
Symmetric Encryption and XML Encryption Patterns 
 

Keiko Hashizume and Eduardo B. Fernandez
 

Dept. of Computer Science and Engineering, 

Florida Atlantic University  

Boca Raton, Fl, 33431, USA,  

ahashizu@fau.edu, ed@cse.fau.edu 
 

 

Abstract 

 

Most of the time information handled by organizations has been collected and processed by 

computers and transmitted across networks to other computers. How can we protect this 

information from unauthorized access? Encryption provides confidentiality by protecting 

sensitive information from being read by intruders. In this paper, we present two patterns: a 

Symmetric Encryption pattern that describes a basic type of algorithms and XML Encryption 

that describes how to apply symmetric and asymmetric encryption to XML messages. 

 

Keywords: cryptography, security patterns, symmetric encryption, XML security 

  

1. Introduction 

 

Data security has become one of the most important concerns for governments, financial 

institutions, hospitals, and private businesses.  An important security risk is that information can 

be captured and read during its transmission. How do we protect this information from being 

read by intruders? Encryption provides message confidentiality by transforming readable data 

(plain text) into an unreadable format (cipher text) that can be understood only by the intended 

receiver after a process called decryption The inverse function that the encrypted information 

readable again. There are two types of encryption: symmetric and asymmetric encryption. In 

symmetric encryption a common key is used for both encryption and decryption. In asymmetric 

encryption a public/private key pair is used for encryption/decryption; the sender encrypts the 

information using the receiver’s public key, while the receiver uses his private key to decrypt the 

ciphered text.  

 

The encrypted messages may be intercepted and be the object of attacks, including illegal 

reading, modification, and replay. An emerging use of web services that exchanges XML 

messages also can be target of attacks. Some security standards have been developed to apply 

correctly encryption functions and thus reduce security risks. XML Encryption is one of the 

basic standards in securing web services. XML Encryption defines how to encrypt/decrypt an 

entire XML message, part of an XML message, or an external object, and how to represent the 

encrypted content and information such as encryption algorithm and key in XML format.  

 

Section 2 presents the Symmetric Encryption Pattern, and Section 3 presents the XML 

Encryption pattern. We assume the reader is a designer intending to use message secrecy in her 

design and has a basic knowledge of cryptography and UML. We provide a solution with 

sufficient detail so as it can be used as a guideline for design. 

mailto:ahashizu@fau.edu
mailto:ed@cse.fau.edu


 

 

2. Symmetric Encryption  

2.1. Intent 

 

Encryption protects message confidentiality by making a message unreadable to those that do not 

have access to the key. Symmetric encryption uses the same key for encryption and decryption. 

 

2.2      Example 

 

Alice, in the Purchasing department regularly sends purchase orders to Bob in a distribution 

office. The purchase order contains sensitive data such as credit card numbers and other 

company information, so it is important to keep it secret. Eve can intercept her messages and 

may try to read them to get the confidential information. 
 

2.3     Context 

 

Applications that exchange sensitive information over insecure channels. 

 

2.4  Problem 

 

Applications that communicate with external applications interchange sensitive data that may be 

read by unauthorized users while they are in transit. How do we protect messages from being 

read by intruders? 

 

The solution for this problem is affected by the following forces: 

 

 Confidentiality--Messages may be captured while they are in transit, so we need to 

prevent unauthorized users from reading them by hiding the information of the message. 

Hiding the information also makes replaying of messages by an attacker harder to 

perform. 

 Reception--The hidden information should be revealed conveniently to the receiver. 

 Protocol--We need to apply the solution properly or it will not be able to stand attacks 

(there are several ways to attack a method to hide information. 

 Performance--The time to hide and recover the message should be reasonable. 

 

2.2. Solution 

 

 so we need to prevent unauthorized users from reading them by hiding the information of 

the message using a symmetric cryptographic encryption. 

 

Transform a message in such a way that only can be understood by the intended receiver after 

applying the reverse transformation using a valid key. The transformation process at the sender’s 

end is called Encryption, while the reverse transformation process at the receiver’s end is called 

Decryption.  

 



The sender applies an encryption function (E) to the message (M) using a key (k); the output is 

the cipher text (C).  

 

C = Ek (M) 

 

When the cipher text (C) is delivered, the receiver applies a decryption function (D) to the cipher 

text using the same key (k) and recovers the message, i.e. 

 

M = Dk (C) 

 

Structure 

 

Figure 1 describes the class diagram for the Symmetric Encryption Pattern. 

