
Secure Chained Observer Pattern in Distributed

Systems

VIVEK BABU GONDI AND DATTA G, MINDTREE LIMITED, BANGALORE, INDIA

Abstract: The concept of sending messages to several receivers is a common scenario in distributed applications. However, there

is a certain degree of complexity involved assuming that the sender and receiver are physically at remote locations. Aspects like

accessibility, security, and large volumes are key factors in these systems. Therefore, messaging in distributed systems poses

several challenges and requires optimal design. We use this problem to come up with a pattern in sending secure messages

automatically from the sender to receiver(s) using a secure observer classes.

General Terms
Secure, Messaging, Observer Pattern, chained, private/public key pairs, distributed systems

Keywords
SSN: Social Security Network, PKI: Public Key Infrastructure

1. NAME OF THE PATTERN

This pattern is named ‘Secure Chained Observer Pattern in Distributed Systems’ because it uses a combination of observer classes

and security mechanisms to relay messages from the sender to the receiver. It is named ‘chained’ as messages are transferred from

sender to receiver via a particular path. [1]

2. CONTEXT

In distributed systems, communication between objects is a key factor for a good system design. It is required that the starting

point and end point needs to be connected in a secure and automatic fashion. Often at each step, action needs to be taken without

any effort from the sender. For e.g.: look ups need to be performed to route to a particular sender, messages need to be formatted in

the intermediate steps etc. After each step, an event might need to be sent to the receiver. Message notification might need to

happen in several steps finally reaching the intended recipient. This kind of situation can be addressed using this pattern. [2 & 3]

3. FORCES

Ease of Access: Users can subscribe to different services in the market via Service Providers like Bank, Telecom company etc. It

is cumbersome to contact all these providers by an end user when a uniform message needs to be sent to all of them. For e.g.: A

user would like to Renew / Cancel any contracts with a service provider, or modify personal details with all of them.

Security of messages: With the increasing threat of hacking personal data, it is imperative that messages are transmitted using

proper encryption mechanisms. Without this feature, the messages could be read by external parties over the network and can be

misused.

Message Handling: In many situations content of messages must be looked at each step and necessary action like routing to

another receiver might be needed. Without this happening in an automatic way, lot of time would be lost in delivering the message

to the receiver.

Volume of Messages: All major companies who use messaging between their customers have high throughput of messages to

handle everyday. With the increasing competition in the market, if the volume is not handled efficiently and automatically, the

vendor would not stand up to the competition from others

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version of this paper was presented in a

writers' workshop at the 17th Conference on Pattern Languages of Programs (PLoP). PLoP'10, October 16-18, Reno, Nevada, USA. Copyright

2010 is held by the author(s). ACM 978-1-4503-0107-7

1

4. SOLUTION

4.1 USECASE DIAGRAM

Figure 1: Use Case for a typical scenario of user contacting any service of a bank

4.2 DESCRIPTION

Overview: One possible solution to implement the above problem is described in this section. Assume a typical use case, where

the user would like to communicate to a ‘Bank’ (receiver) for some requirement. For understanding the sequence of events that

occur in this pattern, refer to Fig 3. Initially, the credentials of the user are verified by an ‘Authentication Service’. The credentials

could be valid SSN (Social Security Number)/Date of Birth/password etc or any identity that the user has registered with the

system. Once the authentication is successful, the flow passes next to the ‘Broker Class’. This class mediates all requests from the

user and routes them to the ‘Service Provider’ (e.g.: Bank) using lookup information. Both the ‘Broker’ and ‘Service Provider’

implement ‘Observer’ and extend ‘Observable’ classes. The service provider in turn routes the request message to the required

‘Service Implementer’ (e.g.: Savings, Credit Card Account etc). The class which is responsible for execution of the user’s request

is called ‘Service Implementer’. Encryption and decryption of messages between the above classes is handled by the ‘Message

Handler’ class. All public/private key related information is obtained from the ‘KeyStore’ class.

The detailed description for each of the above classes is given below.

