
1

Sharing Bad Practices in Design to Improve the Use of
Patterns
Cédric BOUHOURS, Hervé LEBLANC, Christian PERCEBOIS, IRIT - University of Toulouse

To ensure the use of good analysis and design practices and an easier maintenance of software, analysts and designers may

use patterns. To help them, we propose models inspection in order to detect instantiations of “spoiled pattern” and models

reworking through the use of the design patterns. As a design pattern allows the instantiation of the best known solution for
a given problem, a “spoiled pattern” allows the instantiation of alternative solutions for the same problem: requirements are

respected, but architecture is improvable. We have collected a set of alternative solutions and deduced the corresponding spoiled

patterns. We have defined a first catalog of these improvable practices from several experiments with students. To overcome the
limits imposed by this method (restricted public, limited problems and tiresome validation process), we would like to open this

problematic to the expert community. Therefore, we propose a collaborative website sharing bad practices in object oriented
design to improve the use of patterns.

Categories and Subject Descriptors: D.2.2 [Software Engineering] Design Tools and Techniques; D.2.13 [Software
Engineering]: Reusable Software—Reuse models

General Terms: Design

Additional Key Words and Phrases: Design patterns, Spoiled pattern

1. INTRODUCTION

In order to guarantee the use of good analysis and design practices and easier maintenance of software,
analysts and designers may use patterns. A pattern is a consensus on the most efficient solution to
solve a given problem [Baroni et al. 2003]. The use of a pattern is the guarantee to reuse the most
adequate solution and thus, to maintain a consensual quality with analysis and design.

To assist designers, the design patterns catalog of Gang of Four [Gamma et al. 1995] provides a set
of solutions. If a designer uses the GoF on his design, we hypothesize that he is ensured to select the
best known solution to solve his problems. If some errors persist, or if the designer is not accustomed
to use design patterns, design defects may remain. To limit or avoid this risk, some works help the use
of the patterns. In particular, patterns were classified and described in several manners to help their
selection [Albin-Amiot et al. 2001][Albin-Amiot and Guéhéneuc 2001][Baroni et al. 2003][Dietrich and
Elgar 2005][Dong and Zhao 2007][Guennec et al. 2000][Kampffmeyer and Zschaler 2007][Mak et al.
2004]. For example, in classifying the patterns according to their intent or in formalizing the problem
they solve. Another way is to check how a pattern can be well-integrated in an existing solution [Eden
et al. 1997][El-Boussaidi and Mili 2008][France et al. 2003][Mili and El-Boussaidi 2005][O’Cinnéide
and Nixon 1999].

Author’s address: C. Bouhours, H. Leblanc, C. Percebois, IRIT - MACAO team - University of Paul Sabatier, 118 Route de
Narbonne, 31062 TOULOUSE CEDEX 9 FRANCE; email: {bouhours,leblanc,percebois}@irit.fr
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
A preliminary version of this paper was presented in a writers’ workshop at the 17th Conference on Pattern Languages of
Programs (PLoP). PLoP’10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-
7

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:2 • C. Bouhours and H. Leblanc and C. Percebois

Besides these approaches, we defined the concept of spoiled pattern [Bouhours et al. 2009]. Its main
interest is to identify a bad practice with respect to design patterns. A spoiled pattern is a pattern
which corresponds to a deterioration of the intrinsic qualities of a design pattern. The structural dif-
ferences between a design pattern and a spoiled pattern cause a degradation in efficiency to solve
problems adequately.

For the same design problem, we consider that several solutions exist: the ones recognized as the
most powerful and the most efficient, i.e., using the adequate design pattern correctly, and the others,
certainly less powerful and less efficient using spoiled patterns. We suggest detecting and correcting
these others solutions by a tooled design review activity. The aim is to inspect models to search frag-
ments characteristic of typical bad design practices and to substitute them by design patterns, after
communication with the designer.

In this paper, we formalize in Section 2 our hypothesis and the concept of spoiled pattern. We show
how a spoiled pattern can solve the same problem as a design pattern, but in a different way: the
problem is solved but some intrinsic properties of the design pattern are damaged. Section 3 gives an
overview of a design review activity that we have defined in order to detect such alternative fragments
within a model. This detection uses a spoiled pattern catalog presented in Section 4. We discuss on
the way we abstract spoiled patterns from experiments with design problems addressed to students.
Section 5 is devoted to a collaborative website we currently elaborate. By submitting new problems
and their alternative solutions, its main objective is to complete the catalog with new spoiled patterns,
and so to share bad practices in design.

2. THE SPOILED PATTERNS

Since a design pattern was approved, tested and validated by an expert community, we estimate that
it provides the best known solution to a given problem. This problem is introduced in a generic and
adaptable form. Thus, the design pattern is a reusable and adaptable architecture to a problem in a
context. Moreover, as it is a proof of development facility and time-saver during the design, thanks
to the best design practices which it brings, we make the hypothesis that it represents the optimal
architecture (classes and messages arrangement) to solve a specific problem type.

AXIOM 1: “A design pattern” is the optimal reusable micro-architecture for one and only one
problem type.

By micro-architecture, we gather the classes fitting, the attributes and methods distribution, and
the structure of the messages exchanged between the classes. To adapt a pattern on a problem, the
problem must conform to the problem type solvable by the pattern.

COROLLARY 1: For each design problem conforms to a problem type solvable by a design pat-
tern, “the best solution” is the adaptation of the design pattern to the context of the problem.

As design patterns are generic and describe a general context, it is necessary to adapt them to the
context of the problem we want to solve. So we define the processes allowing the use of design patterns.
The instantiation process consists in adapting a design pattern to the particular context of a problem.
The abstraction process is the inverse.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:3

2.1 Definitions

In the following definitions, we admit that a given problem is solvable by the instantiation of a design
pattern.

DEFINITION 1: For a given problem conforms to a problem type solvable by a design pattern,
“an alternative solution” is a valid solution, but with a different architecture compared to the
best solution.

Thus, the requirements of the design are respected but the inter-classes relations are different or/and
there is not the whole pattern participants. According to our first axiom, we consider that if the de-
signer were confronted to a design problem solvable by a design pattern, and if he did not use it, he
has solved the problem with an alternative solution.

We can deduce the following corollary:

COROLLARY 2: An alternative solution is not the best solution for a given problem. If it is
found in a model, it is profitable to replace it with the instantiation of the design pattern
corresponding to the problem.

Since an alternative solution is valid for a given context, it is possible to abstract it in order to obtain
a generic model allowing the solving of a problem type, but in an inadequate way.

DEFINITION 2: “A spoiled pattern” is the abstraction of an alternative solution, in the same
manner as a design pattern is the abstraction of the best solution. A spoiled pattern is con-
nected to one and only one design pattern.

A spoiled pattern is comparable to a design pattern. Structurally, it is represented at the same level
of granularity. It is reusable to produce models which solve problems. Thus, for a problem type, there
is a set of spoiled patterns allowing the production of non optimal solutions.

We could say that the instantiations of spoiled patterns produce the same results as incomplete or
failing design patterns instantiations. Thanks to their structural descriptions, we are able to identify
the fragments structurally comparable with the spoiled patterns. This comparison is only structural,
and therefore the intent of the fragment detected must be validated by the designer himself. Indeed,
the structural concordance does not guarantee that the fragment intent conforms to the spoiled pat-
tern.

