
Adaptive Object-Model Builder
León Welicki

Microsoft

lwelicki@microsoft.com

Joseph W. Yoder
The Refactory, Inc.

joe@refactory.com

Rebecca Wirfs-Brock
Wirfs-Brock Associates

rebecca@wirfs-brock.com

Abstract

An Adaptive Object-Model system represents user-defined

classes, attributes, relationships, and behavior as metadata. This

paper presents the Adaptive Object-Model Builder pattern that is

used to construct AOM entities. An AOM Builder reads an

externally stored build description to construct a build process.

This process is then executed to construct a properly initialized

AOM entity. Since an AOM Builder is driven by metadata

descriptions of entities and their build processes, a single generic

AOM Builder implementation can construct different entity types.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented

Programming; D.2.2 [Design Tools and Techniques]: Object-

oriented design methods; D.2.11 [Software Architectures]:

Patterns

General Terms

Design

Keywords

Factory Objects, Adaptive Object-Models, Creational Patterns

1. Introduction

An Adaptive Object-Model is a system that represents user-

defined classes, attributes, relationships, and behavior in an

object-oriented domain model as metadata [YBJ01; YJ02]. In an

AOM system, domain entities are constructed from externally

stored definitions (metadata) that are interpreted at run-time.

Users, who may not be programmers, can change externally

stored metadata whenever they want to change the definitions of

domain entities. Whenever externally stored definitions are

modified, the system can immediately reflect those changes

without recompiling the application. This is similar to a UML

Virtual Machine implementation described by Riehle et. al

[RFBO01]. As a consequence, the object model in an AOM

system is dynamically adaptable.

This is in contrast to how domain models are typically built in

traditional object-oriented programming languages. In normal OO

design, the programmer defines domain entities and their behavior

using programming-language classes. Whenever a change is

required to a domain entity, one or more class definitions may

need to be modified and the application recompiled.

The pattern presented in this paper describes the creation of

instances of AOM entities using an AOM BUILDER. AOM

BUILDER is one Creational pattern that is part of a pattern

language for AOM systems [WYWJ07]. Figure 1 shows the

context of this pattern with other creational patterns.

Adaptive Object-Model architectures are usually made up of

several smaller patterns. In the existing literature they are

documented by the patterns TYPE OBJECT, ATTRIBUTES,

PROPERTY LIST, TYPE SQUARE, ACCOUNTABILITY

(ENTITY-RELATIONSHIP), STRATEGY, RULE OBJECTS,

COMPOSITE, BUILDER, and INTERPRETER.

More information about the AOM architectural style can be found

in Appendix A. An overview of a larger pattern language for

AOM systems is presented in Appendix B. For a more

comprehensive treatment and bibliography on AOM systems and

patterns, see www.adaptiveobjectmodel.com.

The AOM BUILDER pattern presented in Section 2 uses a pattern

format which includes the context, problem, forces, solution,

dynamics, implementation, resulting context, and related patterns

sub-sections.

2. AOM Builder Pattern

Typically, at object construction time an entity’s attributes are

initialized to well-defined values and links are made to associated

objects, which themselves are properly formed. This can be a

complicated process in any system. But creating entity objects

based on metadata definitions, as is the case for AOM systems, is

slightly more involved. External definitions must be read and

interpreted in order to construct a TYPEOBJECT. When

constructing a TYPEOBJECT, its PROPERTIES, TYPE-SQUARE,

STRATEGIES and ENTITY-RELATIONSHIP must also be created with

valid values.

2.1 Context

You are creating an application using an Adaptive Object-Model.

Your model relies on a variant of TYPE SQUARE so you are using a

combination of TYPE OBJECT and PROPERTIES patterns.

You want to create instances of entities of a concrete type based

on metadata. Since the creation process is complex, the BUILDER

pattern can be used (which could be combined with the

INTERPRETER pattern). However, a maintenance problem may

arise if you hand code in the BUILDER steps to create an instance

of entity which might vary according to its type or some arbitrary

rules (specifically when these vary or evolve).