 

 

 

 
 

Fig1: Class Diagram for Symmetric Encryption Pattern 

 



A Principal may be a process, a user, or an organization that is responsible for sending or 

receiving messages.  This Principal may have the roles of Sender or Receiver. A Sender may 

send a Message and/or a EncryptedMessage to a receiver with which it shares a secret Key.  

The Encryptor creates the EncryptedMessage that contain the cipher text using the shared key, 

while the Decryptor deciphers the encrypted data into its original form using the same key. Both 

the Encryptor and Decriptor use the same Algorithm to encipher and decipher a message.  

 

 

Dynamics 

 

We describe the dynamic aspects of the Encryption Pattern using sequence diagrams for the 

following use cases: encrypt a message and decrypt a message. 

 

Encrypt a message (Figure 2): 

 

Summary: A Sender wants to encrypt a message 

Actors: A Sender 

Precondition: Both sender and receiver have a shared key and access to a repository of 

algorithms. The message has already been created by the sender. 

Description:  

a) A Sender sends the message, the shared key, and the algorithm identifier to the 

Encryptor. 

b) The Encryptor ciphers the message using the algorithm specified by the sender.  

c) The Encryptor creates the EncryptedMessage that includes the cipher text. 

Postcondition: The message has been encrypted and sent to the sender. 

 

 

 
 

Figure 2: Sequence Diagram for Encrypting a Message 

 

Decrypt an Encrypted Message (Figure 3): 

 

Summary: A receiver wants to decrypt an encrypted message from a sender. 



Actors: A Receiver 

Precondition: Both the sender and receiver have a shared key and access to a repository of 

algorithms. 

Description:  

a) A Receiver sends the encrypted message and the shared key to the decryptor. 

b) The Decryptor deciphers the encrypted message using the shared key.  

c) The Decryptor creates the Message that contains the plain text obtained from the previous 

step. 

d) The Decryptor sends the plain Message to the receiver. 

Alternate Flows:  

 If the key used in step b) is not the same as the one used for encryption, the decryption 

process fails. 

Postcondition: The encrypted message has been deciphered and delivered to the Receiver. 

 

 
 

Figure 3: Sequence Diagram for Decrypting an Encrypted Message 

 

 

2.3. Implementation  

 

 Use the Strategy Pattern [Gam94] to select different encryption algorithms.  

 The designer should choose well-known algorithms such as AES (Advanced Encryption 

Standard) [Fed01] and DES (Data Encryption Standard) [Fed99]. Books such as [] 

describe their features and criteria for selection. 

 Encryption can be implemented in different applications such as in email communication, 

distribution of documents over the Internet, or web services. In these applications, we are 

able to encrypt the entire document. However, in web services we can encrypt parts of a 

message.  

 Both the sender and the receiver have to previously agree what cryptographic algorithm 

they support.  

 A good key generator is very important. It should generate keys that are as random as 

possible or an attacker who captures some messages could be able to deduce the key.. 



 A long encryption key should be used (at least 64 bits). Only brute force is known to 

work against the DES and AES for example; using a short key would let the attacker 

generate all possible keys. 

 

2.4. Known Uses 

 

Symmetric Encryption has been widely used in different products. 

 GNuPG [Gnu] is free software that secures data from eavesdroppers.  

 OpenSSL [Ope] is an open source toolkit that encrypts and decrypts files. 

 Java Cryptographic Extension [Sun] provides a framework and implementations for 

encryption. 

 The .NET framework [Mica] provides several classes to perform encryption and 

decryption using symmetric algorithms.  

 XML Encryption [W3C02] is one of the foundation web services security standards that 

defines the structure and process of encryption for XML messages. 

 Pretty Good Privacy (PGP), a set of programs used mostly for e-mail security, includes 

methods for symmetric encryption and decryption [PGP].  

 

 

2.5. Consequences 

 

This pattern presents the following advantages: 

 

 Only receivers who possess the shared key can decrypt a message transforming it into a 

readable form. A captured message is unreadable to the attacker. This makes attacks bsed 

on replaying a message very hard. 

 The strength of a cryptosystem is based on the secrecy of a long key []. The 

cryptographic algorithms are known to the public, so the key should be kept protected 

from unauthorized users. 

 It is possible to select from several encryption algorithms the one suitable for the 

application needs. 

 There exist encryption algorithms that take a reasonable time to encrypt messages. 

 

The pattern also has some (possible) liabilities: 

 

 This pattern assumes that the shared key was distributed in a secure way. This may not be 

easy for large groups of nodes exchanging messages.  

 Cryptography operations are computationally intensive and may affect the performance 

of the application. 

 Encryption does not provide data integrity. The encrypted data can be modified by an 

attacker, and the receiver would decrypt the cipher text to something else other than the 

original text.  