DEFINITION 3: “An alternative fragment” is a model fragment such as its structure corre-
sponds to the structure of a spoiled pattern instantiation and whose intent conforms to the
corresponding design pattern.

Each alternative fragment detected in a model represents a potential fragment. A fragment becomes
effective when the designer confirms his intent during a review activity detailed in section 3.

We chose the term “spoiled” to describe this new type of pattern, because it corresponds to a dete-
rioration of the intrinsic qualities of the design patterns. Thus, spoiled patterns are substitutable by
the corresponding design patterns. The structural differences between a design pattern and a spoiled
pattern cause an efficiency to solve a problem type in an adequate way.

DEFINITION 4: “The strong points” of a design pattern express the criteria of architecture and
the factors of software quality brought by its use. These criteria are partially deduced from
the “consequence” section of the GoF catalog and from the design defects noted during the use
of the spoiled patterns. They emphasize why the design pattern is the best known solution for
a problem type.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:4 • C. Bouhours and H. Leblanc and C. Percebois

The alternative solutions are in fact more or less effective to solve a problem. It is possible to quan-
tify a degree of damage by considering the valuation of the strong points of a pattern. As the strong
points of the pattern characterize the effectiveness and the quality of the solution, we can say that the
substitution of an alternative fragment by an optimal fragment corrects the design defects generated
by the use of the spoiled pattern.

The detection of alternative fragments in a model can evoke bad smells and the explanation about
their defects in referring to design patterns can evoke anti-patterns.

2.2 Illustration

We illustrate our concepts by the Composite design pattern, described in Figure 1. We deliberately
chose to represent the design patterns by class diagrams only, inspired by the “structure” section of
GoF, with the pattern participants and their relations only (associations and inheritance). We omitted
the methods of each participant, on the class diagram, when they were indicated in the GoF.

Component

Leaf

*

Composite

Fig. 1. The Composite design pattern

The intent of the Composite pattern is “compose objects into tree structures to represent part-whole hi-
erarchies. Composite lets clients treat individual objects and compositions of objects uniformly” [Gamma
et al. 1995]. Applying the axiom 1, this pattern is the best known solution to solve the following
global problem: composition of objects, building tree structures and nesting objects [Kampffmeyer and
Zschaler 2007]. In the ontology proposed by the previous authors, each problem is derived from the in-
tent item of the corresponding pattern and decomposed into sub-problems. Then several patterns can
share one or more sub-problems, but only one pattern is the best candidate to solve a global problem.

The Composite pattern introduces three participants: an abstract Component, a Composite, and a
Leaf. The abstract Component defines a common interface to the composed objects and to composition
management, and offers a unique access point for the client. This entity allows the factorization of
the composition on the composites and the leaves. The Composite participant manages the relation of
composition and recursively delegates the operations along the tree structure. The Leaves represent
the terminal elements of the tree structure.

Now let us consider a specific problem statement, inspired by the GoF: Design a system for drawing
graphic images: A graphic image is composed of lines, rectangles, texts and images. An image may be
composed of other images, lines, rectangles and texts.

This statement implies that the problem type relates to a hierarchical composition of objects, the
hierarchy being articulated around the concept of Image. To instantiate the Composite pattern on this
problem, we must identify the problem elements having the same responsibilities as each participant
of the pattern. The concept of Image has the same responsibilities as the Composite participant. The
classes Line, Text and Rectangle constitute the terminal elements of the hierarchy and thus have
the same responsibilities as the Leaf participant. Lastly, we can consider that Graphic constitutes
the generic element of the hierarchy of composition, which brings it closer to the responsibilities for
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:5

the Component. We obtain an instantiation of the Composite pattern, and, in agreement with our
hypothesis, we can say that Figure 2A represents the best solution to the problem introduced above.

Image

Graphic

Line RectangleText

*

Graphic

ImageLine RectangleText *

** *

(A) (B)

Fig. 2. The best solution (A) and an alternative solution (B) for the problem

Figure 2B introduces an alternative solution of the preceding problem. In this solution, we can iden-
tify that an image is composed of other images which can be composed of lines, texts and rectangles. So,
the requirements of the problem are respected. The Graphic class is used to support the factorization
of the protocols and to be the unique access point to the client. However, the fact that the classes Line,
Rectangle and Text are attached to Image involves code modifications if new classes are added, with
the responsibilities of Leaf or Composite. Thus, if a new Circle class is added as Leaf, the Image class
will have to manage this new reference, which will involve a code modification of the Image class.

In order to detect an alternative solution in a model whatever the context of the problem, it is
necessary to abstract it. This abstraction enables us to obtain a “generic” spoiled pattern, able to be
adapted to any context of problem. This abstraction enables us to consider a spoiled pattern as a
generating base of alternative fragments.

The abstraction process of an alternative solution requires to identify the pattern participants, then
to carry out a “reduction” making it possible to preserve only one class per participant of the pattern.
However, some alternative solutions do not use the totality of the participants, which implies that some
of the classes have the responsibilities of several participants.

The first step of this abstraction process consists in marking each class with the name of one of
the participants of the pattern having the same responsibilities. The abstract Graphic class offers a
common interface to all the other classes and a unique access point for the client. Thus, it has the re-
sponsibilities of the Component participant. The Image class manages the composition and represents,
by its recursive connection the Composite. Finally the classes Line, Text and Rectangle are clearly the
terminal elements of the tree structure and thus have the same responsibilities as the Leaf partici-
pant.

This class marking of an alternative solution is done manually, since it requires an analysis of the
semantics of the classes. The result, summarized by Figure 3A, shows the marking of the classes of the
alternative solution by the participants of the Composite pattern.

After the marking, the second step of the abstraction process consists in preserving, only one times,
each participant in the same way as in the alternative solution. This reduction can be complex on some
participants when several classes have the same responsibilities.

In our case, we deduce a model with three classes Component, Composite and Leaf, substituting
respectively the Graphic class, the Image class and one of the classes Text, Line or Rectangle. Then,
we obtain the structure of a spoiled pattern of the Composite where the composition is developed on
the Composite class. Figure 3B presents a spoiled pattern for the Composite design pattern, named
“development of the composition on <<Composite>>”.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:6 • C. Bouhours and H. Leblanc and C. Percebois

Graphic

ImageLine RectangleText *

** *

Leaf
Component

Composite

Component

Leaf Composite

*

*

(A) (B)

Fig. 3. (A) The marked alternative solution - (B) The spoiled pattern development of the composition on <<Composite>>

Starting from several alternative solutions of the same type of problem, we obtained a set of spoiled
patterns. To classify the spoiled patterns, we quantified their degree of damage thanks to the strong
points of the design pattern concerned. Indeed, each spoiled pattern has only a part of the strong points
of the pattern. It is what explains its damage.

For the Composite pattern, the maximal factorization of the composition and the standardization of
the protocol, thanks to inheritance links, enable us to say that the strong points of the pattern are
“decoupling and extensibility” and “uniform protocol”. As the composition of the spoiled pattern of Fig-
ure 3B is expressed with a reflexive connection and with a development on all the leaves, a design
defect appears, consequence of the damage of the strong point “decoupling and extensibility”. Fac-
torization is not maximal and the coupling between Leaf and Composite imposes code modifications.
However, as there are always inheritance links, the spoiled pattern does not degrade the strong point
“uniform protocol”.

This characterization of the spoiled patterns enables us to present to the designer the advantage of
the substitution of the fragment detected by the corresponding design pattern.