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific

permission. Preliminary versions of these papers were presented in a

writers' workshop at the 16th Conference on Pattern Languages of
Programs (PLoP). PLoP'09, August 28-30, Chicago, IL, USA.

Copyright 2009 is held by the author(s). ACM 978-1-60558-873-5

http://www.adaptiveobjectmodel.com/

2.2 Problem

How can you encapsulate the process of building instances of

persisted entities allowing the process to change dynamically

according to the composition rules of the entities types?

2.3 Forces

 The rules for creating an entity may vary according to its

type or according to rules that apply to its data.

 You want to encapsulate the construction of entities.

 You want to reuse the different steps involved in creating an

instance of an entity to create other entities.

 You want to be able to adapt to changes in the entity

definition or to add new arbitrary steps in the creation

process (like logging, security, etc.)

 You don’t want to bloat your construction code with lots of

conditional statements to handle different entity types.

 You don’t want to have an explosion of Builders, one for

each entity type, or cope with all the conformation rules of

the concrete entities by writing builder code that must be

rewritten and compiled whenever entity definitions change.

2.4 Solution

Abstract the building process into a well defined interface, break

it into small steps, configure the steps using metadata based on

the type of the entity to be built, and execute build steps in order.

cd Logical Model

AOMBuilder

+ Build(id, EntityType) : Entity

BuildStep

+ Execute(BuildContext) : void

ConcreteBuildStepA ConcreteBuildStepB

BuildContext

+ entity: Entity

+ entityType: EntityType

+ data: object[]

+ entityMetadata: object[]

MetadataReader

+ Read(string) : object[]

AnotherPackage

ConcreteBuildStepC

Client

EntityType

Entity

PropertyType

Property

BuildStepListFactory

+ Create(EntityType) : BuildStep[]

«creates»

1..*

«creates»

Figure 2 - AOM Builder Structure. The classes in red (the client and the type square instance) are not part of the solution

Figure 1 - AOM Pattern Language for Creational Patterns

A complex entity build process can be divided into atomic steps

that are executed in order. Build steps can share data, if necessary,

using a context object [KSS05]. Specification of the steps can be

done dynamically using externally stored metadata. The

configuration of the steps should be based on type, since each type

of entity may need different build steps. This also allows you to

define a default build procedure which can be arbitrarily extended.

There are two main “sources” of metadata used by the

implementation of the AOM BUILDER pattern: the definition of the

build steps for each type and the metadata which defines the

entities. The first is used to drive the overall process, the second to

load the AOM entity with information.

The entry point to the building process is provided by the

AOMBuilder. This object defines a generic interface for creating

instances of several types of entities [YBJ01]. The AOMBuilder

first initializes the process, asking for the building pipeline from

the BuildStepListFactory (which loads the necessary

build steps based on the given TYPE OBJECT). The AOMBuilder

then creates the BuildContext and fills it with the metadata of

the required entity (loading it from the metadata repository

through the MetadataReader object).

Each BuildStep is a specialized part of the entity building

process. The building process can be extended by defining new

ConcreteBuild steps. BuildStep implementations can be

in different packages or assemblies (as is the case for

ConcreteBuildC shown in figure 2). A BuildStep can be

loaded dynamically using REFLECTION [POSA1] or any other late

binding technique.

The classes in red in figure 2 (Client, Entity, EntityType,

Property, PropertyType) are not part of the solution itself:

the Client uses the AOMBuilder and the Entity. The

Entity, EntityType, Property, and Property Type

represent a canonical implementation of TYPE SQUARE [YBJ01],

the product of the building process.

For complex cases, the metadata that indicates the build steps for

each type may contain additional rule definitions and constraints.

While this will increase the complexity of the build process

execution, it allows for an even more flexible build process.

The idea behind the AOM BUILDER pattern is the same as for the

BUILDER [GoF95] pattern (dealing with the creation of complex

objects in several steps. But the AOM BUILDER is targeted to a

clearly different execution context and has different design goals.