LoginVO: This class is a client that demonstrates the flow of the user request from the beginning to the end. Initially, the

credentials of the user are validated using ‘Authentication service’ class. The credentials could be valid SSN, Date of Birth, Bank

Details etc or any identity that the system is registered with. Upon successful login, it instantiates the ‘MessageHandler’ class and

sets the required input message to the handler object. It is an ‘Observable’ class with add and notify methods. The addObserver()

contains the ‘Broker’ as the observer and notifyObserver() is responsible for publishing the message to the ‘Broker’ automatically

using Observable class

Finally, it contains the executeService() method. This method sends the encrypted message received from the MessageHandler

class and calls the notifyObserver() method to notify the observers subscribed to this object.

MessageHandler Class: This is a utility class for handling all encrypted messages between different objects. The main

responsibility of this class is to return an encrypted message (getEncryptedMsg()) to the calling class using the private key of the

sender. When a sender gets an encrypted message, it is also responsbile for decrypting the message (getDecryptedMsg()) by

obtaining the required public key from the ‘KeyStore’ class.

ServiceLookup Class: This class provides the list of observers for a particular object. For e.g.: If a ‘Broker Class’ is the input to

the lookup() method, the method would return the list of ‘Service Observers’. It contains one overloaded method to accept

different objects.

BrokerObserver Class: This class is the ‘Observer’ for the ‘Login’ class. This class acts as the first ‘Observer’ for calls received

by the client. This also extends the ‘Observable’ class as any change to this object is ‘observed’ by the Service Provider class. The

Lookup Key Information

Broker

End User

Bank (Service Provider)

Savings Account

Loan Account

Credit Card Account

Lookup Service Implementer
Lookup Service Provider

Authenticate the User

‘addObserver()’ contains the list of ‘Service Provider(s)’. The relationship between the ‘Broker’ and ‘Service Provider’ is provided

by the ‘Service Lookup’ class. Broker class gets the encrypted message from the ‘Message Handler’ and decrypts the message by

obtaining the public key from the ‘KeyStore’ class.

Service Provider (Observer) Class: This class receives requests from the ‘Broker Observer’. Just like Broker it is both

‘Observable’ and also extends the ‘Observer’ interface. This class observes changes to the Broker class and notifies the ‘Service

Implementer’ classes. This class routes the message to appropriate ‘Service Implementer’ using look up. Just like the Client-

Broker-Service Provider channel, the ‘Broker-Service-Provider-Service Implementer’ classes communicate in a similar way. Thus

a chained observer structure is realized.

Service Implementer Class: They are the ‘Observer(s)’ to the Service Providers and hence listen to all updates in the Service

Provider class. The service implementers actually execute the service requested by the client and are the destination point for

which the client is looking to. It contains the execute() which accepts the service message, decrypts using the public key and

performs the required action.

KeyStore Class: This contains public key for all observers to decode the encrypted messages. The key pair generation for each of

the ‘Observer’ classes is handled here. Every ‘Observer’ object gets its public key from this class to read the encrypted messages

when required. For e.g.: The Broker Observer class decrypts the message, deciphers what service the client is looking for using the

key obtained from this class. It then forms the required content for message using the Message Handler class

getEncryptedMessage(). The message is signed using Broker private key and passed to Service Provider Observer. Upon receiving

the message by the ‘Service Provider’, it calls getDecryptedMessage() and decrypts the message as per key obtained from the

‘KeyStore’

The class diagram is illustrated below in Fig 2.

4.3 CLASS DIAGRAM

7

Figure 2: Class diagram for secure chained observer pattern

4.4 SEQUENCE DIAGRAM

LoginVO

+BrokerObserver
+serviceMessage
+MessageHandler

+validateLogin()
+setServiceMessage()
+addObserver(BrokerObs)
+notifyObserver()

ServiceObserver

+loginVO
+serviceImplementers(HashMap)

+update()
+setLoginInfo(loginVO)
+getServiceMessage()

MessageHandler

+MessageHandler(String)
+getDecryptedMsg(publickey)
+getEncryptedMsg(privatekey)

BrokerObserver

+observerList(ArrayList)
+loginVO
+SrvLkupFilter()