Table I summarizes the degradation of the strong points by the spoiled pattern. The strong points
of the Composite pattern damaged by the spoiled pattern are described preceded by the symbol
contrary to preserved strong points which are preceded by .

Table I. The strong points valuation of the spoiled pattern
Decoupling and extensibility

Maximal factorization of the composition.
Addition or removal of a leaf does not need code modification.
Addition or removal of a composite does not need code modification.

Uniform protocol
Uniform protocol on operations of composed object.
Uniform protocol on composition management.
Unique access point for the client.

2.3 Comparison with bad smells and antipatterns

We now position “spoiled pattern” term compared to “bad smells” and “antipatterns”.

2.3.1 Bad smells. Kent Beck and Martin Fowler have introduced the term “bad smells” in [Fowler
et al. 1999]. These bad smells are a set of clues in the code suggesting bad design practices. They
allow the identification of the parts of the code to restructure in order to correct the problems, and the
procedures to follow to carry out this reorganization. For example, the code duplication in a program is
a bad smell which can be corrected by the refactoring “extract method” [Fowler et al. 1999]. It consists
in adding a method in a class so that it factorizes the parts of code concerned.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:7

An alternative fragment indicates where a defect is being able to generate undesirable effects on the
model and target a zone which would have to be restructured. Whereas the bad smells were defined
to target pieces of code, the spoiled patterns target fragments of model. Thus, identifying alternative
fragments can be comparable with a search of bad smells in designs. As an alternative fragment comes
from the instantiation of a spoiled pattern, we consider that the spoiled patterns constitute a base for
the generation of bad smells in designs.

2.3.2 Antipatterns. There exist two manners to define an antipattern. Whereas a design pattern
presents the best solution to be followed to solve a problem, the antipattern presents a learned lesson.
It describes the effects resulting from bad design practices and gives the procedure to follow for tending
towards a better software quality. Then, an antipattern makes it possible to check or supervise bad
practices [Dodani 2006]. An antipattern can also represent good design practices, but which used in
an excessive way produce, at last, consequences more harmful than the anticipated results [Brown
et al. 1998]. In all the cases, an antipattern suggests a sequence of refactorings. An antipattern is
described by the explanations of the defects and by a reorganization process which explains how to pass
from the bad to a good solution. As example, let us quote the antipattern “makes an active attempt”,
in concurrent programming, which is to test a condition until it is checked. This antipattern can be
corrected by scrolling events or signals.

Let us consider that spoiled patterns are antipatterns, but with a finer precision. The spoiled pattern
does not give information allowing the correction of the bad solution. Thanks to the fine description
of the bad solution, the spoiled pattern can be detectable automatically, which is not the case, nor
the goal, of the antipatterns. A spoiled pattern ensures that the “bad ways of doing things” have not
been used, and is directly related to a design pattern. The set of useful operations of reorganization to
substitute it is much more precise than a refactoring suggested by an antipattern.

3. A DESIGN REVIEW ACTIVITY

To realize the concepts presented and to be able to integrate them into a development process, we
designed and implemented a design review activity. This review may be likened to code inspection to
improve programming quality and productivity [Fagan 2002]. All products of a software development
process can be inspected. An inspection consists of some participants assigned to a specific role (Mod-
erator, Author, and Readers/Testers), and a six-step process (planning, overview, preparation, group
inspection, rework, and follow-up). Our activity is executed by the designer of the system to review
but can be improved by others participants: other designers and experts on design patterns. The group
inspection consists of an analysis followed by answers to each question proposed by our system. Our
activity is decomposed in three steps [Bouhours 2010]: detection of alternative fragments on a model
expressed in XMI format [OMG 2007], communication with the designer to check the intent of the
detected fragments, and model refactorings to integrate the design patterns.

3.1 A case study

Figure 4 presents the model to analyze. It was found in a subject of an object-oriented programming
supervised practical work and constitutes the model in input of our activity.

Initially, we can say that this UML class diagram represents a basic architecture of a files system
management. The authors of this model took care that the good design practices are respected:

—Inheritance between classes. A uniform protocol for every FileSystemElement is encapsulated by a
corresponding abstract class. Directories and Files must respect this protocol via inheritance rela-
tionships. We can note that all concrete classes are derived directly or indirectly from an abstract
class. This rule enforces the emergence of reusable protocols.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:8 • C. Bouhours and H. Leblanc and C. Percebois

—Management of reference and delegation. There are composition links between container and compo-
nents. A directory object manages some references to files and directories objects. A directory object
delegates some actions to sub-directories and files, for example, the getSize() method.

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 4. The model to analyze

A good effort on design was carried out, producing a design in good quality. However, this model
presents some design defects. Although there is a uniform protocol offered by the FileSystemElement
class, the management of composition relationships towards the other types of data present in the
hierarchy is duplicated. Indeed, the Directory class manages independently connections on Files and
those on itself.

It is enough to consider the two following evolution scenarios to discredit our first opinion on the
quality of the design:

—The first is the addition of new terminal types in the tree structure, for example, symbolic links in
UNIX file systems. This evolution requires the management of this new type of link by the Directory
class and then requires code modification and code duplication in this class.

—The second is the addition of new non terminal types in the tree structure, for example archive files
in UNIX or in Java environment. We can consider that an archive file has the same functionalities
as a Directory. This evolution requires a reflexive link on an archive file class and the duplication
of all links that represent composition links in the tree structure. Moreover directories can contain
archive files too, then duplication of management of composition and code modification is required
for the Directory class.

These two scenarios show a decoupling problem (each container manages a part of the composite
structure) and an extensibility limitation (every modification will require existing code modification
for the addition of a new type of terminal or non terminal element of the composition hierarchy).
Therefore, this model can be improved. Furthermore, when the authors have implemented this model,
they realized that there were defects. They adapted their code to correct them, without changing the
design model.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:9

3.2 An activity execution

To be able to execute the activity, we developed the Triton software, whose screenshot is presented
on the Figure 5 [Bouhours 2010]. It reaches the whole of a catalog of the spoiled patterns and uses
the Neptune platform [Millan et al. 2009] to carry out research with OCL queries [OMG 2006]. The
constitution of the catalog is presented in Section 4.

Fig. 5. Triton - the tool allowing the activity execution

The first step of the activity consists in seeking fragments which correspond structurally to possible
instantiations of spoiled patterns. After the loading of the model to analyze in Triton, the OCL queries
deduced from the structure of each spoiled pattern are carried out on the model, according to the
selection done by the designer in the principal window of Triton.

In the case of our model, Triton has identified the fragment {FileSystemElement, File, Repository},
illustrated in Figure 6.

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

*

-subdirectory

*

Fig. 6. The identified fragment

At the end of the detection step, the identified fragments are not regarded as alternative yet because
we do not know their intent. The designer can check more in detail each identified fragment and thus
pass to the following step: the checking of the intent and the presentation of the advantages of substi-
tution. Figure 7 introduces the dialog box emitted by Triton to check the intent with the designer. To

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:10 • C. Bouhours and H. Leblanc and C. Percebois

do so, we use an ontology defined in OWL [Mcguinness and van Harmelen 2004], containing informa-
tion relating to the intents of the design patterns, as well as the strong points degraded by the spoiled
patterns [Bouhours 2010].

Fig. 7. Intent verification

In our case, since it is a fragment corresponding to the spoiled pattern of the Composite, it is the
intent of the Composite pattern which is introduced. If the designer validates the intent conformity,
Triton presents the strong points of the pattern whose model will benefit after the injection of the
pattern. In our example, we can say that our fragment composes hierarchically of the objects. Thus,
since we accept the intent, Triton shows the dialog box illustrated by Figure 8.