The BUILDER relies on composition and inheritance for dealing

with flexibility and extensibility; the AOM BUILDER is based on

composition, dependency injection, smart properties, and

polymorphism driven by externally defined metadata.

2.5 Dynamics

Figure 3 shows how the participants interact to produce an AOM

entity. The Client asks the AOMBuilder for an entity. The

AOMBuilder is responsible for coordinating the build process.

The AOMBuilder first asks the MetadataReader to read the

requested entity’s metadata from the metadata repository. It then

creates the BuildContext and an ordered set of BuildStep

objects using the BuildStepListFactory. The order of the

BuildStep objects is defined by the metadata. Each

BuildStep is executed in order. In our example there are just

two build steps, the ConcreteBuildStepA and the

ConcreteBuildStepB.

The reader may notice that the participants of the TYPE SQUARE

pattern (Entity, Entity Type, Property, and Property

Type) are not shown in figure 3. This wasn’t shown so as to

simplify the sequence diagram. The interaction with these entities

is as follows: the AOMBuilder creates the empty Entity

instance (based on the Entity Type) and also loads it into the

BuildContext. Thereafter, only concrete BuildSteps

interact with the Entity or any of its Properties, either to

properly define their values or to perform any other arbitrary

action such as logging, audit, security, or tamper checking.

2.6 Implementation

The complexity of implementing this pattern lies in the

implementation of the concrete build steps, following the

Dependency Inversion Principle as presented in [Martin02]. The

main build control logic is the same and is contained in the imple-

menttation of the AOMBuilder Build()method (see code 1).

sd Interactions

:AOMBuilder:Client :MetadataReader :BuildStepListFactory:BuildContext :ConcreteBuildStepA :ConcreteBuildStepB

Entity:= Build(string,type)

entityInfo:= Read(entityId)

new(entityInfo, new Entity())

BuildStep[]:= Create(type)

new()

new()

Execute(context)

Execute(context)

Figure 3 - AOM Builder Dynamics. The TypeSquare members have been left out to make the diagram simpler

(they interact with the concrete build steps)

public class AomBuilder {

 public Entity Build(string id, EntityType type)

 {

 // load entity metadata

 IEntityMetadataReader reader = new

 EntityMetadataReader();

 XmlDocument entityMetadata = reader.Load(id,

 type);

 // create building context

 BuildContext context = new

 BuildContext(entityMetadata,

 type.CreateInstance());

 // obtain building pipeline and execute it

 IList<IBuildStep> buildSteps =

 BuildStepListFactory.Create(entity.Type.ID);

 foreach (IBuildStep buildStep in buildSteps) {

 buildStep.Execute(context);

 }

 // return result

 return context.Entity;

 }

}

Variations in building behavior are controlled by the concrete

implementations of the build steps which implement the

IBuildInterface, as shown in code 2. Their order is

specified by a configuration in the build metadata repository.

Code 3 shows a configuration file with four build steps. Any

common information that needs to be shared between the build

steps, including the Entity, is passed using a context object,

following the Context Object [KSS05] pattern. For each step a

class name and assembly are specified. In this example, the last

step registers audit information for statistical purposes and doesn’t

affect the entity.

public interface IBuildStep {

 void Execute(BuildContext context);

 }

The sample configuration shown in code 3 contains several steps

for dealing with various phases of construction: creating the

entity, loading its properties, loading the relationships, and saving

audit information for statistical purposes. Build steps can be

complex and may need to be broken in several pieces. This is the

often case for the PropertiesBuildStep (the step that loads

the values into the properties), since each property may need to be

handled differently. Each step can also manage its own metadata

and be as complex as it needs to be (code 4 shows a sample of the

configuration file for property loaders used by the

PropertiesBuildStep). This metadata is used by the

PropertyLoader build step

<buildSteps>

 <buildStep type="AOM.Builder.BuildSteps.