 Encryption does not prevent a replay attack because an encrypted message can be 

captured and resent without being decrypted. It is recommended to use another security 

mechanism such as Timestamps or Nonce. 

 



2.6   Example resolved 

Alice, in the Purchasing department encrypts the purchase orders she sends to Bob. The 

purchase’s order sensitive data is now unreadable to Eve. Eve can try to apply to it all 

possible keys but if the algorithm has been well implemented, she cannot read the 

confidential information. 

 

2.7    Related Patterns 

 

 Information Secrecy Pattern [Bra98], supports the encryption/decryption of data. This 

pattern describes encryption in more general terms. It does not distinguish between 

asymmetric and symmetric encryption. 

 Strategy Pattern [Gam94], defines how to separate the implementation of related 

algorithms from the selection of one of them.  

 

 

3. XML Encryption Pattern 

 

3.1. Intent 

 

XML Encryption standard [W3C02] describes the syntax to represent XML encrypted data and 

the process of encryption and decryption. XML Encryption provides message confidentiality by 

hiding sensitive information in such way that can be understood only by intended recipients. 

  

3.2   Example 

 

Alice, in the Purchasing department regularly sends purchase orders in the form of XML 

documents to Bob, who works in a distribution office. The purchase order contains sensitive data 

such as credit card numbers and other company information, so it is important to keep it secret. 

In the receiving end, different people will handle different parts of the order. Eve can intercept 

these orders and may try to read them to get the confidential information. 

 

3.3   Context 

 

Users of web services send and receive SOAP messages through insecure networks such as the 

Internet.  

 

3.2. Problem 

 

Applications that communicate with external applications or users interchange sensitive data that 

may be read by unauthorized people while the messages with this data are in transit. 

 

The solution for this problem is affected by the following forces: 

 

 Messages may be captured while they are in transit, so we need to prevent unauthorized 

users from reading them by hiding the information of the message using encryption. 



 We need to express encrypted elements in a standardized XML format to allow encrypted 

data to be nested within an XML message. Otherwise, different applications cannot 

interoperate. 

 Different parts of a message may be intended for different recipients, and not all the 

information contained within a message should be available to all the recipients. Thus, 

recipients should be able to read only those parts of the message that are intended for 

them.  

 For flexibility reasons, both symmetric and asymmetric encryption algorithms should be 

supported. 

 If a secret key is embedded in the message, it should be protected. Otherwise, an attacker 

could read some messages.  

 

3.3. Solution 

 

Transform a message using some algorithm so that it can only be understood by legitimate 

receivers that possess a valid key. 

First, the data has to be serialized before encryption. The serialization process will convert the 

data into octets. Then, this serialized data is encrypted using the chosen algorithm and the 

encryption key. The cipher data and the information of the encryption (algorithm, key, and other 

properties) are represented in XML format. 

XML Encryption supports both types of encryption: symmetric and asymmetric. The symmetric 

encryption algorithm uses a common key for both encryption and decryption. On the other hand, 

the asymmetric encryption algorithm uses a key pair (public key and private key). The sender 

encrypts a message using the receiver’s public key, and the receiver uses its private key to 

decrypt the encrypted message. Thus, in both types of encryption, only recipients who possess 

the shared key or the private key that matches the public key used in the encryption process can 

read the encrypted message after decryption. 

 

Structure 

 

Figure 4 describes the structure of the XML Encryption Pattern. 

A Principal may be a process, a system, a user, or an organization that sends and receives 

XMLMessages and/or EncryptedXMLMessages. This principal may have the roles of Sender 

and Receiver. 

 

Both an XMLMessage and a EncryptedMLMessage are composed of XML elements. Each 

XMLElement may have many children, and each child also can be composed by other XML 

elements, and so on. The Encryptor and the Decryptor encipher a message and decipher an 

encrypted message respectively. 

 

The EncryptedData contains other subelements such as the encryption method, key 

information, cipher value, and encryption properties. The EncryptionMethod is an optional 

element that specifies the algorithm used to encrypt the data. If this element is not specified, the 

receiver must know the encryption algorithm. The KeyInfo (optional) contains the same key 

information as the one describes in the XML Signature standard [W3C08]. However, this 

standard defines two other subelements: EncryptedKey and ReferenceList. The EncryptedKey 



contains similar elements as the EncryptedData; however, they are not shown in the class 

diagram. The EncryptedKey includes an optional ReferenceList element that points to data or 

keys encrypted using this key. The CipherData is a mandatory element that stores either the 

cipher value or a pointer (cipher reference) where the encrypted data is located. The 

EncryptionProperties element holds information such as the time that the encryption was 

performed or the serial number of the hardware used for this process. 