Fig. 8. Advantages of the refactoring

By injecting the Composite design pattern, the designer gains in decoupling and in extensibility,
which corresponds to the defects that we had identified during the previous analysis. For our example,
we accept the transformation, and so Triton carries out the transformation of the model into mem-
ory. The model refactoring is done automatically: each class of the alternative fragments is marked,
according to its responsibility. This marking facilitates the injection of the pattern [Bouhours 2010].

After the transformation, the designer is invited to execute the detection again in order to check if
other fragments appeared, or disappeared, if several fragments would have been identified during the
first analysis. Finally, when the designer estimates that its model is in a sufficient quality, or if Triton
does not identify any more fragment, a models serialization system allows the generation of a new XMI
file containing the transformed model.

At the end of the review, the model presented in Figure 4 is transformed to integrate the Composite
design pattern. The result is presented on the Figure 9.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:11

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 9. The improved model

We can see that the transformation implies the factorization of the composition by removing the
developed compositions. The consequences of this transformation are found in the simplification of the
management of the tree structure and by the fact that the two evolution scenarios do not require any
more modification of the existing code. At the end of the activity, we can thus consider that the model
was improved.

4. A FIRST CATALOG

We can define two manners to constitute a spoiled patterns base. The first is to analyze the design
patterns and make changes to distort them. Indeed, too artificial or too distant of designs by people,
they would not be found in standard models. The second possibility is to collect a set of alternative
solutions solving problems solvable by a design pattern, and to deduce a set of spoiled patterns from
them. We choose the second possibility to obtain the most relevant spoiled patterns.

In doing so, we are sure that it is possible to apply a context on the spoiled pattern since they are
deduced from models which had a context. Thanks to this method, the entire base contains spoiled
patterns which have already been used once. As the constraints of this way are to obtain problem
solutions without exploiting design patterns, a heuristic to optimize the collection consists in making
experiments with designers not having the habit of exploiting existing know-how.

4.1 Experiments building

First, we have proposed a list of design problems solvable with design patterns. Second, we have in-
stantiated design patterns on the problems. These best solutions had been presented to the students
after their contributions, and it was a good start for a course dedicated to advanced object oriented
programming and reusable micro-architectures. Third, we have analyzed the contributions and take
into consideration valid solutions to a problem: the alternative solutions. Four, we have tried to deduce
spoiled patterns from alternative solutions by an abstraction process. In the same time, spoiled pat-
terns permit us to enforce software qualities in using design patterns by a fine comparison between
different design solutions to a generic design problem.

4.1.1 The public. Generally, students in computer science discover initially the design techniques,
and then the design patterns. At this precise time, students produce models solving problems, without
using the design patterns. It is at this stage of their formation we asked them to solve design problems.
Thus, they produced models according to their own experience and often with design defects. Moreover,
these experiments made it possible to the students to put forward the interest to use the patterns,

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:12 • C. Bouhours and H. Leblanc and C. Percebois

which constitutes a considerable teaching contribution. Indeed, during their formation on the patterns,
we confronted them with their models, putting thus ahead the design defects corrected by the design
patterns.

Distributed on three years, our experiments aimed at students in third and fifth year of studies in
computer science. Each experiment appeared as a personal work composed of about ten exercises. Each
exercise raised a design problem solvable by the use of a design pattern. We worked the statement of
each problem so that the solutions correspond directly to the use of the design pattern. Thus, we limited
the number of non-significant classes so that the students do not disperse in too complex designs.

4.1.2 The process. To do so, we took as a starting point the “motivation” section of the patterns of
GoF or, when they were not appropriate to us, we worked out our own design problems. In a general
way, this section presents a problem solvable by the design pattern, in classes, sequence or objects dia-
grams. The purpose of this example is to help to understand, on a concrete case, the pattern and what
it brings. Our first experiments concerned the structural patterns primarily. The results obtained were
sufficient to deduce structural spoiled patterns. For the following experiments, we concentrated on the
behavioral patterns. It is for these last experiments that we imposed, in the statement distributed to
the students, the creation of sequence diagrams allowing the illustration of the communication be-
tween objects.

At last, over the three years, we covered the seven structural patterns, the eleven behavioral pat-
terns and three of the creative patterns. Thus, we obtained one thousand three hundred models which
it was necessary to analyze in order to eliminate the erroneous designs and the doubled models.

4.2 A complete example

The next example of our experiment is a compilation of problems submitted and results obtained.
Problems, optimal solutions (i.e. instantiation of the dedicated design pattern), alternative solutions
and spoiled patterns are presented according to increasing difficulty. Progressively, the problems are
more difficult to solve, alternative solutions more difficult to obtain and spoiled patterns more difficult
to abstract.

Finding solutions to design problems
This document proposes a set of exercises concerning objects modeling. You must produce a UML class diagram and a

UML sequence or collaboration diagram illustrating each exercise. Each diagram should contain sufficient informa-
tion to demonstrate that the problem is solved (attributes, methods, relationships, stereotypes). The purpose of these exercises
is that you use your own knowledge. These designs can be envisaged in several ways. Do not look for shared solutions with
your collegues, or solutions on the Internet or in design books. Some problems are presented with probable evolutions. Your
designs should be structured so that these changes are easily integrated. Make these changes occur in your diagrams.

Problem 1:
Design a system enabling to draw a graphic image.
A graphic image is composed of lines, rectangles, texts and images. An image may be composed of other images, lines,

rectangles and texts.

Problem 2:
Design a system enabling to display visual objects on a screen.
A visual object can be composed with one or more texts or images. If needed, the system must allow to add to this object

a vertical scrollbar, a horizontal scrollbar, an edge and a menu (these additions may be cumulated).

Problem 3:
Design a system enabling to display on a screen some empty windows (no button, no menu...).
A window can have several different styles depending on the platform used. We consider two platforms, XWindow and

PresentationManager. The client code must be written independently and without knowledge of the future execution platform.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:13

It is probable that the system evolves in order to display specialized windows by “application windows” (able to manage
applications) and “iconised windows” (with an icon).

Problem 4:
Design a drawing editor.
A design is composed of graphics (lines, rectangles and roses), positionned at precise positions. Each graphic form must be

modeled by a class that provides a method draw(): void. A rose is a complex graphic designed by a “black-box” class component.
This component performs this drawing in memory, and provides access through a method getRose(): int that returns the
address of the drawing. It is probable that the system evolves in order to draw circles.

Problem 5:
Design a DVD market place work.
The DVD market place provides DVD to its clients with three categories: children, normal and new. A DVD is new during

some weeks, and after change category. The DVD price depends on the category. It is probable that the system evolves in order
to take into account the horror category.

Problem 6:
Design a help manager of a Java application.
A help manager allows the show of a help message depending on the objects on which a client has clicked. For example,

the “?”, sometimes located near the contextual menu of a Windows dialog box, allows the show of the help of the button or the
area where we click. If the button on which one clicks does not contain help, it is the area containing which displays its help,
and so on. If no object contains help, with final, the manager displays “Not help available for this area”. Instantiate your class
diagram in a sequence diagram of on the example of a printing window. This window (JDialog) consists in an explanatory text
(JLabel), and in a container (JPanel). This last contains a Print button (JButton) and a Cancel button (JButton). The Print
button contains help “Launches the impression of the document”. The Cancel button, the text as well as the window do not
contain help. Lastly, the container contains help “Click on one of the buttons”. In the sequence diagram, reveal the scnarii:
“The user asks for the help of the Print button”, “the user asks for the help of the Cancel button”, and “the user asks for the
help of the text”.

