
 1

An Analysis Pattern for Invoice Processing

Eduardo B. Fernandez

Department of Computer Science and
Engineering

Florida Atlantic University
Boca Raton, FL 33431

ed@cse.fau.edu

ABSTRACT

We discuss an analysis pattern for invoice processing.
The pattern describes events such as the creation and
validation of an invoice, followed by the payment
process. This pattern is composed of two simpler patterns
that describe the creation and payment of the invoice,
respectively. The composite pattern represents a
minimum application so that it can be applied to a variety
of situations and it can be combined with other related
patterns to describe more complex applications. The
component patterns have value of their own and can be
used independently.

Keywords: accounting, analysis patterns, business
modeling, invoices, object-oriented design

1. INTRODUCTION

Invoices are used in all places where services or
products are provided and they usually contain a list of
charges for the services or products rendered. In some
environments, e.g. a supermarket, invoices are delivered
right away, or they can be delivered via email or post
mail. After the invoice has been received, it must be paid,
which involves different methods from which one can
choose. We present here an analysis pattern that describes
the processing of an invoice, including its creation and its
payment. This pattern is an example of a Semantic
Analysis Pattern (SAP) as it expresses semantic aspects
of the model. A SAP realizes a few use cases and is
composed of a few basic patterns. Following the concepts
behind this type of pattern [Fer00a], we describe a set of
use cases that together illustrate its idea.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Preliminary versions of
these papers were presented in a writers' workshop at the 16th
Conference on Pattern Languages of Programs (PLoP). PLoP'09,
August 28-30, Chicago, IL, USA. Copyright 2009 is held by
the author(s). ACM 978-1-60558-873-5

Xiaohong Yuan
Department of Computer Science

North Carolina A&T State University
Greensboro, NC 27411

xhyuan@ncat.edu

The pattern is a composite pattern and we present

first its two components, Invoice Creator and Invoice
Payment, which we combine later into an Invoice
Processing pattern. The component patterns have value of
their own and can be used independently; however, if
both aspects are needed the composite pattern presents
some advantages over the independent application of
each one. Notice that we do not care about the specific
contents of the invoice, there are many varieties which
are discussed in books such as [Fow97, Hay96, Sil01];
our emphasis is on the needed processing. Our patterns
present enough detail to be used as guidelines for
implementation and they are directed to analysts,
architects, and developers.

The intents of these patterns are:

Invoice Creation. Describe the process of creating and
preparing an invoice for a product or service, followed by
its validation.

Invoice Payment. Allow a client to make a payment for
an invoice corresponding to services used and/or products
bought.

Invoice Processing. Describe the conceptual steps of
invoice processing, including its creation, preparation,
validation, and payment.

2. INVOICE CREATION

Describe the process of creating and preparing an
invoice for a product or service, followed by its
validation.

2.1 Context

This pattern is valuable for institutions or enterprises
of any type that require payment for products or services.
In some cases the customers may have registered or
opened accounts with these institutions but that is not a
necessary condition.

 2

2.2 Problem

In order for a client to pay for the services provided
or for the products she bought, an invoice needs to be
created that describes what should be paid, including
rules and conditions. The process of preparing such an
invoice can be rather complex and also time consuming.
Different systems deal with this process in a different
way, but they all have common aspects; however, we
need a systematic and uniform way of preparing invoices.

The following forces affect the solution:

• In the creation of an invoice, there can be more than

one actor involved, so some ordering of actions
between these parties has to be defined.

• Items in an invoice can have different discounts and
can belong to various categories which are managed
differently, so the preparation of the invoice needs to
be done according to specified procedures and
policies.

• The invoice may specify different ways of payment

and other conditions, so we must define them
explicitly.

• We need to validate that the invoice is complete and

in a valid state before we send it.

• Preparation and validation should be done by

different people (separation of duty).

• We need to keep track of who created and who

validated an invoice.

• There are invoices which are not bills of sale, like for

example the 'shipping invoice' which details all the
parts that are included in the specific order. So, some
information that we include into the invoice has to be
optional, while other information has to be
mandatory.

• We might want to control or restrict who performs

each activity.

2.3 Solution

First, a user creates and prepares the invoice
according to predefined institution procedures; then
another user validates it. The stakeholders that participate
in this process are the creator of the Invoice and the
Invoice Validator. The following use cases correspond to
these activities:

1) Create and Prepare Invoice. After purchasing some

items (products or services), a document is issued,
which incorporates all the relevant items and their
costs. This step can be done automatically or
manually either by a person or by a group of persons.
After an invoice has been created, we have to add the
products or services to it and supply additional
information regarding every item from the invoice.

2) Validate Invoice. After an invoice has been created
and prepared, it has to be validated by either a
system or a person. This step ensures that the quality
and completeness of the invoice are met.