 

Dynamics: 

We describe the dynamic aspects of the XML Encryption Pattern using sequence diagrams for 

the following use cases: “encrypt XML elements” and “decrypt an encrypted XML message”. 

 

Encrypt XML elements (Figure 5): 

 

Summary: A sender wants to encrypt different elements of an XML message using a shared 

key. 

Actors: A sender 

Precondition: Both sender and receiver have a shared key and a list of encryption algorithms. 

Description:  

a) A sender requests to the encryptor to encrypt a list of XML elements. This list is 

represented with an asterisk (*) in the sequence diagram. 

b) The encryptor creates the EncryptedXMLMessage.  

c) The encryptor encrypts the XML Element using the shared key and the encryption 

method provided by the sender and produces an encrypted value. 

d) The encryptor creates the EncryptionData element including the EncryptionMethod that 

holds the encryption algorithm used to encrypt the data, the KeyInfo that contains 

information about the key, and the CipherData obtained from step c) 

e) The encryptor replaces the XML element with the encrypted data. 

f) Repeat steps c) to e) for each XML element to encrypt. 

g) The encryptor sends the EncrypteXMLMessage to the sender. 

 

Alternate Flows: none 

Postcondition: The encrypted XML message has been created.  

 



 
 

Fig4: Class Diagram for XML Encryption Pattern 

 



 
Figure 5: Sequence Diagram for encrypting XML Elements 

 

Decrypt an Encrypted XML Message (Figure 6): 

 

Summary: A receiver wants to decrypt an encrypted XML message. 

Actors: A Receiver 

Precondition: Both sender and receiver have a shared key and a list of encryption algorithms 

Description:  

a) A receiver requests to the verifier to decrypt an encrypted XML message. 

b) The decryptor creates the XMLMessage that contains a copy of the 

EncryptedXMLMessage. 

c) The decryptor obtains the elements within the EncryptedData element such as the 

EncryptionMethod, KeyInfo, and the cipherValue. 

d) The encryptor decrypts the cipher value using the encryption method and the shared key.  

e) The encryptor replaces the encrypted data with the plain text obtained from the previous 

step. 

f) Repeat steps c) to e) for each XML element to decrypt. 

g) The decryptor sends the decrypted XMLMessage to the receiver. 

Alternate Flows:  

If the key used in step d) is not the same as the one used in the encryption, then the 

decryption process fails.  

Postcondition: The message has been decrypted.  

 

 

 



 
Figure 6: Sequence Diagram for decrypting XML Elements 

 

 

 

3.4. Implementation 

 

 The designer should choose strong encryption algorithm to prevent attackers from 

breaking them such as Advanced Encryption Standard (AES) and DES (Data Encryption 

Standard) for symmetric encryption, and RSA (Rivest, Shamir, and Adleman) for 

asymmetric encryption. 

 Asymmetric encryption or public-key encryption is more computationally intensive than 

symmetric encryption. However, symmetric encryption requires that both sender and 

receiver share a common key. A better practice will be to use the asymmetric encryption 

in combination with the symmetric encryption. Use symmetric encryption for the data 

and asymmetric encryption for secure key distribution. 

 XML Encryption supports both symmetric and asymmetric encryption. This provides 

application flexibility; for example, a session uses symmetric encryption and key 

distribution uses asymmetric encryption. 

 

3.5. Known Uses 

 

Several vendors have developed tools that support XML Encryption: 

 Xtradyne’s WebService Domain Boundary Controller (WS-DBC) [Xtr]. The WS-DBC is 

an XML firewall that provides protection against malformed messages and malicious 

content, XML encryption, XML signature, and authentication, authorization, and audit. 

 IBM - DataPower XML Security Gateway XS40 [IBM] parses, filters, validates schema, 

decrypts, verifies signatures, signs, and encrypts XML message flows. 



 Forum Systems - Forum Sentry SOA Gateway [For] conforms to XML Digital Signature, 

XML Encryption, WS-Trust, WS-Policy and other standards. 

 Microsoft .NET [Mic] includes APIs that support the encryption and decryption of XML 

data. 

 

3.6. Consequences 

 

This pattern presents the following advantages: 

 

 Only users that know the key can decrypt and read the message. Each recipient can only 

decrypt parts of a message that are intended for him but is unable to decrypt the rest.  

 The EncryptedData is an XML element that replaces the data to be encrypted. The 

EncryptedData as well as the EncryptedKey are composed by other subelements such as 

encryption method, key information, and cipher value.  

