes;
...
public List<Shape> getShapes() { return shapes; }

}

Now, when our program receives a mouse click, it searches thelist returned bygetShapes() looking for
those whose bounding box contains the click. If we have many shapes in the list, this operation will be a
performance bottleneck as the total number of shapes will dwarf the number we’re interested in.

Forces

• You need to increase thetime performanceof the program

• You can afford to trade increasedspaceto reducetime

• You wish move complexity from client code to server objects.

• You know which queries the program will perform

Therefore: Add a new method optimised for the particular query in question.

Since we have identified a specific query to optimise, it is sensible to add a specific method for that
query. Doing so enables its optimisation, even if this is notimplemented immediately. In this case, a
method such asgetEnclosingShapes()would be appropriate.

Example

To illustrate, we present an example from [20] which is basedon a real-world application calledRobocode[11].
The Robocode game is written in Java and pits user-created simulated robots against each other in a 2D
arena. The game has a serious side as it has been used to develop and teach ideas from Artificial Intelli-
gence [6, 7, 12].

A Robocode Battle object maintains a private list of Robots,with an accessor method that returns all
Robots in the battle:

class Battle {
private List<Robot> robots;
...
public List<Robot> getRobots() { return robots; }

}

During each turn of the game, robots scan their field-of-viewwithin the battle arena to locate other Robots
to attack. The code implementing this iterates the list of robots, selecting those which are alive and within
the robots field-of-view as follows:

class Robot {
public int state = STATE_ACTIVE;
public boolean isDead() { return state == STATE_DEAD; }
public void die() { state = STATE_DEAD; }
...
private void scan() { // Scan field-of-view to find robots

for(Robot r : battle.getRobots()) {
if(r!=null && r!=this && !r.isDead() && r.intersects(...)) {
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....
}}}}

To optimise programs like Robocode, programmers focus on methods likescan() that are called
repeatedly. A common and effective approach is to cache intermediate results which, in this case, are the
sub-collection(s) being frequently traversed. For example, the programmer might know that, on average,
there are a large number of dead robots. To avoid repetitively and needlessly iterating many dead robots in
scan(), he/she might maintain a cache — a list of just the “alive” robots — as follows:

class Battle {
private List<Robot> robots; // master list of all robots
private List<Robot> aliveRobots; // cached list of alive robots
...
public List<Robot> getRobots() { return robots; }
public List<Robot> getAliveRobots() {

return aliveRobots;
}}

Then, eachRobot can iterate the list of alive robots, without needing to check whether each is alive or
dead:

class Robot {
...
private void scan() {

for(Robot r : battle.getAliveRobots()) {
if(r!=null && r!=this && r.intersects(...)) { ... }

}}}

Here,aliveRobots is a sub-collection ofrobots containing only those where!isDead() holds.
Thus, the for-loop inscan() no longer needlessly iterates over dead robots. Since (after the game has
been running a while) more Robots are typically dead than alive, this reduces the time taken for the loop at
the cost of extra memory (the cache).

When the source collection(s) of a query are updated (e.g. byadding or removing elements), or an ele-
ment of a source collection is itself updated, any cached result sets may become invalidated. Traditionally,
encapsulation is used to prevent this situation from arising, by requiring all updates go via a controlled
interface. Thus, updates to a collection can be interceptedto ensure any cached result sets are updated
appropriately. To illustrate, consider a simpleaddRobot() method for adding a new robot to the arena,
where a cache is being maintained explicitly:

class Battle {
private List<Robot> robots, aliveRobots;
...
public List<Robot> getRobots() { return robots; }
public List<Robot> getAliveRobots() {

return aliveRobots;
}

public void addRobot(Robot r) {
robots.add(r);
if(!r.isDead()) { aliveRobots.add(r); }

}

public void robotDied(Robot r) {
aliveRobots.remove(r);

}}

Here we see that, when a robot is added viaaddRobot(), thealiveRobots list is incrementally up-
datedto ensure it remains consistent with therobots collection.