 EntityInfoBuildStep,AOM.Core"/>

 <buildStep type="AOM.Builder.BuildSteps.

 PropertiesBuildStep,AOM.Core"/>

 <buildStep type="AOM.Builder.BuildSteps.

 RelationshipsBuildStep,AOM.Core"/>

 <buildStep type="AOM.Builder.BuildSteps.

 AuditBuildStep,AOM.Core"/>

</buildSteps>

<propertyLoaders>

 <loaderFor

 type="AOM.Core.StringProperty"

 factory="AOM.Core.StringPropertyTypeLoader,

 AOM.Core"/>

 <loaderFor

 type="AOM.Core.NumberProperty"

 factory="AOM.Core.NumberPropertyTypeLoader,

 AOM.Core"/>

 <loaderFor

 type="AOM.Core.DateProperty"

 factory="AOM.Core.DatePropertyTypeLoader,

 AOM.Core"/>

 <loaderFor

 type="AOM.Core.FileProperty"

 factory="AOM.Core.FilePropertyTypeLoader,

 AOM.Core"/>

 <loaderFor

 type="AOM.Core.UrlProperty"

 factory="AOM.Core.UrlPropertyTypeLoader,

 AOM.Core"/>

 <loaderFor

 type="AOM.Core.EntityProperty"

 factory="AOM.Core.EntityPropertyTypeLoader,

 AOM.Core"/>

</propertyLoaders>

2.7 Resulting Context

 The complex process of creating instances of AOM entities

is encapsulated into a single, well-known object.

 Responsibility for creating instances of properties, rules, etc.

is factored into fine-grained building step objects.

 Creation code is separated from the consumer code.

 The pipeline of the building process is specified using

metadata. It can be modified without needing to recompile

the application.

 The build steps can be modified or extended dynamically.

 The build process of any AOM entity can be modified

dynamically at run-time.

 Additional concerns can be easily added to the build process

(e.g. by adding a build step for logging, another for security,

etc.).

 Since the build process is specified using metadata there is

no possible compile-time verification.

 More complexity. Although less flexible, the alternative of

defining several factories (based on entity and property

types) which contain hand-coded rules for creating instances

of AOM entities can be simpler to understand.

 There is more indirection involved in reading and

interpreting external metadata to build entities. This can lead

to lower performance.

2.8 Related Patterns

AOM BUILDER is an evolution of the BUILDER [GoF95] pattern.

AOM BUILDER uses PIPES AND FILTERS [POSA1] to orchestrate

the building steps.

Information shared between build steps can be accomplished

using the CONTEXT [KSS05] pattern.

Code 4 - Metadata configuration for property loaders.

Code 2 - Interface definition for build steps.

Code 1 - Main body of the AOM Builder participant.

Code 3 - Build step metadata specification.

Build steps instances can be created using a PRODUCT TRADER. In

this case the rules for selecting one step or another are not hard-

coded in external definitions of metadata but determined at run-

time using Specification objects [BR98].

The AOM BUILDER can be seen as a REGISTRY [Fowler02] for

instances of entities in an AOM based application.

AOM BUILDER performance can be dramatically enhanced using

CACHING [POSA3].

This pattern is similar to a COMPLETE CONSTRUCTOR [Beck08] as

it attempts to create full constructed objects.

2.9 Known Uses
The entity loader in [WCJ06] uses the AOM Builder pattern to

create instances of entities in the system. An entity is composed of

several parts (tags, metadata, relationships, pattern definition, and

implementation). The AOM builder is configured with a set of

steps to build each one of these parts and then assemble a

complete entity. These steps also include an audit step that saves

data about the entity being loaded (e.g. last loaded date, user that

is loading the entity, and hit count).

An AOM framework for medical systems built for the Illinois

Department of Public Health uses Builder pattern to create

instances of Observations and its related objects.

An AOM-based content management system developed and used

at a telecom company where one of the authors worked uses this

pattern to create instances of entities. The AOM Builder pattern

implementation coordinates the work that needs to be done in

order to create a new or load an existing entity instance.