Figure 1 is a class diagram for the realization of

these use cases. Class InvoiceCreator defines an
interface for creating an invoice. It also provides a way
of preparing the invoice by adding or deleting items from
it, calculating the amounts to be paid, discounts
applicable, and payment deadlines. Class Invoice
represents the document in which all the goods or
services that have been bought are incorporated together
with the nature of each item. Class InvoiceValidator is
used to ensure that the invoice that resulted from the
steps described above is in a consistent form that
complies with the trade usage [Cro] and possible
regulations. Classes BillingPolicy and ValidationRule
include business policies that apply to the preparation
and validation of invoices.

 3

Figure 1: Class diagram for Invoice Creation

Figure 2 shows a sequence diagram for creating,
preparing and validating an invoice. After created, the
invoice may be initialized. The creator adds items and
other specific information until there are no more items to
be added to the invoice. After each item is added the
cumulative amount is calculated. Once all the items have
been supplied, the invoice signals the validator that the
invoice is complete. After validation the invoice is ready
to be sent.

2.4 Consequences

The pattern provides the following benefits:

• It describes an abstract invoice preparation process

that can be tailored to different specific situations.

• We can separate specific stages of preparation along

the invoice preparation process and their ordering.

• The creator and the validator of the invoice are roles;

that is they can be performed by the same or
different individuals. They can also be performed by
groups of people.

• We can apply the separation of duty principle by

having different users perform creation and
validation through different interfaces with access
control.

• We can keep track of who prepared and who
validated an invoice.

• Every characteristic of the use case is represented in

this pattern, without providing any implementation
aspects, which leaves it open to different
possibilities.

• There are many ways of preparing an invoice, this

pattern defines an abstract view of its essential
aspects and it can be adapted so that it fits any
scenario.

• We can add explicit authorizations to each action; in

particular, creation and validation can be restricted to
specific actors.

Several liabilities of the pattern can be defined in terms of
the aspects that were not covered, such as:

• Different types of creators and validators. This

depends on the system, and can range from creators
that are individuals to creators that are software
programs or institutions (parties).

• The specific contents of the invoice depend on

accounting practices. [Hay96] and [Sil01] provide
details of these aspects. Because of this we have left
out any descriptions of the items bought.

<<interface>>
InvoiceCreator

type

 Invoice

invoiceID
date
time
itemsBought
totalAmount
discounts
isValid

isValidInvoice

1 *

*

1

validate

<<interface>>
InvoiceValidator

create and prepare

name
Employee

date

BillingPolicy

*

*

 create

*
*

validate

*

*

*

1

ValidationRule

date * *

appliesTo

appliesTo

 4

Figure 2: Creating, preparing and validating an invoice

2.5 Known uses

Some examples of use for this pattern are:

• A point-of-sale system in any department store that

sells products, such as Macy’s.

• An on-line shopping store, where people use the

Internet to log onto an on-line shop in order to buy
different items, e.g. Amazon.

• Monthly invoicing for telephone or internet service,

e.g. Comcast.

• SAP has an Invoice management product where they

create and prepare invoices [SAP].

2.6 Related patterns

• Creation of invoices may use a Factory pattern

[Gam94] in the design stage.

• The Account pattern [Fer02] defines accounts where

the invoice costs may be charged.

• A Strategy pattern [Gam94] can be used to select

different ways to calculate prices [Pie].

• Billing policies can be defined using a Business Rule

pattern [Ars00].

• Fowler [Fow97], Hay [Hay96], and Silverston

[Sil01] deal with accounts and describe how invoices
are produced but don’t show their handling.

• Order and Shipping [Fer00b] may be used to

describe the items bought.

3. INVOICE PAYMENT

Allow a client to make a payment for an invoice
corresponding to services used and/or products bought.

3.1 Context

This pattern is valuable for institutions or enterprises
of any type that require payment for products or services.
In some cases the customers may have registered or
opened accounts with these institutions but that is not a
necessary condition.

3.2 Problem

A client has to be able to pay an invoice in a way
convenient to him; this implies that different payment
methods have to be incorporated in the payment process,
so that a client can elect the best option that fits his needs.
Such a payment has to be validated in order for both the
client and the system to have confirmation that the
payment has been done in an appropriate way.

<<actor>>
:Creator

:Invoice

<<actor>>
:InvoiceValidator

create()

initialize()

addItem(item)

[complete]

validate()

loop -[more items]-

 5

Invoice
idInvoice

Customer

*

1
itemsBought
totalSum
discounts

<<interface>>

idValidPayment
PaymentValidator

idClient

Payment
idPaymentMethod

*

1

pay

1

*

validates

*

paymentFor

ValidationRule
date

Employee
name

validate appliesTo
1 * * *

Figure 3: Class Diagram for Invoice Payment

The solution is affected by the following forces:

• We need to provide different possibilities to make a

payment for an invoice; otherwise we might lose
customers.