There are several issues to consider when implementing thispattern:
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• Dependency Tracking.An important issue regardingincrementalisation(i.e. incremental updating
of cached result sets) is that updates affecting cache consistency must be intercepted. While encap-
sulation does help in this regard, it is not always sufficient. For example, thealiveRobots cache
may become inconsistent if aRobot instance is mutated outside of theBattle class’s knowledge.
To alleviate this issue, we provided arobotDied() method which must be explicitly called when
a robot dies. Another solution would be, where possible, to restrict theRobot interface such that a
Robot may only die via theBattle.robotDied() method.

• Query/Update Ratio.An important issue in deciding whether or not to optimise a specific query is its
query/update ratio. This is because there is typically a cost associated with incrementally maintaining
a cached result set: when the number of updates affecting a result set is high, compared with how
often it is actually used, it becomes uneconomical to cache that result set. In cases when the expected
query/update ratio is not known, or is known to vary greatly,one can also use a mechanism based
oncaching heuristics. For example, by dynamically monitoring the query/update ratio and using this
data to decide when to begin caching, and when to stop.

Consequences

• Benefits.Program performancecan be significantly improved, often by several orders of magnitude
or more. Furthermore, the resulting system is moreflexible. That is, even if the query under consid-
eration is not time-critical, it may become so in the future.Thus, by providing an extended interface,
the implementation can be optimised at a later date as needed.

• Liabilities. Explicitly maintaining extra collections has several drawbacks. Clearly, caching in-
creases thespacerequirements for the program. Furthermore, it can be difficult to introduce caches
when the interface of the providing object (i.e.Battle) is fixed (e.g. it’s part of a third-party library,
and/or the source is not available, etc). The optimisation also reducesreadabilityandmaintainability
as the source becomes more cluttered. Maintaining cached collections is also rather tedious, since
they need to be updated whenever the underlying collection or the objects in those collections are
updated — whenever a new Robot “spawns” into the game, or whenever an alive Robot dies. Finally,
code to maintain these optimised collections must be written anew for each collection. For example,
Robocode’sBattle class also maintains a list ofBullets and employs a loop similar toscan()
for collision detection. Programmers can introduce a sub-collection to cache live bullets, but only by
duplicating much of the code necessary for the sub-collection of live Robots.

Known Uses

This pattern encompasses a very common optimisation that isparticularly prevalent in the design of object-
oriented collection libraries. In the Java Collections Library [19], a good example isjava.util.List.
This provides aget(int) query for accessing theith element in the list. This query is not strictly neces-
sary from a functionality perspective, since the existingCollection interface is sufficient for performing
this operation (via explicit enumeration of elements). Thus, the sole purpose of including this query is to
enable optimisation; in particular, theArrayList implementation is able to provide constant time access
to elements via this query.

Another common example found in collection libraries is theMap interface. By regarding aMap as a
Collection of pairs (as is done, for example, in the C++ Standard Template Library [18]), it becomes
apparent that, again, theget(Key) query is provided purely to enable optimisation. This is because this
query can be implemented by explicit enumeration of elements using the existingCollection interface.

A similar situation arises in libraries for manipulating graphs, such as the Boost Graph Library [17] and
JGraphT [8]. Such libraries provide some kind ofGraph interface, typically backed byAdjacencyList
andAdjacencyMatrix implementations. As withMap, theGraph interface is essentially aCollection
of pairs with additional queries for enabling optimisation. A good example of such is theedges(Node)
query which returns those edges adjacent to the given node; again, this information can be determined by
explicit enumeration of the elements using the existingCollection interface. Thus, theedges(Node)
query is provided purely for the purposes of optimisation.

The Relationship Aspect Library [15, 14], provides anotherinteresting example. This library is de-
signed for representing therelationshipsbetween objects in an object-oriented program. Since the web
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of relationships is essentially a graph, theRelationship interfaces provided by this library are, in
fact, similar to those found in common graph libraries. As such, theRelationship interface provides
from(Object)/to(Object) queries to enable efficient navigation of the object graph.

Finally, numerous real-world applications such as Robocode [11] embody this pattern as it provides a
fundamental optimisation technique.
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2 Generalised Query Optimisation

How do you design an interface optimised for an unknown set ofqueries?