Problem 7:
Design the communications of one plane to the approach of an airport.
When a plane is in approach of the airport, it must announce to all the other planes which are around that it intends to

be posed, and await their confirmation with all before carrying out the operation. It is the control tower of the airport which
guarantees the regulation of the air traffic, by making sure that there is no trajectory conflict or destination between several
planes. Besides the class diagram, represent by a collaboration (diagram of collaboration or diagram of objects and sequence)
the landing of a plane among two wanting to land and one wanting to take off.

Problem 8:
Design a tutorial to learn how to program a calculator.
This calculator executes the four basic arithmetic operations. The goal of this tutorial is to make it possible to take a

set of operations to be executed sequentially. The tutorial presents a button by arithmetic operation, and two input fields for
the operands. After each click on a button of an operation, the user has then the choice to start again or execute the suite of
operations to obtain the result. It is probable that this teachware evolves in order to make it possible to the user to remove the
last operation of the list and to take into account the operation of modulo.

4.2.1 Best solutions. We present here the best solutions that are given to the students after their
experiments. As mentioned before, these solutions provide a good start to a design pattern formation.
Students can compare their solutions with best solutions. Then they can realize the qualities of a
design by the use of best practices.

The first four problems address structural patterns, the last four behavioral patterns. The proportion
between problems type is respected. We have trying some problems addressing creational patterns
unsuccessfully. We consider that creational patterns can be used after the use of others patterns in the
development process.

Problem 1 refers to the Composite pattern and its best solution is described in Figure 10. This prob-
lem is directly inspired by the GoF. Here, the problem is concentrated about compositions between
objects and there is no need to precise methods.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:14 • C. Bouhours and H. Leblanc and C. Percebois

Image

Graphic

Line RectangleText

*

Fig. 10. The best solution of the problem 1

Problem 2 refers to the Decorator pattern and its best solution is described in Figure 11. This prob-
lem is also inspired by the GoF. Here, we precise methods in classes and we add notes to show the
collaboration between concrete and abstract decorators. The fact that this pattern uses an explicit call
to the super method is difficult to see in a UML collaboration diagram.

VisualObject

+draw()

DecorationObject

+Decorator(component: VisualObject)
+draw()

Image

+draw()

Menu

+draw()
+drawMenu()

+component1

VerticalScrollBar

+draw()
+drawBar()

HorizontalScrollBar

+draw()
+drawBar()

Edge

+draw()
+drawEdge()

Text

+draw() public void draw() {

 component.draw();

}

public void draw() {

 super.draw();

 drawMenu();

}

public void draw() {

 super.draw();

 drawBar();

}

public void draw() {

 super.draw();

 drawEdge();

}

Fig. 11. The best solution of the problem 2

Problem 3 refers to the Decorator pattern and its best solution is described in Figure 12. This problem
is also inspired by the GoF. Here, the simple delegation between abstractions and implementors are
modeled using UML notes. A collaboration diagram can be used in this case.

Window

+showWindow()

Style

+drawWindow()
+manageApplication()
+showIcon()

Empty

+showWindow()

WithIcon

+showWindow()

Applicative

+showWindow()

XWindow

+drawWindow()
+manageApplication()
+showIcon()

PresentationManager

+drawWindow()
+manageApplication()
+showIcon()

+style

public void showWindow() {

 style.drawWindow();

}

public void showWindow() {

 style.drawWindow();

 style.showIcon();

}

public void showWindow() {

 style.drawWindow();

 style.amangeApplication();

}

Fig. 12. The best solution of the problem 3

Problem 4 refers to the Adapter pattern and its best solution is described in Figure 13. We have
chosen to use uniquely the object instantiation because in their formation, students program in Java
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:15

only. As the previous problem, the simple delegation is modeled using UML notes, but a collaboration
diagram can be used too.

Picture

Shape

+Xposition: int
+Yposition: int

+draw()

Circle

+draw()

Line

+draw()

Rectangle

+draw()

ComplexShape

-getHandle()
+draw()

Rose

+getRose()

+rose

private int getHandle() {

 return rose.getRose();

}

public draw() {

 //...

 getHandle();

 //...

}

Fig. 13. The best solution of the problem 4

Problem 5 refers to the State pattern and its best solution is described in Figure 14. This problem
is inspired by the motivation example in the Martin Fowler refactoring book [Fowler et al. 1999].
Although this pattern is labeled as behavioral, it is not necessary to have a collaboration diagram.

DVD

+getPrice()
+changeCategory(aCategory: Category)

Category

+getPrice()

Children

-PRICE_CHILDREN

+getPrice()

Normal

-PRICE_NORMAL

+getPrice()

New

-PRICE_NEW

+getPrice()

Horror

-PRICE_HORROR

+getPrice()

public float getPrice() {

 return category.getPrice();

}

public void changeCategory(aCategory : Category) {

 category = aCategory;

}

+category

Fig. 14. The best solution of the problem 5

Problem 6 refers to the Chain of Responsibility pattern and its best solution is described in Figure 15.
This problem is inspired by the GoF. Here, we ask students to give us a collaboration diagram. We
consider that the structure is not sufficient to show the chain, and we need the sequence diagram to
determine if an alternative solution is valid.

Manager

+helpMessage
+availableHelp

+manageHelp()

+manager

JDialog

+manageHelp()

JLabel

+manageHelp()

JPanel

+manageHelp()

JButton

+manageHelp()

Client
manageHelp(){

 //show "No available help"

}

manageHelp() {

 if (! availableHelp) {

 manager.manageHelp();

 } else {

 //show the object help

 }

}

 : Client BP_Print : JButton BP_Cancel : JButton Container : JPanel : JLabel : JDialog : Manager

manageHelp()

"Print the document"

manageHelp()
manageHelp()

"Click on one button"
"Click on one button"

manageHelp()
manageHelp()

manageHelp()

"No available help"
"No available help"

"No available help"

Fig. 15. The best solution of the problem 6

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:16 • C. Bouhours and H. Leblanc and C. Percebois

Problem 7 refers to the Mediator pattern and its best solution is described in Figure 16. This problem
is issued from [Duell et al. 1997]. Even if this statement is attractive to present a metaphor of the
pattern, students have resolved the problem by the instantiation of a mediator; or they have resolved
the problem in accordance with the statement and messages exchanges are in a complete graph form.
Here, alternative solutions become the design problem to resolve by the use of the pattern.

ControlTower

-dispatch()
+addPlane()
+removePlane()
+queryLanding(plane: Plane)
+queryTakeOff(plane: Plane)
+acceptmessage(message: String)
+queryLanding(this: Plane)

Plane

+recieve(message: String)
+land()
+takeOff()

+oneTower

+thePlanes

*

controlTowel : ControlTowel

planeLand2 : PlaneplaneLand1 : Plane

planeLand3 : PlaneplaneTakeOff : Plane

1 : queryLanding()

2 : recieve() 3

4

5 6

7

8

Fig. 16. The best solution of the problem 7

Problem 8 refers to the Command pattern and its best solution is described in Figure 17. This prob-
lem is inspired from an exercise to manage pointers function in the C language. For this, a collaboration
diagram is not necessary. The important fact is to detect the presence of switch statement into the code.
However, we have made the choice to think at design level, and we did not find a simple way to model
the kinematics of a program in the UML notation. Then we have inferred switch statements from UML
designs.