• The system and the client need a convenient way of

keeping track of the payments made.

• Validation of every received payment has to be made

to ensure that the client’s information is correct and
in accordance to the requirements and regulations of
each system.

• We need to keep track of who validated a payment.

3.3 Solution

Separate the validation approach from the payment
so we can apply different validation approaches. It should
be noticed that an invoice could be sent before or after
the actual payment has been made. Such flexibility is
incorporated in the design by separating this process.

Figure 3 shows the class diagram for Invoice
Payment. The Invoice class represents the amount that
must be paid by the customer. The Payment class
represents the payment made by the client for the

products and/or services incorporated in the invoice. It
should incorporate information related to the invoice for
which the payment is being made, the payment method
chosen, the id of the client that makes the payment. The
PaymentValidator validates payments according to
ValidationRules. Employee keeps track of who
validated a payment. The Customer class represents the
customer that makes payments for the given invoice.

Figure 4 shows the sequence diagram for payment of
an invoice. A Client initiates the payment process by
making a payment according to the total sum in the
invoice. The Payment is validated by the
PaymentValidator, according to the validation rules, after
which the status of the payment is returned to the client.

 6

Figure 4: Sequence diagram for Invoice Payment

A Payment can be in the following states: Active,
Paid, and Validated. When the invoice is sent, payment
is activated. After the customer has paid (Payment in Paid
state), his payment needs to be validated. After the
validation process has been completed, the payment is
closed.

3.4 Consequences

This pattern has the following advantages:

• It allows one to control and keep track of who

validated payments.

• The payments can be related to its corresponding

invoice.

• We can apply different validation rules to a payment.

• We can indicate different ways to pay an invoice by

adding classes to Payment as in [Hay96] or [Sil01].

In the liabilities we can mention that aspects such as
payment in installments or payments by check, have
been left out.

3.5 Known uses

Some examples of use for this pattern are:

• A point-of-sale system in any department store that

sells products, such as Macy’s.

• An on-line shopping store, where people use the

Internet to log onto an on-line shop in order to buy
different items, e.g. Amazon.

• Monthly invoicing for telephone or internet service,
e.g. Comcast.

• SAP has an Invoice management product where they

create and prepare invoices [SAP].

3.6 Related patterns

• This pattern may include a Factory pattern [Gam94]

to create payments.
• The Validation Rule could be an instance of the

Business Rule pattern [Ars00].
• Fowler [Fow97], Hay [Hay96], and Silverston

[Sil01] deal with accounts and describe how invoices
are produced but don’t show their handling.

• A pattern Pay For The Resource Transaction
[Bra99], describes the process of paying a bill in
installments.

4. INVOICE PROCESSING

Describe the conceptual steps of invoice processing,
including its creation, preparation, validation, and
payment.

4.1 Context

This pattern is valuable for institutions or enterprises
of any type that require payment for products or services.
In some cases the customers may have registered or
opened accounts with these institutions but that is not a
necessary condition.

 7

4.2 Problem

There are many systems where we need to combine
the functions of creating and preparing an invoice, and
paying that invoice, including the corresponding
validations. How do we represent this process in a
general and abstract manner?

The solution is affected by the following forces:

• Workflow. The creation, preparation, and validation

of an invoice requires specific actors, actions in
specific sequences, must follow specific rules, and
must be easy to change.

• Separation of duty. Preparation and validation should

be done by different people.

• Flexibility. There should be ways to define who is

responsible for a payment and the way of payment.

• Memory. The system and the client need a

convenient way of keeping track of the payments
made.

• Validation. Every prepared invoice and every

received payment has to be validated to ensure that
the client’s information is correct and in accordance
to the requirements and regulations of each system.

• Accountability. We need to keep track of who

created an invoice, who validated it, and who
validated a payment.

• Authorization. We may want to control who

performs specific actions.

4.3 Solution

Combine the solutions of the two component
patterns, Invoice Creator and Invoice Payment. Figure 6
shows the class model of this pattern as a combination of
the two previous class models. The sequence diagrams of
Figures 2 and 4 still apply. Figure 7 shows the activity
diagram of creating and paying for an invoice.

4.4 Consequences

This pattern combines the consequences of its component
patterns plus:

• Workflow. The actors and the sequence of their

actions follow business rules, which can be easily
changed.

• Authorization, separation of duty, and
accountability. We can control who performs
specific actions on invoices, we can separate these
functions, and we can keep track of who performed
these actions.

• Flexibility. It is easy to add new payment methods,

discount policies, or types of customers.

• Memory. Clients and systems can keep track of the

payments made.

• Validation. We can conveniently validate the

preparation of invoices and the reception of
payments.

• Security. We can define a secure version of this

pattern applying instances of the Role-Based Access
Control pattern as we have done for analysis patterns
describing law applications [Fer07] and others.