Suppose we are implementing a data structureon which there are several queries that can be performed,
but we don’t know specifically which ones to optimise. This may arise, for example, if the set of queries
requiring optimisation varies between program runs, or between clients (if we are implementing a library
or framework).

Forces

• You need to increase thetime performanceof the program

• You can afford to trade increasedspaceto reducetime

• You wish move complexity from client code to server objects.

• You do not know which queries the program will perform

Therefore: Provide a single method that supports all possible queries.

Since we are unsure what query should be optimised, it makes sense to leave our options open. That is,
to design an interface for which optimised implementationscan be provided at a later date.

Example

For example, suppose we want to design a collection API supporting different kinds of query optimisation,
such as the following:

Collection<String> col = ...;
...
for(String s : col) {

if(s.equals(‘‘Dave’’)) {
...

} }

Optimising this code with the Java collections API is essentially impossible since theCollection inter-
face provides no appropriate method. To optimise such code,we need to include a method supporting a
wide-range of queries. The design of our collections API might look like this:

interface UnaryFun<T> { boolean select(T x); }

interface MyCollection<T> {
...
MyCollection<T> filter(UnaryFun<T> f);

}

Here, thefilter function is provided to capture the set of queries we wish to optimise. This accepts a
unary function that selects the required elements of the collection. Thus, our client code now looks like
this:

MyCollection<String> col = ...;
...
UnaryFun<String> f = new UnaryFun<String> {

public boolean select(String x) { return x.equals(‘‘Dave’’); }
};
for(String s : col.filter(f)) {

...
}

The advantage of this design is that we can now provide optimised implementations of thefiltermethod.
Such an implementation might look like this:
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class CachingCollection<T> implements MyCollection<T> {
private HashMap<UnaryFun<T>,MyCollection<T>> cache = ...;
private MyCollection<T> base = ...;
...
public MyCollection<T> filter(UnaryFun<T> f) {

MyCollection<T> result = cache.get(f);
if(result == null) {
result = base.filter(f);
cache.put(f,result);

}
return result;

} }

Here, we see that a cache is maintained for the results of a specific query. Thus, when thefilter function
is called again with the sameUnaryFun, the results can be quickly recalled. As with therestricted query
optimisation, our implementation should incrementally update its cached result sets, which we refer to as
incrementalisation. This is done by intercepting all operations which may mutate the underlying collection.
For example, theadd method could be incrementalised as follows:

class CachingCollection<T> implements MyCollection<T> {
...
public boolean add(T item) {

if(base.add(item)) {
for(Map.Entry<UnaryFun<T>,MyCollection<T>> e : cache.entrySet()){

if(e.getKey().select(item)) {
e.getValue().add(item);

} }
return true;

}
return false;

} }

Here, the code iterates the caches available for the different UnaryFun objects, and adds theitem to
those which match.

There are several important issues to consider when implementing this pattern:

• Dependecy Tracking. A key issue is being certain thatall operations affecting the results of a
particular query are intercepted. Starting with thebase collection, encapsulation can be used to
ensure operations for adding/removing elements are intercepted (as above). However, if the unary
functions supplied tofilter rely on state contained in elements held by the collection, then changes
to these objects could clearly put the cache in an inconsistent state. Dealing with this problem is not
as easy: one option is to simply require that elements held inthe collection do not change state — this
is essentially the contract already required by many of Java’s Collection classes (e.g.HashSet);
another option is to require the unary functions do not access mutable state of elements held in the
collection; yet another option is provide a method onMyCollection for indicating that a particular
Object held in the collection has changed state.

• Query/Update Ratio. Knowing when to optimise an individual query is key to successful appli-
cation of this pattern. This issue becomes more challenginghere, since the individual queries (i.e.
instances ofUnaryFun) are unknown a head of time. Memory consumption becomes important,
since the number of queries is unbounded; this contrasts with Restricted Query Optimisation (1),
where memory (and other resource) utilisation can be easilybounded. To alleviate this issue, a
cache-replacement strategycan be employed to evict cached results which, for example, are not used
frequently. Furthermore, in cases where the expected query/update ratio varies widely between in-
dividual queries, additional mechanism may be required identify those which should be optimised
(static or dynamic profiling can typically be used for this).
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Consequences

• Benefits.Program performancecan be significantly improved, often by several orders of magnitude.
The resulting system is also moreflexible, as optimised implementations can be provided at a later
date. This effect is more pronounced here, compared withRestricted Query Optimisation (1),
since the range of queries is far greater; one could even imagine implementations which categorise
the range of query parameters and optimise them differently.