+update()
+addObserver(ServiceObs)
+notifyObserver()
+getServiceMessage()

KeyStore

+brokerObserver
+serviceObserver
+serviceImpl

+getPrivateKey(brokerObserver)
+getPublicKey(brokerObserver)
+getPrivateKey(serviceObserver)
+getPublicKey(serviceObserver)
+getPrivateKey(serviceImpl)
+getPublicKey(serviceImpl)

java.util.Observable

ServiceImplementer

+execute()

ServiceImplInterface
<<interface>>

+execute()

Observer
<<interface>>

AuthenticationService

+validate(LoginVO)

ServiceLookup

+lookupSP(Observer)

Figure 3: Sequence diagram showing message transmission from sender to receiver

5. CONSEQUENCES

5.1 BENEFITS

Uniformity: The pattern brings ease of transmission of information by the client to several other parties in a single call. It brings

about uniform dissemination of information to all parties concerned via the broker interface in an encrypted manner and hence

there is no ambiguity of information being sent to several parties.

Confidentiality: The secure transmission aids in privacy of the data being considered and is therefore very useful in

manysituations. The customer can be rest assured that his data is not being made public and misused by unwanted parties.

Authenticity: It is also possible to add digital signatures to let the recipients verify the authenticity of messages

5.2 DRAWBACKS

Non-Uniform Message Formats: This pattern assumes proper communication channels between sender and receiver classes. But

there might be disagreements in terms of message formats between them. Hence messages might not reach the end receiver as

expected.

One-way Communication: This pattern only uses a one way communication from the sender to the receiver. There is no

acknowledgement from the receiver to the sender for the messages delivered. Hence delivery of message is not 100% guaranteed.

6. KNOWN USES

1. IBM WebSphere Message Broker handles message transactions in distributed environments. Customers use this product

to define message routing and processing for their business purpose. It provides all facilities like authentication, routing

of messages, security, and processing the events that occur. This product provides ‘broker nodes’ which are used for

defining message routing, mapping and conversion of message formats from one node to another. A node can be

configured to receive events, process events and pass on to the next node in the chain. Many health care companies and

banks use Message Broker to securely transmit the messages with outside world using this product. Some of the

customers of this product are Fortis Bank, Netherlands and Sharp Corporation, Japan. Other customers can be found on

the product’s website [4 & 5]

2. The architecture document of ‘BEA Tuxedo Application Server’ (a middleware platform for distributed computing)

describes messaging paradigms that can be achieved between client and server. Out of the different modes of

communication, the ‘Publish-Subscribe’ mode talks of a similar idea discussed in this paper. [6] The ‘Application

Services’ layer talks of message routing, encryption, transaction etc. The ‘Messaging’ layer is positioned above this. This

layer is responsible for communication between client and server. In this layer, there is an ‘Event Broker’ component

which notifies events to clients (receivers). The events are triggered by the server automatically. Events could be of

different types: ‘Application Events’ or ‘System events’. For e.g.: In an Application Event, the client can be notified

about the status of his bank account when the withdrawal is above a certain limit

3. Some of the companies offer real-time stock market updates. They use observer patterns to automatically update the

browser content in a secure manner using https protocol. One such company is http://www.wdsoftware.com. [7] The

company specializes in financial chart reporting used for intra day and end of day trade reporting of stocks. The data is

displayed in applet and the updates occur automatically to the user. It uses a similar pattern discussed in paper using

observer and security classes.

7. RELATED PATTERNS

Front End Interceptor: Used in routing requests in the broker layer

Publish/Subscribe: Used to broadcast events to several receivers that are subscribed

Façade: Used to hide the complexity of message handling across different classes

Strategy: Used in the conversion of message formats across service providers

MVC: Used by the observer classes as they use the model-controller pattern

8. ACKNOWLEDGEMENTS

I offer my thanks to Dr. Eduardo Fernandez for reviewing and giving positive suggestions for the paper. I also thank Mr. Raj Datta

from MindTree Limited for encouraging me to submit to the conference. Also, I thank Mr.Witold Dutek from WDSoftware who

shared the technical details about his product. And last but not the least, thanks to my colleagues: Nirmal, Senthilnathan for their

feedback and timely reviews.

9. REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal., Pattern-oriented software architecture, Wiley 1996

[2] A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language for cryptographic object-oriented software”, Chapter 16 in

Pattern Languages of Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.)..

[3] Eric Gamma, Richard Helm, Ralph Johnson: Design Patterns: Elements of Re-Usable Object Oriented Software

[4] IBM WebSphere Message Broker Documentation:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?topic=/com.ibm.etools.mft.doc/ab20551_.htm

[5] Success stories of IBM WebSphere http://www-

01.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=default_WebSphereMes

sageBroker&cty=en_us

[6] Oracle BEA Documentation on Tuxedo Server: http://edocs.weblogicfans.net/tuxedo/tux91/int/intatm.htm#1144565

[7] WDSOFTWARE STOCK UPDATE APPLICATION. http://www.wdsoftware.com

10. APPENDIX

The source code for the above use case is illustrated below.

LoginVO Class:

package util.test;

import java.util.Observable;

//this is the only observable interface in the pattern
public class LoginVO extends Observable {

 BrokerObserver brokerObs = new BrokerObserver();

 //the message to be sent
 private String serviceMessage;

 MessageHandler messageHandler = new MessageHandler();

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?topic=/com.ibm.etools.mft.doc/ab20551_.htm
http://www-01.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=default_WebSphereMessageBroker&cty=en_us
http://www-01.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=default_WebSphereMessageBroker&cty=en_us
http://www-01.ibm.com/software/success/cssdb.nsf/softwareL2VW?OpenView&Count=30&RestrictToCategory=default_WebSphereMessageBroker&cty=en_us
http://edocs.weblogicfans.net/tuxedo/tux91/int/intatm.htm#1144565
http://www.wdsoftware.com/

 //the brokerobservers are added here, in our pattern only one observer is added

blic void addObserver(BrokerObserver obj){
 this.addObserver(obj);

}

//This method validates the user credentials

//Further it assigns the message read by the MessageHandler to the observer(s) added to the system using notifyObserver() and executes

the requested service

public boolean executeService(){

messageHandler.setServiceMessage(serviceMessage);
 System.out.println("called the message reader "+messageHandler.getMessageHandler());

//notify the Observer, in this case BrokerFilter

 System.out.println("called the validate method");
 notifyObserver();

 return true;

}

//calls the update of next observer i.e. the broker with the required message

public void notifyObserver(){
 brokerObs.update(messageHandler);

}

}

MessageHandler Class:

public MessageHandler();
 //some custom defined Reader to read messages

 public MessageHandler getMessageHandler() {

 return messageHandler;
 }

 public void setMessageHandler(MessageHandler someHandler) {
 this.messageHandler = someHandler;

 }

//returns encrypted signed message

 public String getServiceMessage() {

// encrypt the data
return message;

 }

public void setServiceMessage(String serviceMessage) {
 this.serviceMessage = serviceMessage;

 }

BrokerObserver Class:

package util.test;

import java.util.*;

public class BrokerObserver extends Observable implements Observer {

//lookup for service providers based on the service description by the loginVO

private HashMap serviceProviders = new HashMap();

//holds list of observers for this subject(broker is now subject for serviceproviders)
private ArrayList observerList = new ArrayList();

 private MessageHandler messageHandler ;

//get list of service providers for the service from lookup

ServiceLookup svfilter = new ServiceLookup();
HashMap serviceProviderList =svfilter.lookupSP(this);

ServiceObserver servObs;

 //get the signed message from the handler

 public void update(Observable obj,Object ob){

 if(obj instanceof MessageHandler)

 this.setMessageHandler((MessageHandler) obj);

 System.out.println("called the broker update method");
 String brokerMessage = decryptBrokerMessage(messageHandler.getServiceMessage());

 addObserver(brokerMessage);

 notifyObserver();
 }

private void setMessageHandler(MessageHandler messageHandler) {this.messageHandler=messageHandler; }

 private MessageHandler getMessageHandler() {return messageHandler; }

}

//decrypt messages using the key obtained
 private String decryptMessage(String encryptedMessage){