3. Appendix A - A Brief Summary of the

Architectural Style of AOMs

Notice: This section is a summary extracted from [YJ02] and

[YBJ01] and has been included with informative purposes to help

readers that are not familiar with the AOM architectural style. To

get a more complete view we recommend the reader see the

original papers at www.adaptiveobjectmodel.com.

The design of Adaptive Object-Models differs from most object-

oriented designs. Normally, object-oriented design would have

classes for describing the different types of business entities and

associates attributes and methods with them. The classes model

the business, so a change in the business causes a change to the

code, which leads to a new version of the application. An

Adaptive Object-Model does not model these business entities as

classes. Rather, they are modeled by descriptions (metadata) that

are interpreted at run-time. Thus, whenever a business change is

needed, these descriptions are changed which are then

immediately reflected in the running application.

Adaptive Object-Model architectures are usually made up of

several smaller patterns. TYPE OBJECT [JW98] provides a way

to dynamically define new business entities for the system. TYPE

OBJECT is used to separate an Entity from an EntityType.

Entities have Attributes, which are implemented with the Property

pattern [FY98]. The TypeObject pattern is used a second time in

order to define the legal types of Attributes, called

AttributeTypes.

This core set of patterns working together is very common to most

AOM architectures as described by Dynamic Object Models

[RTJ05]. Therefore if the user is selling products, the AOM will

describe different types of Entities to represent their different

types of products. Non-AOM systems would model these with

different product classes.

As is common in Entity-Relationship modeling, an Adaptive

Object-Model usually separates attributes from relationships. In

usual OO design, entity-relationships are commonly implemented

through an attribute as a pointer or direct reference to the related

objects. Also, methods are used to implement any rules about the

relationship. However in AOMs these relationships are reified

thus enabling a way to describe new types of relationships and

rules governing the relationships via metadata. The STRATEGY

pattern [GoF95] is used to define the behavior of EntityTypes.

These strategies can evolve into a rule-based language that gets

interpreted at runtime. Finally, there is usually an interface for

non-programmers to define the new types of objects, attributes

and behaviors needed for the specified domain. This also includes

ways to define subtypes and relationships between objects.

Therefore, we can say that the core patterns that may help to

describe the AOM architectural style are:

 TYPE OBJECT

 PROPERTY

 ENTITY-RELATIONSHIP / ACCOUNTABILITY

 STRATEGY / RULE OBJECT

 INTERPRETER (of Metadata)

Adaptive Object-Models are usually built from applying one or

more of the above patterns in conjunction with other design

patterns such as COMPOSITE, INTERPRETER, and BUILDER [GoF95].

COMPOSITE is used for building dynamic tree structure types or

rules. For example, if the entities need to be composed in a

dynamic tree like structure, the COMPOSITE pattern is applied.

BUILDERS and INTERPRETERS are commonly used for building the

structures from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for building

Adaptive Object-Models. Every Adaptive Object-Model is a

framework of a sort, but there is currently no generic framework

for building them. A generic framework for building the

TypeObjects, Properties, and their respective relationships could

probably be built, but these are fairly easy to define and the hard

work is generally associated with rules described by the business.

This is something that is usually very domain-specific and varies

quite a bit.

3.1 The Type Square

In most Adaptive Object Models, TYPE OBJECT is used twice,

once before using the PROPERTY pattern, and once after it. TYPE

OBJECT divides the system into Entities and EntityTypes.

Entities have attributes that can be defined using

Properties. Each property has a type, called

PropertyType, and each EntityType can then specify the

types of the properties for its entities. Figure 4 represents the

resulting architecture after applying these two patterns, which we

call TYPE SQUARE [YBJ01].

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..n properties

0..n type

0..n properties

Figure 4 - The Type Square

It often keeps track of the name of the property, and also whether

the value of the property is a number, a date, a string, etc. The

result is an object model similar to the following: Sometimes

objects differ only in having different properties. For example, a

system that just reads and writes a database can use a Record with

a set of Properties to represent a single record, and can use

RecordType and PropertyType to represent a table.