Client Operations

+Add(x, y)
+Multiply(x, y)
+Substract(x, y)
+Divide(x, y)
+Modulo(x, y)

Command

+execute()
+execute(previous)

AddCommand

+op1
+op2

+execute()
+execute(previous)

SubstractCommand

+op1
+op2

+execute()
+execute(previous)

MultiplyCommand

+op1
+op2

+execute()
+execute(previous)

DivideCommand

+op1
+op2

+execute()
+execute(previous)

ModuloCommand

+op1
+op2

+execute()
+execute(previous)

Tutoriel

+launchCompute(): result
+addCommand(Command)
+removeLastCommand()

+theCommands

+operation

execute() {

 operations.Add(op1,op2);

}

execute(previous) {

 operations.Add(previous,op2);

}

execute() {

 operations.Modulo(op1,op2);

}

execute(previous) {

 operations.Modulo(previous,op2);

}

execute() {

 operations.Multiply(op1,op2);

}

execute(previous) {

 operations.Multiply(previous,op2);

}

execute() {

 operations.Divide(op1,op2);

}

execute(previous) {

 operations.Divide(previous,op2);

}

execute() {

 operations.Substract(op1,op2);

}

execute(previous) {

 operations.Substract(previous,op2);

}

Fig. 17. The best solution of the problem 8

4.2.2 The problem of the design of a problem. We have specifically designed problems for the collect
of alternative solutions. Then, the statement of a problem should not be too open or too directed.
Consider the two following statements for the Mediator problem.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:17

“When a plane is in approach of the airport, it must announce to all the other planes which
are around that it intends to be posed, and await their confirmation with all before carrying
out the operation. It is the control tower of the airport which guarantees the regulation of the
air traffic, by making sure that there is no trajectory conflict or destination between several
planes.”

“When a plane is in approach of the airport, it must announce to the control tower that it
intends to be posed, and await the confirmation before carrying out the operation. It is the
control tower of the airport which guarantees the regulation of the air traffic, by making sure
that there is no trajectory conflict or destination between several planes.”

The first statement is too open and does not conform to the pattern. In fact, if we design a system
which scrupulously respects the problem, it is very difficult to instantiate the Mediator. For the second
statement, it is very difficult to not instantiate the mediator, and then the problem is not significant.

The problem of the design of a problem happened to other problem statements. It is not easy to
propose a small problem dedicated to a specific design problem solvable by a unique pattern and then
solvable by a minimal architecture. There are several solutions: consider problems coarser and apply
composite patterns, search topics of problems from the experience of designers, ensure that problems
are not too didactic, ensure that problems are easily solvable by the instantiation of a pattern and
more complicated to solve without, ensure that problems address other patterns...

4.2.3 Results. From all the solutions suggested by the students, we present here one for each
problem. Others alternative solutions exist but are not presented due to space considerations. When
needed, we have refined the static diagrams with attributes and methods necessary to the solutions
understanding. For each alternative solution presented, we propose the corresponding spoiled pattern
that we have abstracted from some alternative solution. We have named spoiled patterns in the same
manner as bad smells. Their names evoke the noted misconception. For now, we have uniquely repre-
sented spoiled patterns by static diagrams. We study the possibility of adding collaboration diagrams.

An alternative solution to the use of Composite is presented in Figure 18A. This solution is valid,
even if this structure imposes duplications of code for the Graphic class. All compositions are mem-
orized and managed in this class and this fact invalidates the strong point “decoupling and extensi-
bility”. In Figure 18B, we present the deduced spoiled pattern named: Development of composition on
component. Here, composition links should be factorized.

Graphic

ImageLine RectangleText

* ** *

Component

Leaf Composite

* *

(A) (B)

Fig. 18. (A) One alternative solution for the problem 1 - (B) the spoiled pattern Development of composition on component

An alternative solution to the use of Decorator is presented in Figure 19A. This solution is valid,
even if the decorations are directly expressed with composition links on the class object that plays
the Component role. This fact requires a big programming effort to permit the decoration on the fly,
because late binding and calls to the super method are not used. In this case, the adding of a new
concrete decorator needs some code modification, and there is a decoupling problem between objects to
decorate and decorators. In Figure 19B, we present the deduced spoiled pattern named: Development

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:18 • C. Bouhours and H. Leblanc and C. Percebois

of decorations on component. Here, decoration links should be factorized and a class dedicated to the
delegation between concrete decorators should be added.

HorizontalScrollBarVerticalScrollBar Edge

Object

Image

Menu

Text

0..1 0..1 0..10..1

Component

ConcreteComponent

ConcreteDecorator

0..1

(A) (B)

Fig. 19. (A) One alternative solution for the problem 2 - (B) The spoiled pattern Development of decorations on component

An alternative solution to the use of Bridge is presented in Figure 20A. Even if windows are correctly
separated from the environment, the associations between each window and Style are not factorized.
There will be no problem if a new platform is added, but for a new window, a new association link will
be added to the Style class. This model is valid. However, it is possible to have some window types
with different styles. In the Figure 20B, we present the deduced spoiled pattern named: Development
of delegation links. Here, delegation links are misplaced and should be factorized.

Window Style

Empty WithIcon Applicative XWindow PresentationManager

Abstraction

RefinedAbstraction

Implementor

ConcreteImplementor

(A) (B)

Fig. 20. (A) One alternative solution for the problem 3 - (B) The spoiled pattern Development of delegation links

We do not present an alternative solution for the problem 4 (Adapter pattern), because all the solu-
tions we have obtained were instantiations of the design pattern.

An alternative solution to the use of State is presented in the Figure 21A. For the problem 5, we
obtain two worst cases. In the first worst case, the category is a subclass of DVD imposing instances
destruction to change of category. The question of the validity of this solution is open in regard of
the proposed exercise. However, we have considered this solution valid in using a prototype creational
pattern with a category as parameter. In the Figure 21B, we present the deduced spoiled pattern
named: Bad classification. It needs a State class that allows the category changing without destroying
and recreating a new instance globally identical.

Another alternative solution to the use of State is presented in the Figure 22A. Here, the DVD class
manages its state thanks to an enumeration. In doing so, the solution imposes a “switch” statement,
and so, the category changing is possible. The problem of this solution concerns the extensibility. In-
deed, if a new category is added, the DVD class must be modified to manage the new type. In the
Figure 22B, we present the deduced spoiled pattern named: Hidden switch statement. This is an ideal
start point of a big refactoring dedicated to introduce the State pattern. It is given in the chapter
example of the refactoring book of Fowler et al. [1999].
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:19

DVD

Children Normal New Horror

Context

ConcreteState

(A) (B)

Fig. 21. (A) One alternative solution for the problem 5 - (B) The spoiled pattern Bad classification

DVD

+category: Category

+getPrice(): int

Category
<<enumeration>>

+Children
+Normal
+New
+Horror

Context State
<<enumeration>>

+ConcreteState

(A) (B)

Fig. 22. (A) One alternative solution for the problem 5 - (B) The spoiled pattern Hidden switch statement

An alternative solution to the use of Chain of Responsibility is presented in the Figure 23. Here, there
is a separation between containers and contents. Two issues arise. The first concerns the validity of the
solution and the second concerns the interaction with another spoiled pattern presents in the design.
We have considered this solution valid even if delegation between content objects is not possible. The
problem can be solved by adding a reflexive association on the class Content.