The pattern has the following liabilities:

• We left out details of the customers. Those can be

found in [Hay96] or [Sil01].

• We did not consider specific ways of payment. They

also can be found in [Hay96] or [Sil01].

• We did not consider physical delivery and storage of

invoices. They are considered in [Net09].

 8

Figure 5: Class diagram for Invoice and Payment

 9

Figure 6: Activity diagram for Invoice and Payment

4.5 Known uses

Some examples of use for this pattern are:

• A point-of-sale system in any department store that

sells products, such as Macy’s.

• An on-line shopping store, where people use the

Internet to log onto an on-line shop in order to buy
different items, e.g. Amazon.

• Monthly invoicing for telephone or internet service,

e.g. Comcast.

• SAP has an Invoice management product where they

create and prepare invoices [SAP].

 10

4.6 Related patterns

• Creation and payment of invoices may use a Factory

pattern [Gam94].

• The Account pattern [Fer02, Fow97] defines

accounts where the invoice costs may be charged.

• A Strategy pattern [Gam94] can be used to select

different ways to calculate prices or discounts.

• Billing and payment policies can be defined using a

Business Rule pattern [Ars00].

• The Order and Shipment pattern [Fer00b], describes

how a customer can place an order for a product and
the subsequent shipment of the product.

• Internet shops may require invoicing [Fer01].

• The contents of invoices can be found in [Fow97],

[Hay96], and [Sil01].

• Creation and delivery of invoices is considered in

[Net09].

5. ACKNOWLEDGEMENTS

Mihai Fonoage started this pattern as a class project. Our
shepherd, Rosana T. Braga provided valuable comments.
The participants of the PLoP 2009 Writers Workshop
provided valuable improvements.

6. REFERENCES

[Ars00] A. Arsanjani. "Rule Object Pattern Language".
Proceedings of PLOP 2000.

[Bra99] R.T.V. Braga, F.S.R. Germano, and P.C.
Masiero, “A Pattern Language for Business Resource
Management”, Proceedings of the 6th Annual Conference
on Pattern Languages of Programs (PLOP'99), v7, 1-33,
Monticello, Illinois, USA, August 1999.

[Cro] Crowley Maritime Corporation, Definition of the
term Invoice. http://www.crowley.com/

[Fer00a] E. B. Fernandez and X. Yuan, “Semantic
analysis patterns”, Proceedings of the 19th Int. Conf. on
Conceptual Modeling, ER2000, Lecture Notes in
Computer Science 1920, Springer 2000, 183-195. Also
available from:
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fer00b] E.B. Fernandez, X. Yuan, and S. Brey, “An
Analysis Pattern for Order and Shipment of a Product,”
Procs. of the 7th Pattern Languages of Programs (PLoP)
Conference. http://st-www.cs.uiuc.edu/~plop/plop00,
August, 2000.

[Fer01] E. B. Fernandez, Y. Liu, and R.Y. Pan, “Patterns
for Internet shops “, Procs. of PLoP (Pattern Languages
of Programs) 2001,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submiss
ions/accepted-papers.html

[Fer02] E.B.Fernandez and Y.Liu, "The Account
Analysis Pattern", Procs. of EuroPLoP (European
Pattern Languages of Programs).
http://www.hillside.net/europlop/EuroPLoP2002/

[Fer07] E. B. Fernandez, D. L. laRed M., J. Forneron, V.
E. Uribe, and G. Rodriguez G. A secure analysis pattern
for handling legal cases”, Procs. of the 6th Latin
American Conference on Pattern Languages of
Programming (SugarLoafPLoP’2007), 178-187.
http://sugarloafplop.dsc.upe.br/AnaisSugar2007_WEB.pd
f

[Fow97] M. Fowler, Analysis Patterns-Reusable Object
Models, Addison-Wesley, 1997.

[Gam04] Gamma, E., Helm, R., Johnson, R. and
Vlissides, J.: Design patterns –Elements of reusable
object-oriented software, Addison-Wesley 1995.

[Hay96] D.Hay, Data model patterns-- Conventions of
thought, Dorset House Publ., 1996. Chapter 7:
Accounting.

[Net09] M.Netter and G.Pernul, "Integrating security
patterns into the electronic invoicing process", Procs. of
the Third Int. Workshop on Secure System Methodologies
using Patterns (SPattern 2009). 150-154.

[Pie] John Pierce, Design patterns, Cal State University,
San Jose, CA
http://www.cs.sjsu.edu/faculty/pearce/oom/patterns/beha
vioral/strategy.htm

[SAP] SAP United States,
http://www.sap.com/usa/solutions/solutionextensions/inv
oice-management/index.epx

[Sil01] L. Silverston, The data model resource book
(revised edition), Vol. 1, Wiley 2001, Chapter 7, vol. 1:
Invoicing.