4. Appendix B – An Overview of AOM-

Related Patterns

Our primary goal is to document in a uniform and standardized

way all the existing patterns that can be used to create adaptive

object models. A secondary goal is to make the pattern language

more complete. This will ease the task of creating this kind of

architectures to designers, architects and developers.

We started with a brainstorming session where a big set of

patterns (more than 40) was listed and categorized. We also

classified the patterns in three groups according to their

publishing status: published, not published, ongoing)

The pattern language map will help to establish a roadmap to

document (or recast) all the patterns involved in creating

applications using this architectural style.

4.1 Categories
We have grouped our patterns in the following categories:

 Core: includes the core patterns that are present in the

basic implementation of AOMs. These are the basic

patterns and they are the ones that govern this

architectural style.

 Process: includes the patterns that deal with the process

of creating AOMs. They establish guidelines for

evolving frameworks and boundaries to avoid going up

to the meta-levels far beyond than necessary.

 Presentation: includes the patterns that deal with how

to present AOMs to end-users in applications.

 Creational: includes the patterns that help to create

instances of AOMs

 Behavioral: includes the patterns for dynamically

adding, removing or modifying behavior to the AOMs

 Miscellaneous: includes patterns that help to instrument

the usage, control, and instrumentation of AOMs. They

also help to provide guidelines for non-functional

requirements such as performance and auditability.

4.2 Status

The status refers to the publishing state of the patterns. In our

pattern mining session, we found more than forty patterns. Some

of them were published, some of them where included in

unpublished work and some of them where ideas.

 Published: patterns that have been published in

previous works. These patterns have been through the

community process (shepherding and writers

workshops).

 Unpublished: patterns that we aware of their existence

but haven’t been publicly published yet.

 Ongoing: patterns that are being written at the moment

of creating our patterns list.

4.3 Conclusions and Future Directions

Creating AOMs is not a trivial task. The architects and developers

involved in creating AOM-based applications need to use and

combine many patterns. Some patterns have been written about in

published conference proceedings but the topic is still incomplete.

Very often, developers don’t even use the patterns and arrive at

this kind of architecture intuitively. What we are trying to achieve

with our research and further publications is to provide a

comprehensive set of patterns for creating AOMs, thus making it

easier for developers who are creating applications using this kind

of architecture. The set of related AOM patterns and their

relationship to other published patterns, as shown in Figure 5, is a

clear step towards that objective. It establishes a visual roadmap

for documenting the patterns involved in the AOM architectural

style.

Besides these patterns, less widely known patterns are often used

in AOM systems. Descriptions of these other patterns are

scattered among a number of different papers patterns with

different templates and styles. Additionally, not all the pattern

examples use the same example. Some patterns haven’t been

updated to reflect current implementation trends or programming

language environments or development platforms. We ultimately

see the pattern described in this paper as part of a more complete

pattern language for building Adaptive Object-Models.

Figure 5 - AOM System patterns and their relationships to other patterns.

5. Acknowledgements

We would like to thank our shepherd Alejandra Garrido for help

and advice on improving the contents of this paper. We would

also like to gratefully thank to the participants of the PLoP 2009

Architecture Writers Workshop (Brian Foote, Alexander M. Ernst,

Eduardo Guerra, Maurice Rabb, and James Siddle), and to Agile

2009 for supporting PLoP 2009 in Chicago, Illinois.

6. References

[AOM] AdaptiveObject-Models.

http://www.adaptiveobjectmodel.com

[BR98] Bäumer, D; D. Riehle. Product Trader. Pattern

Languages of Program Design 3. Edited by Robert

Martin, Dirk Riehle, and Frank Buschmann.

Addison-Wesley, 1998.