Container

JDialog JPanel

Content

JLabel

Help

-String message
-Boolean isAvailable

+showHelp()
+setMessage(String c)
+availableHelp()

JButton

 : JPanel : JDialogimprimer : JButtonannuler : JButtonClient

1 : availableHelp()

2 : showHelp

3 : availableHelp()

4 : availableHelp()

5 : availableHelp()

6 : false

7 : false

8 : noHelp

Fig. 23. One alternative solution for the problem 6

But the main problem is the composition relationship between Container and Content. We have in-
ferred that this composition expresses another thing about containers and contents, and there is a
reuse of this link for chaining the management of help messages. Then, we can say that this composi-
tion link have too many responsibilities as the same manner that we say on a class. But, what should
we consider about this solution? Is this solution is an alternative solution of the Chain of Responsi-
bility using a preexisting composition link or a side effect of a preexisting alternative solution to the
composite between graphical components? It is typical for this kind of problem we want to hear the
opinion of the community working on patterns.

The alternative solution of the Figure 23 respects the messages chaining. When a help demand is
activated, the object concerned has the possibility either of answering or to communicate it to another

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:20 • C. Bouhours and H. Leblanc and C. Percebois

object. However, we do not show that different associations are used in this collaboration. So even
if a particular scenario unfolds a chain of responsibility for dealing with error messages, the static
architecture between objects can be different. It seems likely that the study of such a behavioral pat-
tern requires firstly a static diagram and the other a complete set of test cases modeled by sequence
diagrams.

In the Figure 24, we present the deduced spoiled pattern named: Excessive reuse of a preexisting
association. The reflexive association on Container class must be pulled up to the super class.

Handler_b

ConcreteHandler_1

Handler _c

ConcreteHandler_2

Handler_a

Fig. 24. The spoiled pattern Excessive reuse of a preexisting association

We present an alternative solution to the use of Mediator in Figure 25. Unfortunately, all the al-
ternatives we have obtained corresponded to the worst case ever presented in the GoF catalog. The
concrete mediator that is represented by the control tower is not used. As mentioned before, it is due
to the difficulty to propose an adequate exercise. In the collaboration diagram, we show the complete
graph structure dedicated to exchange of messages. We have chosen a collaboration diagram to express
this fact.

Plane

+land()
+takeOff()
+sendMessage()
+recieveMessage()

ControlTower

+sendMessage()
+recieveMessage()
+recieveMessage()

+otherPlane

land1 : Plane land2 : Plane

takeOff : Plane land3 : Plane

control : ControlTower

Fig. 25. One alternative solution for the problem 7

In the Figure 26, we present the deduced spoiled pattern named: Complete collaboration between
concrete colleagues. Here the refactoring consists to move the association-end from planes to the Con-
trol Tower.

ConcreteColleague ConcreteMediator

Fig. 26. The spoiled pattern Complete collaboration between concrete colleagues

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:21

An alternative solution to the use of Command is presented in the Figure 27A. This solution grants
all the management to the System class but separates the real operation in different classes. So, the
solution is valid, but imposes a lot of communications between the System class and the operations
classes. Moreover, System does not memorize the operation but an identifier from OperationType. So,
the System class must test all the identifiers during the computeOperation that is problematic if there
are a lot of operations. In the Figure 27B, we present the deduced spoiled pattern named: Partially
reification of command. As one of the spoiled pattern concerning the state, we can name it the hid-
den switch statement because it needs the use of dynamic binding for the selection of the appropriate
operation. Here the refactoring consists in terminating the reification process by transforming each as-
sociation link between the invoker and a concrete command by an inheritance link with the command.

Operation

+operand1
+operand2
+operation: OperationType

System

+addOperation(operation, op1, op2)
+computeOperation()
+showResult()

Addition

+click(op1, op2)

Substraction

+click(op1, op2)

Multiplication

+click(op1, op2)

Division

+click(op1, op2)

Result

+click()

0..*

OperationType
<<enumeration>>

+addition
+substraction
+multiplication
+division

Command Invoker

ConcreteCommand / Reciever

0..*

CommandType
<<enumeration>>

+ConcreteCommandType

(A) (B)

Fig. 27. (A) One alternative solution of the problem 8 - (B) The spoiled pattern Partially reification of command

4.3 Limits

Our collection method of spoiled patterns presents, in its current form, two limits. The first relates to
the collection with experiments, the second to the manual analysis of the alternative solutions.

—Collect alternative solutions from designers is an approach that allow us to exploit a large number of
solutions. However, participation of students of the same curriculum produces very similar results
when the problems become more and more complex. Having had the same formal and technical
training, the same design defects are found in their models, thus limiting the number of different
alternative solutions.

—To build our base of spoiled pattern, we manually analyzed each proposed solution. Such analysis
is manual, because it seems difficult to automate the examination of a model from a simple class
diagram. For the structural patterns, the effort is not very large since only the structure of the
solution is significant, contrary to behavioral patterns which bring into play the kinematics of the
messages exchanges between the objects.

In order to avoid the multiplication of the same solutions and to increase the diversity of the alterna-
tives solutions suggested, it is advisable to urge an experiment on broader scale by touching designers
of any horizon. The use of a collaborative sharing website of problems and alternative solutions would
make it possible to identify the most frequent spoiled patterns, and more largely, the bad practices of
designs. Moreover, this website would allow the emergence of an experts community opening a sharing
zone of “bad practices”.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:22 • C. Bouhours and H. Leblanc and C. Percebois

5. A WEB SITE TO SHARE SPOILED PATTERNS

We have designed a collaborative website giving an access to the whole catalog of the spoiled patterns.
This site1 introduces each design pattern with a list of its spoiled patterns and a problem list solvable
with the pattern. Each spoiled pattern is described with a justification of its damage. The website
offers a contribution system for the submission of new problems, new alternative solutions, new spoiled
patterns and new strong points. Each submission is subjected at a committee examining its validity
and its interest as a spoiled pattern. Thus, this site makes it possible to create a community of experts
to urge the use of the design patterns.

The website manages three roles. The first concerns simply the visitor. A visitor can show the entire
catalog already validated and so can use the website as an information source to do its design, to correct
its design, or to teach design patterns concepts. After identification, a visitor becomes a contributor.
With this role, the contributor can submit new problems, new alternative solutions or new strong
points. Each submission is sent to the committee of the website. This committee is an expert group
able to validate or invalidate each submission. While the submission is not validated, the visitors
cannot see it. Thanks to this system, we present to the visitors a catalog always validated.

The submission process of the website is conceived in the same logic as the conduction of the experi-
ments presented in the section 4. All the user stories of the website are presented is the Table II.

Table II. The user stories
As visitor, I can

show design patterns description (structure, strong points, intent and applicability).
show spoiled patterns for one design pattern.
show alternative solutions allowing the deduction of a spoiled pattern.
show problems allowing to obtain alternative solutions.
show the best solution for a problem.
register as contributor.

As contributor, I can
submit a new problem and its best solution.
submit a new alternative solution for a problem.
submit a new spoiled pattern for an alternative solution.
submit a new strong point or a new subfeature for a design pattern.

As committee member, I can
validate or invalidate the submissions, in motivating my choices.
show all the submissions.
submit a new design pattern.