• Liabilities. This pattern tradestime for space, increasing the space required by the program. This
optimisation clearly reducesreadability andmaintainability for the sake ofperformance. In fact,
it may also increase the chance ofprogram error, especially when strict rules must be enforced to
ensure proper dependency tracking. Furthermore, the benefits are only realised in situations where
thequery/update ratiois actually favourable. However, whether or not this is the case depends upon
the programs’ usage patterns, which can be difficult to determine ahead of time.

Known Uses

This pattern occurs less frequently in practice thanRestricted Query Optimisation (1). This is primarily
because the pattern introduces additionalcomplexityand many problems are not sufficiently performance
critical to warrant its use. Typically it is found buried in the core algorithm(s) of an application that have
key performance requirements.

One such example is found injavax.swing.tree.AbstractLayoutCache and its subclasses,
FixedHeightLayoutCacheandVariableHeightLayoutCache, which are part of the Java stan-
dard library. These classes provide parts of the implementation for an expandabletree view, as used in many
GUIs. The key interface is:

abstract class AbstractLayoutCache {
...
// Returns a rectangle giving the bounds needed to draw path.
public abstract Rectangle getBounds(TreePath path,Rectangle placeIn);

// Instructs the layout cache that the bounds for path are invalid, and need to be updated.
public abstract void invalidatePathBounds();

}

The getBounds() method returns the bounding box for a particular subtree, and this depends upon
whether the subtree is expanded, or partially expanded. TheTreePath identifies the path to the component
in question. Thus, callinggetBounds() on the top-levelTreePath returns the bounds of the whole tree
(which swing needs in calculating layout information). Thetwo subclasses ofAbstractLayoutCache,
areFixedHeightLayoutCache andVariableHeightLayoutCache. The former does not need
to calculate its bounding box as it uses a fixed bounding box, whilst the latter does. The implementation of
the latter uses an internal cache to store the bounding boxesof differentTreePaths, thus implementing
Generalised Query Optimisation (2)pattern. The interface addresses cache coherency issues intwo
ways: firstly,TreePath is immutable; secondly, theinvalidatePathBounds()method is provided
to signal that the bounds for a particularTreePath are now invalidated.

Many instances of this pattern are found in the JavaCollection interface. A good example is the
ContainsAllmethod:

interface Collection<T> {
...
// Returns true if the collection contains all of the elements in the specified collection
boolean containsAll(Collection<?> c);

}

The containsAll() method is very general, supporting comparisons against allimplementations of
Collection. Furthermore, this method is not strictly necessary — it canbe easily implemented using the
explicit enumeration facility of theCollection interface. Presumably, in this instance,containsAll()
was provided for convenience. Nevertheless, it could be used for various performance optimisations. For
example, since the common implementation ofcontainsAll() has linear time-complexity in the size
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of the parameter, we might like to reduce this. One approach is to exploit the sortedness of collections such
asTreeMap; that is, if we know the maximum element of this collection, and that the parameter collection
is in sorted order, we can often stop thecontainsAll() comparison early. Another approach is to cache
those collections which have already been tested, thus giving constant-time performance on repeat queries.
One problem with this latter approach is, of course, tracking dependency changes. The problem is partic-
ularly acute here, since the specification ofcontainsAll() makes no restrictions which might help us.
Nevertheless, such an optimisation can be applied in certain situations; in particular, when the parameter
collection is known to be immutable.

Other related examples include collection APIs, such as those of Smalltalk [4] and Python [16]. These
typically provide afilter(UnaryFun) method, similar to that discussed above. However, these any
collection implementations do not perform query optimisation, despite the interface enabling this possibil-
ity.
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