[Beck08] Beck, K. Implementation Pattern. Pearson

Education Inc. 2008

[Fowler97] Fowler, M. Analysis Patterns: Reusable Object

Models. Addison-Wesley. 1997

[Fowler02] Fowler, M. Patterns of Enterprise Application

Architecture. Addison-Wesly. 2002.

[FY98] Foote B, J. Yoder. Metadata and Active Object

Models. Proceedings of Plop98. Technical Report

#wucs-98-25, Dept. of Computer Science,

Washington University Department of Computer

Science, October 1998.

[GoF95] Gamma, E.; R. Helm, R. Johnson, J. Vlissides.

Design Patterns: Elements of Reusable Object

Oriented Software. Addison-Wesley. 1995.

[JW98] Johnson, R., R. Wolf. Type Object. Pattern

Languages of Program Design 3. Addison-

Wesley, 1998.

[KSS05] Krishna, A., D.C Schmidt, M Stal. Context

Object: A Design Pattern for Efficient

Middleware Request Processing. 13th Pattern

Language of Programs Conference (PLoP 2005),

Monticello, Illinois, USA, 2005.

[Martin02] Martin, R. Agile Software Development:

Principles, Patterns, and Practices. Prentice Hall,

2002.

[POSA1] Buschman, F. et al. Pattern Oriented Software

Architecture, Volume 1: A System of Patterns.

Wiley & Sons. 1996

[POSA3] Kircher, M.; P. Jain. Pattern Oriented Software

Architecture, Volume 3: Patterns for Resource

Management. Wiley & Sons. 2004.

[RFBO01] Riehle, D., Fraleigh S., Bucka-Lassen D.,

Omorogbe N. The Architecture of a UML Virtual

Machine. Proceedings of the 2001 Conference on

Object-Oriented Program Systems, Languages

and Applications (OOPSLA ’01), October 2001

[RTJ05] Riehle D., M. Tilman, and R. Johnson. "Dynamic

Object Model." In Pattern Languages of Program

Design 5. Edited by Dragos Manolescu, Markus

Völter, and James Noble. Reading, MA: Addison-

Wesley, 2005.

[RY01] Revault, N, J. Yoder. Adaptive Object-Models and

Metamodeling Techniques Workshop Results.

Proceedings of the 15th European Conference on

Object Oriented Programming (ECOOP 2001).

Budapest, Hungary. 2001.

[WCJ06] Welicki, L.; J.M Cueva, L. Joyanes. Patterns

Meta-Specification and Cataloging: Towards

Knowledge Management in Software Engineering

Proceedings of the 11th European Conference on

Pattern Languages of Programs (EuroPLoP 2006),

Irsee, Germany, July 2006.

[WYWJ07] Welicki, L.; J. Yoder; R. Wirfs-Brock; R.

Johnson. Towards a Pattern Language for

Adaptive Object-Models. Companion of the ACM

SIGPLAN Conference on Object Oriented

Programming, Systems, Languages and

Applications (OOPSLA 2007), Montreal, Canada,

2007.

[WYW07] Welicki, L, J. Yoder, R. Wirfs-Brock: Rendering

Patterns for Adaptive Object Models. 14th Pattern

Language of Programs Conference (PLoP 2007),

Monticello, Illinois, USA, 2007

[YBJ01] Yoder, J.; F. Balaguer; R. Johnson. Architecture

and Design of Adaptive Object-Models.

Proceedings of the ACM SIGPLAN Conference

on Object Oriented Programming, Systems,

Languages and Applications (OOPSLA 2001),

Tampa, Florida, USA, 2001.

[YJ02] Yoder, J.; R. Johnson. The Adaptive Object-Model

Architectural Style. IFIP 17th World Computer

Congress - TC2 Stream / 3rd IEEE/IFIP

Conference on Software Architecture: System

Design, Development and Maintenance (WICSA

2002), Montréal, Québec, Canada, 2002

[YR00] Yoder, J.; R. Razavi. Metadata and Adaptive

Object-Models. ECOOP Workshops (ECOOP

2000), Cannes, France, 2000.