 //decrypt message and route to service provider

 return KeyStore.getKey(this);

 }

public void addObserver(String message){

 //adding a test service observer object from message received

 serviceProviderList.put(new ServiceObserver(),new ServiceObserver());
 Iterator it = serviceProviderList.values().iterator();

 while(it.hasNext())

 observerList.add(it.next());
 }

 public void notifyObserver(){
 Iterator it=serviceProviderList.values().iterator();

 while(it.hasNext()) {
 servObs = (ServiceObserver)it.next();

 System.out.println("service observers added in loop");

 servObs.update(this, messageHandler);
 }

 }

}

ServiceLookup Class:

package util.test;
import java.util.HashMap;

public class ServiceLookup {
 public HashMap lookupSP(BrokerObserver brokObs){

 HashMap srvProvider = new HashMap();

 //look up code for service providers
 return srvProvider;

 }

 public HashMap lookupSP(ServiceObserver servObs){
 HashMap srvImpl = new HashMap();

 //look up code for service implementers

 return srvImpl;

 }

}

ServiceObserver Class:

package util.test;

import java.util.Observer;

import java.util.Observable;

import java.util.HashMap;
import java.util.Iterator;

public class ServiceObserver extends Observable implements Observer {

 MessageHandler messageHandler ;
 HashMap servImpl ;

private HashMap lookUPServImpl(){

 String message = decryptServMessage();

 //based on message lookup service Impl
 servImpl = new ServiceLookup().lookupSP(this);

 return servImpl;

 }

 private String decryptServMessage(String encryptedMessage){
 //decrypt message and route to service provider

 return KeyStore.getKey(this);

 }

//add test service implementers

 public void update(Observable obs,Object obj){

 lookUPServImpl();

 servImpl.put(new ServImpl_1(),new ServImpl_1());
 //get list of serviceimplementers

 Iterator it = servImpl.keySet().iterator();

 if(obs instanceof BrokerObserver){

 //get broker and client VO

 this.setClientInfo(((BrokerObserver)obs).getClientVO());
 //execute relevant service methods

 while(it.hasNext()){

 ServiceImplInterface sp =(ServiceImplInterface)it.next();
 System.out.println("called the update method in ServiceObserver");

 sp.execute(messageHandler.getMessage());
 }

 }

 }

private void setMessageHandler(MessageHandler messageHandler) {this.messageHandler=messageHandler; }

 private MessageHandler getMessageHandler() {return messageHandler; }
}

ServImplInterface Interface:

package util.test;

public interface ServiceImplInterface {
 public void execute(MessageHandler messageHandler) ;

}

ServImpl Class:

package util.test;

public class ServImpl implements ServiceImplInterface {

 public void execute(MessageHandler msgHandler){
 System.out.println("called the service implementer method for client");

 //implementation of actual service here

}
}

KeyStore Utility Class:

package util.test;

public class KeyStore {
 private static String servObsKey;

 private static String brokerObsKey;

 private static String servImplKey;

 public static String getKey(ServiceObserver sobs){
 //some implementation

 return servObsKey;

 }
 public static String getKey(BrokerObserver bobs){

 //some implementation

 return brokerObsKey;

 }

}

Test Class:

This is a tester client class to test the above set of classes for running a secure chained sequence of events.

package util.test;

public class TestChainedObserver {

 public static void main (String args[]){
 try{

 LoginVO loginVO = new LoginVO();

 MessageHandler messageHandler = new MessageHandler();
 messageHandler.setMessage("Test message from client- update personal Info");

 loginVO.setMessageHandler(messageHandler);

 loginVO.executeService();
 }catch(Exception ex){

 //catch and log exceptions

 }
 }

}

Output after running the Test class in Eclipse IDE:

called the message Test message from client- update personal Info
called the validate method

called the broker update method
service observers added in loop

called the update method in ServiceObserver

called the service implementor method for client

Process finished with exit code 0