Finally, the entire website is articulated around a specific business model presented in the Figure 28.
We can see in this model all the concepts previously presented. A pattern has some strong points de-
composed in subfeatures, and solves a problem. So, this problem has a best solution which instantiates
the concerned design pattern, and some alternative solutions. These alternative solutions solve the
problem but with a different architecture compared to the best solution. A spoiled pattern may be
deduced from each alternative solution, and the difference between the alternative and the best so-
lution produces a strong points degradation. Except for the strong points and the sub-features, each
entity has one or more representations allowing the illustration of each concept, like static diagrams
or sequence diagrams as shown in the previous sections of this paper.

1reachable at http://www.irit.fr/GOPROD/

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

Sharing Bad Practices in Design to Improve the Use of Patterns • 1:23

PatternSpoiled pattern

Sub feature

Strong point

Alternative solution

Problem

Best solution

solves

0..*

1

has

1

1

has

0..*

1

is deduced from

1..*

0..1

has

0..*

1

1

1..*

validates

0..*

0..*

damages

0..*

0..*

instantiate

1

0..*

Fig. 28. The business model

6. CONCLUSION

A spoiled pattern is a generic micro-architecture that produces non-optimal solutions to a design prob-
lem. Therefore, by comparisons with best solutions instantiated with design patterns, spoiled patterns
allow to enforce the good properties of design patterns. We think that spoiled patterns can be used
for others purposes too. First, a didactic purpose: spoiled patterns can be considered as bad smells at
design time or as “small” anti-patterns. Then early detection of them can be useful during a weekly
meeting of the development team covering architecture. Second, a dissemination purpose as we pro-
pose in the collaborative website. Spoiled patterns can consolidate the proof of the pertinence of the
pattern concept. Therefore, having an extensional definition of design problems covered by the patterns
can help designers to detect more easily misconceptions on their designs.

However experiments that we have driven are expensive in time and are concentrated on a specific
panel. Therefore we have played too much roles: teacher, analyst, specialist, and committee member.
Then, we propose a collaborative web site to open spoiled patterns to the community.

We encounter some difficulties in the process of abstraction concerning spoiled behavioral patterns.
Here, structure is not sufficient and interactions diagrams represent specific collaborations between
objects.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

1:24 • C. Bouhours and H. Leblanc and C. Percebois

REFERENCES

ALBIN-AMIOT, H., COINTE, P., GUÉHÉNEUC, Y.-G., AND JUSSIEN, N. 2001. Instantiating and detecting design patterns:
Putting bits and pieces together. In proceedings of the 16th conference on Automated Software Engineering (ASE), D. Richard-
son, M. Feather, and M. Goedicke, Eds. IEEE Computer Society Press, 166–173.

ALBIN-AMIOT, H. AND GUÉHÉNEUC, Y.-G. 2001. Meta-modeling design patterns: Application to pattern detection and code
synthesis. In proceedings of the 1st European Conference on Object-Oriented Programming (ECOOP) workshop on Automating
Object-Oriented Software Development Methods, B. Tekinerdogan, P. V. D. Broek, M. Saeki, P. Hruby, and G. Suny, Eds. Centre
for Telematics and Information Technology, University of Twente. TR-CTIT-01-35.

BARONI, A. L., GUÉHÉNEUC, Y.-G., AND ALBIN-AMIOT, H. 2003. Design patterns formalization. Research report 03/03/INFO,
Computer sciences department, École des Mines de Nantes. June.

BOUHOURS, C. 2010. Detection, explanations and refactoring of design defects : the spoiled patterns. PhD thesis.
BOUHOURS, C., LEBLANC, H., AND PERCEBOIS, C. 2009. Bad smells in design and design patterns. Journal of Object Technol-

ogy 8, 3, 43–63.
BROWN, W. J., MALVEAU, R. C., AND MOWBRAY, T. J. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis. Wiley.
DIETRICH, J. AND ELGAR, C. 2005. A formal description of design patterns using owl. In proceedings of the 16th Australian

Software Engineering Conference. Vol. 0. IEEE Computer Society, Los Alamitos, CA, USA, 243–250.
DODANI, M. 2006. Patterns of anti-patterns ? Journal of Object Technology 5, 5, 29–33.
DONG, J. AND ZHAO, Y. 2007. Classification of design pattern traits. In proceedings of the 19th International Conference on

Software Engineering & Knowledge Engineering (SEKE). 473–477.
DUELL, M., GOODSEN, J., AND RISING, L. 1997. Non-software examples of software design patterns. In OOPSLA ’97: Adden-

dum to the 1997 ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (Adden-
dum). ACM, New York, NY, USA, 120–124.

EDEN, A. H., YEHUDAI, A., AND GIL, J. 1997. Precise specification and automatic application of design patterns. In proceedings
of the 12th international conference on Automated Software Engineering (ASE). IEEE Computer Society, Washington, DC,
USA, 143–152.

EL-BOUSSAIDI, G. AND MILI, H. 2008. Detecting patterns of poor design solutions using constraint propagation. In proceed-
ings of the 11th international conference on Model Driven Engineering Languages and Systems (MoDELS). Vol. 5301/2009.
Springer-Verlag, Berlin, Heidelberg, 189–203.

FAGAN, M. 2002. Design and code inspections to reduce errors in program development. 575–607.
FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D. 1999. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional.
FRANCE, R., GHOSH, S., SONG, E., AND KIM, D.-K. 2003. A metamodeling approach to pattern-based model refactoring. IEEE

Software 20, 5, 52–58.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns. Addison-Wesley, Boston, MA.
GUENNEC, A. L., SUNYÉ, G., AND MARC JÉZÉQUEL, J. 2000. Precise modeling of design patterns. In proceedings of 3rd

International Conference on the Unified Modeling Language (UML). Springer Verlag, 482–496.
KAMPFFMEYER, H. AND ZSCHALER, S. 2007. Finding the pattern you need: The design pattern intent ontology. In proceedings

of the 10th International Conference on Model Driven Engineering Languages and Systems (MoDELS) (2007-09-13). Lecture
Notes in Computer Science Series, vol. 4735/2007. Springer, 211–225.

MAK, J. K. H., CHOY, C. S. T., AND LUN, D. P. K. 2004. Precise modeling of design patterns in uml. In proceedings of the 26th
International Conference on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 252–261.

MCGUINNESS, D. L. AND VAN HARMELEN, F. 2004. OWL Web Ontology Language Overview.
MILI, H. AND EL-BOUSSAIDI, G. 2005. Representing and applying design patterns: What is the problem? In proceedings of the

8th international conference on Model Driven Engineering Languages and Systems (MoDELS). 186–200.
MILLAN, T., SABATIER, L., LE THI, T. T., BAZEX, P., AND PERCEBOIS, C. 2009. An OCL extension for checking and transforming

UML Models. In proceedings of the 8th International Conference on Software Engineering, Parallel and Distributed Systems
(SEPADS). WSEAS Press, http://www.wseas.org/, 144–150. (Confrencier invit).

O’CINNÉIDE, M. AND NIXON, P. 1999. A methodology for the automated introduction of design patterns. In proceedings of
the 15th IEEE International Conference on Software Maintenance (ICSM). IEEE Computer Society, Washington, DC, USA,
463–473.

OMG. 2006. Uml 2.0 ocl specification : http://www.omg.org/spec/ocl/2.0/pdf.
OMG. 2007. Mof 2.0/xmi mapping, v2.1.1 specification : http://www.omg.org/spec/xmi/2.1.1/pdf.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 1, Publication date: 0.