 The entire XML message or only some parts can be encrypted.  

 If both the sender and the receiver have not exchanged the keys previously, the key can 

be sent in the message encrypted using public key system. 

 

The pattern also has some (possible) liabilities: 

 The structure is rather complex and users may get confused. 

 

3.7. Related Patterns 

 

 This pattern is a specialization of the Symmetric Encryption Pattern. 

 WS-Security Pattern [Has09] is a standard for securing XML messages using XML 

signature, XML Encryption, and security tokens.  

 Strategy Pattern [Gam94] defines how to separate the implementation of related 

algorithms from the selection of one of them.  

 

The following specifications are related to XML Signature, but they have not been developed 

as patterns. 

 The XML Key Management Specification (XKMS) [W3C01] specifies the distribution 

and registration of public keys, and works together with XML Encryption.  

 WS-SecurityPolicy [OAS07] standard describes how to express security policies such as 

what algorithms are supported by a web service or what parts of an incoming message 

need to be signed or encrypted. 

 

4. Conclusions 

 

We presented two patterns: Symmetric Encryption and XML Encryption, the latter a 

specialization of the first one. We showed these two patterns together to make clearer the logic 

behind XML Encryption, a rather complex pattern. Future work will include completing our 

development of other web services security patterns such as WS-Security [Has09], WS-Trust, 

WS-Federation, and WS-SecureConversations. 

 

Acknowledgements 



This work was supported by a grant from DISA, administered by Pragmatics, Inc. Our security 

research group provided useful comments. 

 

References 

 

[Bra98]    A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language for cryptographic  

                 object-oriented  software”, Chapter 16 in Pattern Languages of Program Design 4   

                 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in Procs. of PLoP’98,  

                 http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/ 
 

[Fed99] Federal Information Processing Standards Publication, “Data Encryption Data 

(DES),” 25 October 1999, http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf 

 

[Fed01] Federal Information Processing Standards Publication, “Advanced Encryption 

Standard,” 26 November 2001, http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf 

 

[For] Forum Systems, Sentry: Messaging, Identity, and Security, 

http://www.forumsys.com/products/soagateway.php  

 

[Gam94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of 

Reusable Object-Oriented Software, Addison-Wesley Professional, 1994 

 

[Gnu] GnuPG, The GNU Privacy Guard, http://www.gnupg.org/ 

  

[Has09] K. Hashizume, “A Pattern for WS-Security”, submitted for publication. 

 

[IBM] IBM, WebSphere DatatPower XML Security Gateway XS40, http://www-

01.ibm.com/software/integration/datapower/xs40/ 

 

[Leh02] S. Lehtonen and J. Parssinen. “A Pattern Language for Key Management,” EuroPlop 

2002. http://www.hillside.net/patterns/EuroPLoP2002/papers.html 

 

[Mica] Microsoft Corporation, .NET Framework Class Library, 

http://msdn.microsoft.com/en-us/library/e970bs09.aspx 

 

[Micb] Microsoft Corporation, .NET Framework Class Library, 

http://msdn.microsoft.com/en-us/library/ms229749.aspx 

 

[OAS06] OASIS, Web Services Security: SOAP Message Security 1.1 (WS-Security 2004), 1 

February 2006, http://www.oasis-open.org/committees/download.php/16790/wss-

v1.1-spec-os-SOAPMessageSecurity.pdf 

 

[OAS07] OASIS, W-S SecurityPolicy 1.2, 1 July 2007, http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/v1.2/ws-securitypolicy.pdf 

 

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/


[Ope] The OpenSSL Project, OpenSSL, http://www.openssl.org/ 

 

[PGP]        http://en.wikipedia.org/wiki/Pretty_Good_Privacy 

 

[Sta06]      W. Stallings, Cryptography and network security (4
th

 Ed.), Pearson Prentice Hall, 

2006. 

[Sun] Sun Microsystems Inc., Java Cryptography Extension (JCE), 

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html 

 

[W3C01] W3C, XML Key Management Specification, March 2001 

http://www.w3.org/TR/xkms/ 

 

[W3C02] W3C, XML Encryption Syntax and Processing, 10 December 2002, 

http://www.w3.org/TR/xmlenc-core/ 

 

[W3C08] W3C, XML Signature Syntax and Processing (Second Edition), 10 June 2008, 

http://www.w3.org/TR/xmldsig-core/  

 

[Xtr] Xtradyne, Xtradyne's WS-DBC - the XML/SOAP Firewall for Enterprises, 

http://www.xtradyne.de/products/ws-dbc/ws-dbc.htm 

 

 

http://www.openssl.org/
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

